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Classification of Chirp Signals Using Hierarchical
Bayesian Learning and MCMC Methods

Manuel Davy, Christian Doncarli, and Jean-Yves Tourneret

Abstract—This paper addresses the problem of classifying
chirp signals using hierarchical Bayesian learning together
with Markov chain Monte Carlo (MCMC) methods. Bayesian
learning consists of estimating the distribution of the observed
data conditional on each class from a set of training samples.
Unfortunately, this estimation requires to evaluate intractable
multidimensional integrals. This paper studies an original imple-
mentation of hierarchical Bayesian learning that estimates the
class conditional probability densities using MCMC methods.
The performance of this implementation is first studied via an
academic example for which the class conditional densities are
known. The problem of classifying chirp signals is then addressed
by using a similar hierarchical Bayesian learning implementation
based on a Metropolis-within-Gibbs algorithm.

Index Terms—Classification of chirps, hierarchical Bayesian
learning, MCMC methods, supervised classification.

I. INTRODUCTION

B AYES classification theory has received much attention in
the pattern recognition literature (for an overview, see [1],

[2], and references therein). This popularity may be justified by 
the fact that the Bayesian classifier is optimal in terms of an 
appropriate overall risk or the average probability of error. The
Bayes classifier assumes the knowledge of the prior probabili-
ties and the conditional probability densities of each class. Un-
fortunately, these quantities are unknown in many practical ap-
plications and have to be estimated. The estimation of the prior
probabilities generally presents no serious difficulty  [1, p. 44]. 
However, estimation of the class-conditional probability density 
functions (pdfs) raises troublesome problems.

An usual approach for estimating the class-conditional
probability densities is the so-called hierarchical Bayesian 
learning (HBL), which has received much attention in the
literature [3]–[7]. Hierarchical modeling assumes that the 
training samples have distributions depending on different
but related parameters. These parameters are modeled as
random variables or vectors whose distribution is parametrized 
by so-called hyperparameters. Our knowledge about these
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hyperparameters is contained in a known prior distribution.
Unfortunately, the class-conditional densities resulting from
HBL cannot be generally expressed in closed-form because of
intractable multidimensional integrals. Similarly, closed-form
expressions for the predictive distribution of the observations,
conditional on the training set of each class, are generally
difficult to obtain. Such problems can be solved by approxi-
mating the integrals using stochastic sampling or deterministic
numerical integration. However, stochastic sampling usually
yields better approximations, as explained in [5] and [8]. This
paper proposes to approximate the integrals required for HBL
by using Markov chain Monte Carlo (MCMC) methods. These
methods have recently been considered with increasing interest
in many signal processing applications (see [9] and references
therein). MCMC methods consist of generating samples by
running an ergodic Markov chain (MC), which converges to
a desired target distribution. These samples can then be used
to approximate multidimensional integrals using the ergodic
theorem.

Bayesian learning implementations using MCMC methods
have been used in many applications. In [10], many integration
techniques, including MCMC methods, have been proposed
for the computation of Bayes factors, with a particular interest
on five scientific applications in genetics, sports, ecology,
sociology, and psychology. A general framework for the
classification and discrimination of normal-mixture models
using Bayesian learning and MCMC methods has been studied
in [11]. The main contribution of this paper is to apply the
methodology of Lavine and West [11] to the problem (recently
introduced in [12]–[15]) of classifying multicomponent linear
(sinusoids) and quadratic (chirps) frequency-modulated signals.
This paper assumes that the number of components in each
signal is known, which can be justified in many applications
including target identification and knock detection (presented
in Section IV). However, for applications where this number of
components is unknown, a reversible jump MCMC algorithm
similar to the one developed in [7] can be derived (see [16]).

Section II briefly recalls HBL principle for supervised clas-
sification theory and studies an original HBL implementation
based on MCMC methods. Section III studies an interesting ex-
ample providing closed-form expressions for the posterior dis-
tributions and the class-conditional probability densities. The
performance of the proposed HBL implementation is evaluated
by comparing these closed-form expressions with MCMC ap-
proximations. The application of HBL to the classification of
chirp signals is investigated in Section IV. Conclusions are re-
ported in Section V.



II. HIERARCHICAL BAYESIAN LEARNING

An available set of independent so-called training sam-
ples is separated in subsets corresponding to theclasses

, . Denote , where
contains the training samples ,

corresponding to the class . Choosing a
zero-one loss function (which minimizes the average error prob-
ability), the Bayes classification rule can be written as

Decide if

(1)

where , and is the posterior proba-
bility of the class . Assuming that the classes have the same
prior probability and that the subset provides no information
about the class , (separability condition) [1, p. 50], the
Bayes classification rule reduces to

Decide if

(2)

where , and is the probability den-
sity of class whose training samples are summarized in.
This equation shows that the Bayesian classifier only requires
computation of the pdfs . The separability condi-
tion ensures that each class can be treated independently. Con-
sequently, by forgetting the class index for brevity, we have to
solve the following problem for each class: Estimate an un-
known distribution by using a set
of samples drawn independently according to this unknown
distribution.

A. Hierarchical Modeling

Hierarchical models are used when the samples, inside a
given class, have pdfs depending on different (but related) un-
known parameters , which are denoted . Inside the
class , the parameters are distributed according to a pdf
depending on an unknown hyperparametercharacterizing the
class, which is denoted . Finally, the prior distribution
of is assumed to be known and is denoted . Such a hier-
archical modeling has received much attention for the analysis
of signals defined by random parameters [3]–[6]. However, this
modeling is also interesting for the analysis of signals with de-
terministic parameters since it introduces an additional level in
prior modeling, increasing the robustness of the learning process
[5, p. 112], [7]. The desired predictive distribution of an obser-
vation denoted is then defined by

(3)

Since , (3) reduces to

(4)

where (using the hierarchical
structure), and

(5)

i.e.,

(6)

where meansproportional to. Using the hierarchical struc-
ture, can be computed as follows:

(7)

Equations (4), (6), and (7) are the key HBL equations. Note that
when is the Dirac delta function, i.e., when

, HBL reduces to general Bayesian learning, which has
also received much attention in the literature (for instance, see
[1, p. 51]).

B. HBL Implementation Using MCMC Methods

Unfortunately, closed-form expressions for the integrals in
(4) and (7) are rarely available. This section studies an HBL
implementation based on MCMC methods. Equation (4) shows
that the predictive distribution of the observationcan be
written as follows:

(8)

In other words, can be interpreted as the mean of ,
where is distributed according to the marginal distribution

(9)

The proposed Bayesian learning implementation first generates
samples distributed according to using the
following two-step procedure:

1) Generation of samples distributed according to

(10)

This is achieved by using the Gibbs Sampler to draw
vectors , , ac-

cording to the joint pdf ;
2) For each sample , generation of one sample dis-

tributed according to .



After generating vectors , that are
distributed according to , the predictive distribution
of the observation conditional on the training set is esti-
mated as follows:

(11)

III. A CADEMIC EXAMPLE

This section studies an interesting example, where closed-
form expressions of and are available. Con-
sequently, approximations of these distributions obtained using
MCMC simulations can be compared with the corresponding
theoretical expressions. Consider a classwhose training set is
denoted . Each training sample is an-di-
mensional vector , which is de-
fined as1

(12)

where , and is a se-
quence of i.i.d. zero mean Gaussian variables with variance.
The variances and are assumed to be known. The vari-
ables and , as well as the sequences
and , are assumed independent for .
Moreover, and are also independent variables. Note
that two training vectors and have different distribu-
tions since for . Consequently, the general
Bayesian learning principle [1, p. 51] cannot be used to solve
this problem. This section shows how hierarchical Bayesian
learning allows the estimation of , which is necessary
for the classification of . In this example, the model parame-
ters are , (where is the number of
training samples), and the hyperparameter is .

A. HBL Closed-Form Expressions

Standard computations lead to

(13)

where

and (14)

Note that is proportional to the given closed-form ex-
pression (13) up to a factor that does not depend onand .
By choosing a Gaussian prior for i.e., ,

can be expressed in closed-form [see (6)]

(15)

1Throughout this paper, we adopt the following: Vectors are denoted using
bold fonts, whereas scalars are denoted using normal fonts. Theith component
of a vectorvvv is denotedvvv[i].

where

(16)

Straightforward computations show that the predictive distri-
bution of an observation denoted is the pdf of a mul-
tivariate Gaussian distribution given by

(17)

where

and (18)

The corresponding mean vector and covariance ma-
trix can be computed as

(19)

where is the identity matrix, and is the
matrix of ones.

B. HBL Implementation Using MCMC Methods

The learning stepof the HBL implementation can be sum-
marized into two parts:

First Part—Generation of Samples Distributed
According to : Vectors ,

, which are distributed according to the joint
pdf , are generated using the Gibbs
sampler (GS). The GS algorithm is summarized as follows (see
Appendix A for more details):

• Generation of vectors dis-
tributed according to . Using
the independence assumption regarding the training
samples , samples are generated independently
according to .

• Generation of samples distributed according to
.

Second Part—Generation of Samples Distributed Ac-
cording to : The test stepof the HBL implementation
consists of estimating the predictive distributions of test sam-
ples from each class (different from the training samples) as

(20)



TABLE I
ACADEMIC EXAMPLE: SIMULATION PARAMETERS

TABLE II
ACADEMIC EXAMPLE: SIMULATION RESULTS FOR THE

MARKOV CHAIN GENERATION

Fig. 1. Academic example: Histograms of the MC samples~� generated using
HBL for different numbers of training samples (solid lines). Exact distribution
p(�jX ) for the corresponding training samples (dashed lines).

These test samples are then classified using the Bayes rule de-
fined in (2), after replacing the predictive densities by their es-
timates.

C. Simulation Results

Simulation results are presented for a two-class problem
whose parameters are displayed in Table I. Note that the two
classes only differ by their mean vectors. The results of the
learning stepare presented in Table II. In this implementation,
the number of training samples varies from to

. The mean and variance of the Markov Chain
samples are clearly in excellent agreement with the exact values
deduced from the closed-form expressions. Fig. 1 shows the
histograms of the MC elements compared with the Gaussian
distribution (see [1, p. 54] for similar plots). As can
be seen, the proposed HBL implementation based on MCMC
methods shows good performance for learning .

During the test step, 1000 test samples (i.e., 500 test sam-
ples from each class that are different from the training sam-
ples) have been generated according to (12). These test sam-
ples are then classified using the previous HBL implementation.

TABLE III
ACADEMIC EXAMPLE: ERROR RATES ESTIMATED WITH 500 TEST

SAMPLES IN EACH CLASS

Table III shows the corresponding error rates, which can be com-
pared with those obtained from the closed-form expression of

. The comparison shows that the proposed HBL imple-
mentation performs very similarly to the optimal closed-form
decision rule, i.e., is highly reliable.

IV. CLASSIFICATION OF CHIRP SIGNALS USING HBL
IMPLEMENTATION

This section studies the classification of multicomponent
chirp signals using HBL implementation. This example has
been recently introduced in [12] and [15]. The test signals are
generated using the following model:

(21)

where is the th chirp com-
ponent with amplitude , initial frequency , initial phase ,
and slope . The additive noise is a Gaussian zero-mean
white noise of unknown variance . The number of chirp com-
ponents is assumed to be known in each class. This modeling
is interesting in many realistic applications including the fol-
lowing.

• Target Identification
When there is a relative motion between the target and

the receiver, the radar signal can be modeled as a chirp
signal with quadratic phase . The
parameters and are either related to speed and accel-
eration or range and speed, depending on what the radar
is intended for and on the kind of waveforms transmitted
[17], [18, p. 56-65]. In the presence of a harmonic jammer,
the received signal is the sum of a chirp and a sinusoid,
which corresponds to . In this particular case, the
proposed classification problem is interesting to determine
the target nature (high versus low acceleration/speed) (see
[19] for a similar problem).

• Knock Detection
The knock detection problem has received much atten-

tion in the literature [20], [21]. Several studies have shown
that the knock data consist of several resonances with de-
creasing resonance frequencies. More precisely, the sig-
nals presented in [20] and [21] are the sum of three chirps
(which corresponds to ) whose parameters depend
on the motor rotation speed. The classification algorithm
proposed in this paper is useful to classify knocking and
nonknocking signals.

For the sake of simplicity, we introduce the following nota-
tions:

• Signal: ;
• Amplitudes: ;



• Initial phases: ;
• Initial frequencies: ;
• Slopes: ;
• Noise: .

Using these notations, (21) can be written in matrix form (fol-
lowing the same approach as in [7])

(22)

where , and
. Consequently, the likelihood of is expressed as

(23)
i.e., , where is the identity
matrix, and is the unknown parameter
vector. Using Bayes rule, the parameter posterior distribution
can be computed as follows:

(24)

which requires specification of appropriate parameters priors.

A. Parameter Priors

Following [7], the following hierarchical structure has been
chosen for the parameter priors:

(25)

This natural hierarchical structure (see [7] and [22] for a similar
choice) can be motivated as follows.

• The amplitude vector and the additive noise level
are closely related since they both determine the ampli-
tude of the observed signal as well as the SNR. More-
over, the chirp components are labeled by their initial fre-
quency, which requires the knowledge of(or at least,
its ordering), such as to assign each chirp component its
corresponding amplitude. Based on these comments, the
amplitude prior of the form has been chosen.

• Similarly, the knowledge of is required to assign each
chirp component its corresponding slope, which explains
that the slope prior depends on the frequencies, i.e.,

.
Some comments are now appropriate before specifying the

parameter priors chosen for the classification of chirp signals.
The principle of HBL consists of learning the hyperparameter
posterior distribution for each class from the training samples.
When combined with the selected parameter prior distribution,
this leads to the followingparameter posterior distribution:

(26)

This equation shows that implementing an effective learning
procedure requires a choice of hyperparametered priors
for every parameter that may be discriminant (i.e., which pro-
vides helpful information for the classification of the current ob-
servation signal). As an example, the initial phases in (21) are
not discriminant. As a consequence, the corresponding prior dis-

tributions do not depend on hyperparameters. On the contrary,
the chirp amplitudes, frequencies, and slopes are discriminant
in most chirp classification problems. Consequently, the corre-
sponding priors depend on hyperparameters. Moreover, among
all possible prior distributions, it is interesting to select pdfs
that can be either vague (in the case where the parameter values
are quite different from one learning signal to another) or very
informative (when the parameter values are similar from one
learning signal to another). A typical example of such a prior
is the Gaussian distribution that is parametrized by its mean
and variance and can be vague or informative, depending on the
value of its variance. Other examples of appropriate priors in-
clude the inverse Gamma distribution or the uniform distribution
defined on an interval whose bounds are hyperparameters.

In the proposed HBL implementation, the following priors
have been chosen.

• The initial phases are independent and uniformly dis-
tributed in :

(27)

where if and else. Since the
phases are not discriminant in our classification problem,
the phase priors have been chosen as uniformative uniform
priors.

• The slope prior distribution is defined as

asc (28)

where asc is a function that rearranges the indices
such that the frequenciesasc are sorted in as-

cending order. This sorting operation ensures that
and correspond to the same chirp component (la-
beled by its initial frequency) from one training signal
to another (for instance, is the slope associated to the
lowest initial frequency and is uniformly distributed on

).
• The initial frequency prior distribution is a truncated

Gaussian distribution of mean and variance-covari-
ance matrix

(29)

where is a diagonal matrix whose diagonal elements
are , and is the reordered
vector asc , .

• The amplitude prior distribution is normal, of mean ,
and of variance-covariance matrix

(30)



where is a diagonal matrix, whose diagonal terms are
, and is the reordered vector

, .
As can be seen, the frequency, slope, and amplitude

priors are parametrized by hyperparameters that are re-
lated to the training samples via (10). This choice is natural
since the frequencies, slopes, and amplitudes are discrim-
inant for our classification problem.

• The prior distribution of the additive noise variance
is an inverse Gamma distribution with hyperpa-

rameters and [denoted
]

(31)
where is the Euler Gamma function, and is the
indicator of the set (1 if , and 0 elsewhere). The
inverse Gamma distribution is a conjugate prior, which has
been chosen in order to obtain closed-form expressions of
the posteriors in the first step of the Gibbs sampler. As
explained in [23], the inverse Gamma prior is interesting
since vague or specific prior information can be incorpo-
rated through suitable choice of and .

Remark 1: In estimation problems (see, e.g., [7]), the initial
phases in (21) can be included in the amplitudes, leading to
the following equivalent model:

(32)

in which both and are linear coefficients. This solution avoids
consideration of the nonlinear initial phase coefficients. How-
ever, this model is not appropriate for our classification problem.
Indeed, the chirp amplitude components have Gaussian priors,
which implicitly assumes that the amplitudes are similar for
every signal, whereas the initial phase can be very different from
one signal to another. By using the model (32), the parameters

and may vary significantly from one signal to another (de-
pending on the value of ), even if the amplitude is similar for
all signals. This precludes the selected Gaussian modeling and,
as a consequence, the use of the model (32).

B. Hyperparameter Priors

The previous Bayesian model for the classification of chirps
is specified by the following hyperparameter vector:

(33)

Of course, the hyperparameter vectoris unknown in prac-
tical applications. Following the hierarchical Bayesian model,
the hyperparameters are assumed to be random, whose priors
(displayed in Table IV) are summarized in :

(34)

TABLE IV
MULTICOMPONENTSIGNAL CLASSIFICATION: HYPERPARAMETERPRIORS

Fig. 2. Example 1: Instantaneous frequencies for the second chirp component
(gray areas).

where

• and are the products of independent Jeffreys’
priors [24, p. 44];

• and have uniform priors on ,
, ;

• the components of and are independent
and uniformly distributed on appropriate inter-
vals (i.e., and ), ensuring

for all ;
• the prior of is a Gamma distribution with parameters

and .
The hyperparameters , , , , , and have

been chosen in order to provide vague prior information. How-
ever, the learning procedure is robust to the values of these hy-
perparameters (as outlined in [7] in a similar context).

Remark 2: It is interesting to note that an alternative approach
calledempirical Bayes analysis[5, p. 307] could also be used for
the classification of chirps. Empirical Bayes analysis consists of
estimating the unknown hyperparameters from the observed data
by using an appropriate estimation technique such as the moment
method or the maximum likelihood method. The unknown hy-
perparameters are then replaced by their estimated values in the
Bayesian model. However, empirical Bayes analysis may suffer
from several problems. In particular, the derivation of the esti-
mator is generally too complicated, and the approximated pos-
terior obtained after replacing the hyperparameters by their esti-
mates is only acceptable for large sample sizes (see [5, p. 309] for
more details). These problems have motivated our choice of im-
plementing HBL instead of empirical Bayes analysis.

C. HBL Implementation Using MCMC Methods

As outlined before, the first part of the HBL implemen-
tation using MCMC methods consists of generating vectors

for distributed according
to . For the classification of chirps, the



Fig. 3. Example 1: Histograms of MC samples distributed according top(mmm (1)jX ), p(mmm (2)jX ), p(mmm (1)jX ), p(mmm (2)jX ), p(� =(� � 2)jX ) (mean of
the inverse Gamma distribution of parameters� =2 and� =2), andp([� =((� � 2) (� =2� 2))] jX ) (standard deviation) for classes! and! .

generation is conducted by using the following one-vari-
able-at-a-time MH algorithm (see Appendix B for more
details):

• First Step of the Sampler:Generation of vectors
, , distributed according

to . Using the independence of
training samples , this step can be decomposed into

independent generations of distributed according
to . Given a training signal written in
vector form, the selected priors lead to (the subscriptis
forgotten for simplicity)

(35)

where , and .
Following the same approach as in [7], the parameters
and are integrated out analytically. As a consequence,
the generation of is decomposed

into the following three moves for numerical efficiency
(see Appendix B for details):

1) Generation of distributed according to

(36)

using Metropolis Hastings steps (see Appendix B
for details).

2) Given , sample the noise variance dis-
tributed according to the inverse Gamma distribu-
tion

(37)

3) Given all the other parameters, sample the amplitude
vector distributed according to

(38)

• Second Step of the Sampler:Using ob-
tained during the previous step, generation of one vector

distributed according to
. This requires to compute the hyper-

parameter posterior distribution (see
Appendix C for details).



Fig. 4. Example 1: MC samples distributed according top(sss [1]jX ), p(sss [1]jX ) (figures left), andp(sss [2]jX ), p(sss [2]jX ) (figures right) for class
! and class! .

The second part of the HBL implementation for the classifi-
cation of chirps consists of generating one sampledistributed
according to (where has been obtained during the
first part of the algorithm). This leads to the sampling proce-
dure summarized in Appendix B.

D. Simulation Results

The performance of the proposed HBL implementation for
the classification of chirps has been studied via several simula-
tion results. This paper focuses on two examples:

1) Example 1—Radar Target Identification:We assume that
the signal observed by the receiver is two-component: one tone,
emitted by an harmonic jammer, and one chirp, corresponding
to the signal reflected by the target. Moreover, an additive am-
bient noise corrupts the observations. A sensible model is then
obtained as the sum of one chirp and one tone embedded in ad-
ditive white Gaussian noise, namely

(39)

where , , and ,
[the signal to noise ratio is SNR

dB]. The signal amplitudes and initial frequencies
are , , . The initial phases

and are independent and uniformly distributed in .
The slope of the first component is , which corresponds
to a pure harmonic. The problem addressed in [12] consists of
classifying a given signal into one of the two classes defined
as follows:

1) Class : ;
2) Class : ;

where is the uniform distribution on . These
classes correspond to targets having the same speed but dif-
ferent accelerations (or the same range and different speeds).

TABLE V
EXAMPLE 1: ERRORRATES FOR THECLASSIFICATION OF CHIRPSUSING THE

PROPOSEDHBL IMPLEMENTATION AND NONPARAMETRIC TIME–FREQUENCY

CLASSIFIERS(THE LEARNING SET IS COMPOSED OFn = n SIGNALS

FOR EACH CLASS, WHEREAS THETEST SET IS COMPOSED OF20 000
SIGNALS WITH 10 000FOR EACH CLASS)

Fig. 5. Example 2: Instantaneous frequencies for the three chirp components
(both classes).

The possible instantaneous frequencies of the chirp component
are plotted in Fig. 2 for classes and (gray areas). Note
that the two classes only differ by the slope of the second chirp
component and that the jammer and target frequencies overlap.
In order to simulate a realistic situation, we assume that the
signal model parameters are unknown. However, the model
given by (39) is known (it can be derived from a nonparametric
analysis; see [12]).

The first simulation results illustrate the performance of
the learning step. Fig. 3 displays histograms of Markov
chain samples distributed according to the posterior dis-
tributions of hyperparameters , , , and



Fig. 6. Example 2: Histograms of the MC samples distributed according top(���jX ) for some components of���. Left column:p(f jX ) (dotted line),p(f jX )
(dashed line), andp(f jX ) (solid line). Middle column:p(a jX ) (dotted line),p(a jX ) (dashed line), and p(a jX ) (solid line). Right column:p(� jX ).

. These histograms are clearly in
good agreement with the true values of parameters
and . The histograms displaying (mean of the
inverse Gamma distribution of parameters and )
and (standard deviation of this
inverse Gamma distribution) are also coherent with the true
value of . MC samples drawn from the posterior distributions

, , , and
of class are shown in the upper row of Fig. 4. Similar
results associated with class are shown in the lower row of
Fig. 4. These plots show that 1) and converge
to 0 for classes and , and 2) converge
to values close to for class and

for class . These results are in
good agreement with the definition of and for both
classes. Consequently, the learning step of the HBL MCMC
implementation shows good performance for the classification
of chirps (in particular, the minimum and maximum values of
the slope , which are the discriminant features, have been
learned with good accuracy).

During thetest step, 20 000 test vectors (i.e., 10 000 test vec-
tors from each class different from the training vectors) are clas-
sified using the MCMC implementation of HBL. Table V dis-
plays the corresponding error rates, which are compared with
those obtained with classifiers based on time-frequency repre-
sentations [12], [25], [26]. For a large number of training vec-
tors, the MCMC method outperforms nonparametric time–fre-
quency classifiers and provides a reference to which suboptimal
classifiers can be compared. This result can be explained as fol-
lows: 1) The Bayesian classifier is optimal when the prior prob-
abilities and the class-conditional densities are known, and 2)
the observation predictive distributions estimated with the pro-
posed HBL implementation converge to the true predictive dis-
tributions (according to the ergodic theorem) when the number
of MC samples increases. However, for a small training set, the
time–frequency classifiers outperform the proposed Bayesian
learning MCMC implementation. This is mainly due to the com-

plexity of the implicit model used for the classification of chirps.
Due to this complexity, the Bayesian classifier requires a large
number of training samples to learn the class-conditional dis-
tributions. In contrast, the model used for the classification of
chirps is well suited to time–frequency classifiers since energy
in the time–frequency plane is well localized for each class.

2) Example 2—Knock Detection:This second example ad-
dresses the knock detection problem in car engines (see [20]
and [21] for an overview and a time-frequency detection algo-
rithm). The recorded vibration signal is modeled as the sum of
three chirps embedded in additive white Gaussian noise

(40)

where , , , and
. The instantaneous frequencies of each chirp compo-

nent are the same in classesand and are defined as
, , ,
, , and (see

also Fig. 5). The initial phases , , and are independent and
uniformlydistributedin . Inthisexample,thepresenceorab-
sence of knock is characterized by different chirp amplitudes:

• Class (absence of knock): ,
, ;

• Class (presence of knock): ,
, .

The problem addressed in this example is the classification
of an observed vector in one of the two classes and .
The first simulations illustrate the performance of thelearning
stepwith . Fig. 6 displays histograms of MC
samples distributed according to the posterior distributions of
frequencies, amplitudes, and noise variance. As can be seen,
parameters have been learned with good accuracy. During the
test step, 20 000 test vectors (i.e., 10 000 test vectors from each
class different from the learning vectors) are classified using
the proposed HBL implementation. The estimated error rate is



TABLE VI
EXAMPLE 2: ERRORRATES FOR THECLASSIFICATION OF CHIRPSUSING THE

PROPOSEDHBL IMPLEMENTATION AND NONPARAMETRIC TIME–FREQUENCY

CLASSIFIERS(THE LEARNING SET IS COMPOSED OFn = n = 200 SIGNAL

FOR EACH CLASS, WHEREAS THETEST SETIS COMPOSED OF20 000
SIGNALS WITH 10 000FOR EACH CLASS)

compared in Table VI with those obtained with the previous
time–frequency classifiers. As can be seen, the proposed HBL
implementation outperforms the classifiers based on the Wigner
distribution and the ambiguity plane for the knock detection
problem. However, the optimized time–frequency classifier
proposed in [12] and [13] performs considerably better for
this problem. This result indicates that more than 200 learning
samples are necessary to obtain a good approximation of the
predictive distributions, i.e., to achieve the optimal Bayesian
classifier performance.

Simulation results presented in this section have shown the
good performance of the proposed MCMC-based HBL imple-
mentation for the classification of chirp signals. Two different
scenarios have been studied, for which chirp slopes and chirp
amplitudes are the respective discriminant parameters. This
shows the robustness of the proposed classification procedure to
the nature of discriminant parameters. However, it is important to
note that the performance of the proposed HBL implementation
strongly depends on the number of training samples.

V. CONCLUSION

This paper showed that MCMC methods, which are widely
used for Bayesian estimation, are also a suitable tool for su-
pervised classification using hierarchical Bayesian learning. In
the proposed HBL implementation, the training samples were
used to build Markov chains whose target distributions were the
parameter posterior distributions. The class-conditional proba-
bility densities were then obtained by Monte Carlo ergodic av-
eraging of the MC elements. An academic example showed that
the performance of the proposed HBL implementation is very
close to the theoretical performance obtained with closed-form
expressions of the class conditional distributions. Finally, the
problem of classifying chirp signals by using HBL combined
with MCMC methods was studied. The proposed classifier was
shown to outperform conventional time–frequency classifiers,
provided the number of training vectors is sufficient to learn the
class-conditional distributions.

APPENDIX A
FIRST EXAMPLE: HBL ALGORITHM

% Initialization
set
sample according to .
for , do

sample

% Generation of the Markov Chain elements

while , do
% First step of the Gibbs algorithm
for each training sample in

, do
sample according to

% Second step of the Gibbs algorithm
sample according to

% Generation of the samples
For , do

sample .

APPENDIX B
HBL ALGORITHM FOR THECLASSIFICATION OFCHIRPS

This appendix derives the HBL algorithm for the classifica-
tion of chirps. The main algorithm is first presented. Some sub-
procedures are then detailed.

Main Algorithm
% Hyperparameter initialization
for each chirp component , repeat

sample
sample according to the Jeffrey’s
prior
sample with
sample according to the Jeffrey’s
prior
sample and

set and
% Parameter initialization
for each training signal do

for each chirp component do
sample
sample

for , set the frequencies
… linearly in

set
% Generation of the Markov chain
while do

% First step of the Gibbs Sampler
% Generation of samples
for each training signal , do

for each chirp component do
sample according to

the pdf (36) using subprocedure 1
sample distributed according to

(37)
sample distributed according to

(38)
% Second step of the Gibbs algorithm
% Generation of samples
for each chirp component do

sample as in (41)



sample as in (42)
sample according to the

pdf (43) using subprocedure 2
sample as in (44)
sample as in (45)
sample according to the pdf (46)

using subprocedure 3
sample as in eq. (47)

% Generation of samples
for , do

sample according to , such as
defined in Section IV-A.

The three subprocedures consist of a Metropolis–Hastings
step using either a local random walk proposal distribution or
a global proposal distribution. In each subprocedure, the choice
of the proposal distribution depends on a parameter. Each sub-
procedure has the following structure [where the variable to be
sampled is denoted, the target pdf is , the global proposal
probability density is denoted , and the local random walk
proposal probability density is denoted].

Subprocedures
if Rand then

% the global proposal probability den-
sity is used
sample distributed according
if Rand
then

else

else
% the local proposal probability
% density is used (randomn walk)
sample according to
set
if Rand
then

else

In the three subprocedures, , and is the pdf of
a zero-mean Gaussian vector with diagonal variance-covari-
ance matrix . In subprocedure 1, the diagonal elements
of are , corresponding to

. In subprocedure 2, the elements of are
, corresponding to .

Finally, in subprocedure 3. These values ensure an
acceptance rate of about 25%. (Note that the convergence rate
of the algorithm may depend on these parameters, as opposed
to the Markov Chain invariant distribution.) The proposal
probability densities are the following.

• Subprocedure 1:The phase is sampled uniformly in
, whereas the frequency and slope parameters are

jointly sampled from a stepwise constant distribution,

i.e., , where
is obtained by discretizing the function

where denotes the frequency spectrum of the
first points of the signal, and is the frequency

spectrum of the last points of the signal. One has, e.g.,

and .
• Subprocedure 2:The proposal probability density is

the uniform distribution with
, ,

, ;
• Subprocedure 3: .

APPENDIX C
HYPERPARAMETERPOSTERIORDISTRIBUTIONS FOR THE

CLASSIFICATION OF CHIRPS

The hyperparameter priors displayed in Table IV lead to the
following distributions.

• Frequency hyperparameters
For each component

(41)

where , and is a one-dimensional Stu-
dent-t distribution with parameters ,

, and (using the usual notations
, and ).

Furthermore, the variance terms are distributed according to the
following inverse Gamma distribution:

(42)

• Slope hyperparameters
For each component , the posterior distribu-

tion of is a truncated inverse Gamma distribu-
tion

(43)

• Amplitude hyperparameters
For each component

(44)

where , ,
, and

. This is a one-dimensional Stu-
dent-t distribution for the variable , with parameters



, , , which is limited to the interval .
Moreover

(45)

• Additive noise hyperparameters
The hyperparameter is distributed according to the

(proper) distribution

(46)

where the sufficient statistics are , and
. The second hyperparameter is distributed ac-

cording to a Gamma distribution

(47)
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