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Classification of Chirp Signals Using Hierarchical
Bayesian Learning and MCMC Methods

Manuel Davy, Christian Doncarli, and Jean-Yves Tourneret

Abstract—This paper addresses the problem of classifying hyperparameters is contained in a known prior distribution.
chirp signals using hierarchical Bayesian learning together Unfortunately, the class-conditional densities resulting from
with Markov chain Monte Carlo (MCMC) methods. Bayesian g cannot be generally expressed in closed-form because of
learning consists of estimating the distribution of the observed . tractabl ltidi : lint Is. Similarl | d-f
data conditional on each class from a set of training samples. Intrac a. e mufl ImenSIO_ng In ggr_el S'_ imiiarly, closed- Qrm
Unfortunately, this estimation requires to evaluate intractable €xpressions for the predictive distribution of the observations,
multidimensional integrals. This paper studies an original imple- conditional on the training set of each class, are generally
mentation of hierarchical Bayesian learning that estimates the (difficult to obtain. Such problems can be solved by approxi-
class conditional probability densities using MCMC methods. ya4ing the integrals using stochastic sampling or deterministic

The performance of this implementation is first studied via an ical int fi H tochasti i I
academic example for which the class conditional densities are numerical integration. However, stochastic sampling usually

known. The problem of classifying chirp signals is then addressed Yields better approximations, as explained in [5] and [8]. This
by using a similar hierarchical Bayesian learning implementation paper proposes to approximate the integrals required for HBL

based on a Metropolis-within-Gibbs algorithm.

Index Terms—Classification of chirps, hierarchical Bayesian
learning, MCMC methods, supervised classification.

I. INTRODUCTION

by using Markov chain Monte Carlo (MCMC) methods. These
methods have recently been considered with increasing interest
in many signal processing applications (see [9] and references
therein). MCMC methods consist of generating samples by
running an ergodic Markov chain (MC), which converges to
a desired target distribution. These samples can then be used

AYES classification theory has received much attention ¥ approximate multidimensional integrals using the ergodic
the pattern recognition literature (for an overview, see [1jheorem.

[2], andreferencesherein).This popularitymaybejustified by
the fact that the Bayesianclassifieris optimal in termsof an
appropriateoverallrisk or the averageprobability of error. The
Bayesclassifierassumeshe knowledgeof the prior probabili-
tiesandthe conditionalprobability densitiesof eachclass.Un-
fortunately,thesequantitiesareunknownin manypracticalap-
plicationsandhaveto be estimatedThe estimationof the prior
probabilitiesgenerallypresentsio seriousdifficulty [1, p. 44].
Howeverestimatiorof theclass-conditiongbrobabilitydensity
functions(pdfs)raisestroublesomeproblems.

An usual approachfor estimating the class-conditional
probability densitiesis the so-called hierarchical Bayesian
learning (HBL), which has receivedmuch attentionin the
literature [3]-[7]. Hierarchical modeling assumesthat the
training sampleshave distributions dependingon different
but related parameters.These parametersare modeled as
randomvariablesor vectorswhosedistributionis parametrized
by so-called hyperparametersOur knowledge about these
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Bayesian learning implementations using MCMC methods
have been used in many applications. In [10], many integration
techniques, including MCMC methods, have been proposed
for the computation of Bayes factors, with a particular interest
on five scientific applications in genetics, sports, ecology,
sociology, and psychology. A general framework for the
classification and discrimination of normal-mixture models
using Bayesian learning and MCMC methods has been studied
in [11]. The main contribution of this paper is to apply the
methodology of Lavine and West [11] to the problem (recently
introduced in [12]-[15]) of classifying multicomponent linear
(sinusoids) and quadratic (chirps) frequency-modulated signals.
This paper assumes that the number of components in each
signal is known, which can be justified in many applications
including target identification and knock detection (presented
in Section IV). However, for applications where this number of
components is unknown, a reversible jump MCMC algorithm
similar to the one developed in [7] can be derived (see [16]).

Section Il briefly recalls HBL principle for supervised clas-
sification theory and studies an original HBL implementation
based on MCMC methods. Section Ill studies an interesting ex-
ample providing closed-form expressions for the posterior dis-
tributions and the class-conditional probability densities. The
performance of the proposed HBL implementation is evaluated
by comparing these closed-form expressions with MCMC ap-
proximations. The application of HBL to the classification of
chirp signals is investigated in Section IV. Conclusions are re-
ported in Section V.



Il. HIERARCHICAL BAYESIAN LEARNING wherep(8, ®|X) = p(6|®)p(®|X) (using the hierarchical

An available sefX of independent so-called training Sam§tructure), and

ples is separated in subsets corresponding to tleclasses

n

wi,t = {1, ..., c¢}. DenoteX = {X], As, ..., A,}, where ) i |®
X; = {14, ..., za, +; coONtains the training samples; ;, o )jl;llp( i)
j = {1,..., n;} corresponding to the class. Choosing a p(®|X) = D 5)
zero-one loss function (v_v_hich minimizes the average error prob- p(®) H p(z;|®) do
ability), the Bayes classification rule can be written as j=1
Decidez € w; if P(wi|z, X) > Plwi|r, X), Vk#i &
1) n
p(®[X) o< p(®) ] | pz;]®)

wherek = {1, ..., ¢}, andP(w;|z, X) is the posterior proba- Jl;ll !
bility of the classw;. Assuming that the classes have the same (6)

prior probability and that the subs&} provides no information ) ) ) .
about the classy, k # i (separability condition) [1, p. 50], the Whereo meansproportional to. Using the hierarchical struc-
Bayes classification rule reduces to ture, p(z;|®) can be computed as follows:

Decidex € w; if p(z|X;, wi) > pla|X, wi), Vk#i

. pla;|@) = / pla10;)0(6;1) b

(1)

wherek = {1, ..., c}, andp(z|4;, w;) is the probability den- gquations (4), (6), and (7) are the key HBL equations. Note that
sity of clas,fswi whose training samplgs are su_n_1mar|zedt'm _whenp(6|®) is the Dirac delta function, i.e., wher(6|®) =
This equation shows that the Bayesian classifier only requirg® — ¢), HBL reduces to general Bayesian learning, which has

computation of the pdfg(x|4i, wi). The separability condi- 5o received much attention in the literature (for instance, see
tion ensures that each class can be treated independently. Genp 577).

sequently, by forgetting the class index for brevity, we have to

solve thg fqllovying problem fo_r each class: Estimate an Ul HBL Implementation Using MCMC Methods
known distributionp(x|X’) by using a seft’ = {z1, ..., z,} ) ) _
of n samples drawn independently according to this unknownYnfortunately, closed-form expressions for the integrals in
distribution. (4) and (7) are rarely available. This section studies an HBL
implementation based on MCMC methods. Equation (4) shows
that the predictive distribution of the observatiancan be
written as follows:

A. Hierarchical Modeling

Hierarchical models are used when the samplgsnside a
given class, have pdfs depending on different (but related) un-
known parameterd,, which are denoteg(z;|6;). Inside the p(x|X) = / () {/ p(0, |X) dq’} df. (8)
classw;, the parameters, are distributed according to a pdf
depending on an unknown hyperparameteharacterizing the |n other wordsp(z|X') can be interpreted as the meamp6#|6),

class, which is denoteg(6,|®). Finally, the prior distribution where# is distributed according to the marginal distribution
of ® is assumed to be known and is denopéd). Such a hier-

archical modeling has received much attention for the analysis

of signals defined by random parameters [3]-[6]. However, this / p(f, |X) de = p(6|X). 9)
modeling is also interesting for the analysis of signals with de-

terministic parameters since it introduces an additional level Tthe proposed Bayesian learning implementation first generates
prior modeling, increasing the robustness of the learning procassnples(d;, ;) distributed according tp(6, ®|X) using the

[5, p. 112], [7]. The desired predictive distribution of an obsefellowing two-step procedure:

vationz denotedp(xz|t') is then defined by 1) Generation of. samples®, distributed according to
p(le)z// p(z|6, ©)p(0, ®|X) do do. 3 p(<I>|X):/p(91,92, oy B, ®|X) by dby - - db,. (10)
Sincep(z|8, ®) = p(x|f), (3) reduces to This is achieved by using the Gibbs Sampler to draw
L vectors(6yy, b1, ..., 01, @), 1 = {1, ..., L}, ac-
cording to the joint pdp (61, 62, ..., 6., ®|X);
p(z|X) = //P($|9)p(9’ P|X) do do 2) For each samplé;, generation of one samp dis-
(4) tributed according te(6|®;).



After generatingl vectors(6;, ®;),1 = {1, ..., L} thatare where

distributed according te(6, ¢|X’), the predictive distribution ) 1,
of the observation: conditional on the training set is esti- nod 1 < Tm T N e
mated as follows: Hn = ) T . n Z it R T _Ho
; nog + o2, + N o? i=1 nog + o2, + NJE
1 « ~
H(z|X) = — . 1
#el) = 7 3 » (al6r) (1) o2 (o2 Lo
=1 9 N (16)
T, = .
nod + o2, + < o?
l1l. A CADEMIC EXAMPLE N

This section studies an interesting example, where C|OSEO|_S.traightforward cor_nputations show thgt the predictive distri-
form expressions of(®|X) and p(z|X) are available. Con- bution of an observatiom denotedp(x|Y) is the pdf of a mul-
sequently, approximations of these distributions obtained usitigriate Gaussian distribution given by
MCMC simulations can be compared with the corresponding

theoretical expressions. Consider a clasghose training set is pe 1 |v—%2 (T — pn)? 17
denotedY = {zi, ..., z,,}. Each training sample is aN-di- p(|X) o exp 2|1, + , , 1, a7
mensional vectog; = (x;[0], ..., ;[N — 1])7, which is de- N7 Tntomt o
fined as where
Vi={0,..., N —1}, .’L'j[i] =m; + Ej[i] (12) 1 N-1 1 N-1
, ‘ _ T=— > xlil and v=— > 2’| (18)
wherep(m;) ~ N(u, 02,), and (¢;[i])i—(o...n—1} IS @ Se- N &~ N &~

quence of i.i.d. zero mean Gaussian variables with variafce

The variances2, ands? are assumed to be known. The vari

ablesm; andmy, as well as the sequencés[i]),—o...n—1}

and (ex[#])i={o...~n—1}, are assumed independent for# k. — (1 1T
. . : w=pu,(l, ..., 1)

Moreover,m; ande;[¢] are also independent variables. Note

that two training vectorss; and x; have different distribu-

The corresponding mean vecior= E[z] and covariance ma-
trix ¥ = E[(x — p)(x — p)T] can be computed as

1 1 1
tions sincem,; # my for j # k. Consequently, the general sl = —In+ N T W2 1y
Bayesian learning principle [1, p. 51] cannot be used to solve e N2 <a% +02 + O_F) e
this problem. This section shows how hierarchical Bayesian N (19)

learning allows the estimation @fz|X’), which is necessary
for the classification of. In this example, the model parame
ters ared; = m;, j = {1, ..., n} (wheren is the number of
training samples), and the hyperparameteb is 1.

wherel y is the N x N identity matrix, andl i is the N x N
matrix of ones.

B. HBL Implementation Using MCMC Methods

Thelearning stepof the HBL implementation can be sum-
marized into two parts:
First Part—Generation of L Samples j;; Distributed

A. HBL Closed-Form Expressions
Standard computations lead to

p(x;|p) . S S
! 5 N\2 According to p(u|z‘.\’): Vectprs_ (Mg, ™, cey T, uz)_,.
N(w, — @2)< m) ;% — 2T I = {1, ..., L}, which are distributed accordln_g to the joint
Te 13 pdf p(my, ma, ..., m,, u|X), are generated using the Gibbs
o eXpy T , 1, (13) sampler (GS). The GS algorithm is summarized as follows (see
2| om+ oe Appendix A for more details):
N
» Generation ofL vectorsm; = (i, ..., ) dis-
where tributed according top(my, ..., my,|u—1, X). Using
| V- | V-l the independence assumption regarding the training
T; = — Z z;[i] and 7, = — Z z2[i]. (14) samplg%i, n sam~plesﬁm are generated m?ependently
N S N —0 ! according ta(m;|ju—_1, ;) x p(x;|m;)p(m;|fpi—1).

e Generation of samplegy; distributed according to
pluliag, -, M) o p(p) TTi—y plmgilp)-

Second Part—Generation of Samplgg Distributed Ac-

cording top(m|jy): Thetest stepf the HBL implementation

consists of estimating the predictive distributions of test sam-

p(p| &) ~ N (jn, 02) (15) ples from each class (different from the training samples) as

n

Note thatp(x;|u) is proportional to the given closed-form ex-
pression (13) up to a factor that does not depena pand ..
By choosing a Gaussian prior fari.e., p(i) ~ N (uo, o),
p(p|X') can be expressed in closed-form [see (6)]

IThroughout this paper, we adopt the following: Vectors are denoted using 1 L B
bold fonts, whereas scalars are denoted using normal fontstiTeemponent plx|X) = — Z plx|m). (20)
of a vectorv is denotedv[¢]. L —1



TABLE |
ACADEMIC EXAMPLE: SIMULATION PARAMETERS

TABLE I
ACADEMIC EXAMPLE: ERROR RATES ESTIMATED WITH 500 TEST
SAMPLES IN EACH CLASS

plmy) = N, o) [ plej) = Nlme,0d) [
[ Im Me Te nb. of training samples ny=ny — | 10 20 50 | 100 | 200 [ 500
Class1] 0 0.5 0 0.1 10 HBL Error rates (%) | 314 | 31.6 | 31.4 | 31.2 | 1.2 | 31.0
Class 2 | 0.5 0.5 0 01 10 HBL MCMC Error rates (%) | 31.3 | 31.5 | 31.5 | 31.3 | 31.2 | 31.3
implementation Computation time 200 (arbitrary unit)
TABLE I

ACADEMIC EXAMPLE: SIMULATION RESULTS FOR THE
MARKOV CHAIN GENERATION

nb. of training samples n; = ny —

10

20

50

100 | 200 | 500

i Markov chain length L
Burn-in length B
prior pdf p(y)

simulation
parameters

5,000

100

N(0,4)

mean of (f): i
exact value of g,

0.197
0.189

0.086
0.082

-0.017
-0.014

-0.006
-0.005

-0.026
-0.026

0.020
0.021

Class w variance of (f): 2 0.0233 | 0.0122 | 0.0048 | 0.0026 | 0.0013 | 0.0005
exact value of o2 0.0249 | 0.0125 | 0.0050 | 0.0025 | 0.0012 | 0.0005
mean of (Ji): fin 0.681 | 0.578 | 0.486 | 0.494 | 0.470 | 0.527
Class e exact value of s, 0.686 | 0.581 | 0.485 | 0.404 | 0.473 | 0.521

variance of (fi;): 52
exact value of g2

0.0242
0.0249

0.0129
0.0125

0.0059
0.0050

0.0026
0.0025

0.0012
0.0012

0.0005
0.0005

Computation time (arbitrary unit)

10

20

50

100

200

500

Class w1, n =10

Class w2, n =10

04 0 0.4
Class w1, n =100

0.8

0

0.4

0.8

Class w2, n = 100

Table Il shows the corresponding error rates, which can be com-
pared with those obtained from the closed-form expression of
p(z|X). The comparison shows that the proposed HBL imple-
mentation performs very similarly to the optimal closed-form
decision rule, i.e., is highly reliable.

IV. CLASSIFICATION OF CHIRP SIGNALS USING HBL
IMPLEMENTATION

This section studies the classification of multicomponent
chirp signals using HBL implementation. This example has
been recently introduced in [12] and [15]. The test signals are
generated using the following model:

alil = arDyli] + €,

k=1

i={0,...,N—1} (21)

whereDy[i] = cos(2n[¢r + fri + si?]) is thekth chirp com-
ponent with amplitude, initial frequencyfs, initial phasep;,

and slopes;,. The additive noise[i] is a Gaussian zero-mean
white noise of unknown variane€. The number of chirp com-
ponentsn is assumed to be known in each class. This modeling

N .

1.2

-0.4 0 0.4 0.8 0 0.4 0.8

Fig. 1. Academic example: Histograms of the MC samplegenerated using
HBL for different numbers of training samples (solid lines). Exact distribution
p(p|X) for the corresponding training samples (dashed lines).

These test samples are then classified using the Bayes rule de-
fined in (2), after replacing the predictive densities by their es-
timates.

C. Simulation Results

Simulation results are presented for a two-class problem
whose parameters are displayed in Table |. Note that the two
classes only differ by their mean vectors. The results of the *
learning stepare presented in Table Il. In this implementation,
the number of training samples varies fram = n, = 10 to
n1 = no = 500. The mean and variance of the Markov Chain
samples are clearly in excellent agreement with the exact values
deduced from the closed-form expressions. Fig. 1 shows the
histograms of the MC elemeniis compared with the Gaussian
distribution A (pi,,, 02) (see [1, p. 54] for similar plots). As can
be seen, the proposed HBL implementation based on MCMC
methods shows good performance for learnityg|t).

is interesting in many realistic applications including the fol-
lowing.

Target Identification

When there is a relative motion between the target and
the receiver, the radar signal can be modeled as a chirp
signal with quadratic phas&(t) = ag + a1t + axt®. The
parameterg; anda. are either related to speed and accel-
eration or range and speed, depending on what the radar
is intended for and on the kind of waveforms transmitted
[17],[18, p. 56-65]. In the presence of a harmonic jammer,
the received signal is the sum of a chirp and a sinusoid,
which corresponds te: = 2. In this particular case, the
proposed classification problem is interesting to determine
the target nature (high versus low acceleration/speed) (see
[19] for a similar problem).
Knock Detection

The knock detection problem has received much atten-
tionin the literature [20], [21]. Several studies have shown
that the knock data consist of several resonances with de-
creasing resonance frequencies. More precisely, the sig-
nals presented in [20] and [21] are the sum of three chirps
(which corresponds te: = 3) whose parameters depend
on the motor rotation speed. The classification algorithm
proposed in this paper is useful to classify knocking and
nonknocking signals.

During thetest step, 1000 test samples (i.e., 500 test sam-FOf the sake of simplicity, we introduce the following nota-
ples from each class that are different from the training safons:

ples) have been generated according to (12). These test sams
ples are then classified using the previous HBL implementation. ¢

Signal:z = [z[0], =[1], ..., =[N — 1]]%
Amplitudesia = [a1, az, ..., am]’;



e Initial phasesip = [p1, ¢2, .-, Owm]’; tributions do not depend on hyperparameters. On the contrary,

* Initial frequencies:f = [f1, f2, - .-, [l the chirp amplitudes, frequencies, and slopes are discriminant
¢ Slopes:s = [s1, s2, ..., Sm]; in most chirp classification problems. Consequently, the corre-

* Noise:e = [€[0], €[1], ..., [N — 1]]". sponding priors depend on hyperparameters. Moreover, among
Using these notations, (21) can be written in matrix form (foRll possible prior distributions, it is interesting to select pdfs
lowing the same approach as in [7]) that can be either vague (in the case where the parameter values

are quite different from one learning signal to another) or very
z=Da+e (22)  informative (when the parameter values are similar from one
whereD = [Dy, ..., D,.], andDy, = [Di[0], ..., D[N — learning signal to another). A typical example of such a prior

is the Gaussian distribution that is parametrized by its mean
and variance and can be vague or informative, depending on the
1 ' value of its variance. Other examples of appropriate priors in-
p(xlf) = (2ro2)N/2 P {_@(X — Da)'(x - Da)} clude the inverse Gamma distribution or the uniform distribution
(23) defined on an interval whose bounds are hyperparameters.

i.e.,p(z|0) ~ N (Da, o2V Iy), wherel y istheN x N identity In the proposed HBL implementation, the following priors

matrix, andd = [a*, ¢, f', s*, o2]* is the unknown parameter have been chosen.

vector. Using Bayes rule, the parameter posterior distribution « The initial phases are independent and uniformly dis-

1]]t. Consequently, the likelihood &f is expressed as

can be computed as follows: tributed in[0, 1]:
p(Olz) =pla, ¢, f, s, o7 |z) m
xp(zla, b f. 5. 02)p(a §. f.5.07)  (24) p(#) = | [ o (@D = Yo.17(#) 7)
k=1

which requires specification of appropriate parameters priors. wherell s (1) = 1if u € A andls(u) = 0 else. Since the

A. Parameter Priors phases are not discriminant in our classification problem,
. . . . the phase priors have been chosen as uniformative uniform
Following [7], the following hierarchical structure has been priors

chosen for the parameter priors:

pa, ¢, f. s, o2) = plalf, o2)p(s|F)p(Fp(d)p(c?). (25) D(S1F S Sume)

This natural hierarchical structure (see [7] and [22] for a similar [, 1
choice) can be motivated as follows. =

« The amplitude vectoa and the additive noise levei?
are closely related since they both determine the ampli- where asg(k) is a function that rearranges the indices
tude of the observed signal as well as the SNR. More- % such that the frequencie§asc (k)] are sorted in as-
over, the chirp components are labeled by their initial fre-  cending order. This sorting operation ensures #hat,
guency, which requires the knowledge pf(or at least, and s, correspond to the same chirp component (la-
its ordering), such as to assign each chirp component its beled by its initial frequency) from one training signal
corresponding amplitude. Based on these comments, the to another (for instances; is the slope associated to the
amplitude prior of the formp(a|f, o2) has been chosen. lowest initial frequencyf; and is uniformly distributed on
Similarly, the knowledge of is required to assign each [Smin[l], Smax[1]])-
chirp component its corresponding slope, which explains < The initial frequency prior distribution is a truncated
that the slope prior depends on the frequencies, i.e., Gaussian distribution of meam; and variance-covari-
p(s|f). ance matrixy ¢

Some comments are now appropriate before specifying the
parameter priors chosen for the classification of chirp signaﬁ.ﬂmﬁ ) b
The principle of HBL consists of learning the hyperparameter |2 4[t/2
posterior d|s_tr|but|qn for each class from the tra_lnmg_ sa}mp_les. x exp{—%(f/ — mf)tg;l(f/ — mf)} lo, 0.5 (f) (29)
When combined with the selected parameter prior distribution,

» The slope prior distribution is defined as

Uis . x 4 2
k=1 Slnax[k] _Smin[k] [Smm[kLSnmx{kﬂ(s{asc}(k)]) ( 8)

this leads to the followingarameter posterior distribution: whereX; is a diagonal matrix whose diagonal elements
aress = (o3[1], ..., o%[m]), andf’ is the reordered
o610 = [ plelep(@|) de. (26)  vectorf'[H] — flasq (b = (L. ... m).

« The amplitude prior distribution is normal, of meam,,
This equation shows that implementing an effective learning  and of variance-covariance matig X,

procedure requires a choice of hyperparametered i@t )

for every parameter that may be discriminant (i.e., which Pralf, mq, 02, ) = 1
vides helpful information for the classification of the currentob-" ~ ¢’ |2702%,|1/2
servation signal). As an example, the initial phases in (21) are 1, tels s

not discriminant. As a consequence, the corresponding prior dis- XD | 75,2 (0" —mq)' %, (" —ma)|  (30)




whereX, is a diagonal matrix, whose diagonal terms are TABLE IV

o2 = (02[1] o2 [m]) andd’ is the reordered vector MULTICOMPONENT SIGNAL CLASSIFICATION: HYPERPARAMETERPRIORS
a a ? * Y a 1
a/ [k] — a,[asc f( k)], k = {]_7 caey m} Hyperparameter Distri?ution Distribution expression (proportional to)
. Uni U([0,0.5]™
As can be seen, the frequency, slope, and amplituc ™/ J';‘)"fl IT(I[ R
priors are parametrized by hyperparameters that are r 7/ e =L I
lated to the training samples via (10). This choice is nature ™ Uniform | U0, amas]), with maz = 10
. . . . . fFrey’ —
since the frequencies, slopes, and amplitudes are discrit Jeffrey's I 5
inant for our classification problem. Smin Uniform | Ullsinr, Ssup]™) with: sias = ~0.5/2N, sy = 0.5/2N
. . B . -y - - - . ), —_ . -1
« The prior distribution of the additive noise variance ®mw~°mn | Truncated Jefirey’s g“m“[’ﬂ Sinl¥) ™ Lo, suup] (Smax(])
2 i H H H H e Unife U([0, crmax] With mez = 200
o; is an inverse Gamma distribution with hyperpa- % Uniform ﬂ:(o[—lz-wt]%w;uham:z, 0
rameters o./2 and f3./2 [denoted p(o?|a., B.) ~
7 g(O‘E/ 27 /35/ 2)] Normalized frequency Normalized frequency
/2 0.40 0.40
2 (Be/2)~ 2\—a./2—1 _—B8./202 2 0.35
p(o—e|a€7ﬁ€) = F(CY /2) (ae) o/ ¢ /20 HR+(O—€)
€ (31) 0% 0.25 0.25
0.2
whereI is the Euler Gamma function, arg(u) is the
indicator of the sef2 (1 if » € 2, and O elsewhere). The ol
inverse Gamma distribution is a conjugate prior, which ha Class w; Time Class wy Time

been chosen in order to obtain closed-form expressions of
the posteriors in the first step of the Gibbs sampler. ASg. 2. Example 1: Instantaneous frequencies for the second chirp component
explained in [23], the inverse Gamma prior is interestin{§r® ar¢as)-
since vague or specific prior information can be incorpo-
rated through suitable choice af andg.. where
Remark 1: In estimation problems (see, e.g., [7]), the initial * p(¢%) andp(a?) are the products of independent Jeffreys’
phasesp in (21) can be included in the amplitudes, leading to  priors [24, p. 44];
the following equivalent model: * my, m; and a. have uniform priors on[0, 0.5]™,
[07 amax]rnv [07 amax];
» the components ofs,,;, and s,.x are independent

m

ai] = ar, cos(2n[ fri+sii®]) +by sin(2n] fui+sui’]) +ei] and uniformly distributed on appropriate inter-
b=l . VaIS (i.e., [Sinf7 Ssup] and [sxnin[k]7 Ssup])u ensuring
i={0,...,N-1} (32) Smax[k] > smm[k] forall k = {1, ..., m};

. _ . . . _ _ * the prior of3. is a Gamma distribution with parametess
inwhich botha andb are linear coefficients. This solution avoids and .

consideration of the nonlinear initial phase coefficients. How- 1,4 hyPerparametel,a, Sint, Ssup: Cmax, Yo, aNdyo have

ever, this model is not appropriate for our classification problerBeen chosen in order to provide vague prior information. How-

Ind_eed_, the_ (?h|rp amplitude components_ have Gaus_5|a_n PrAFer, the learning procedure is robust to the values of these hy-
which implicitly assumes that the amplitudes are similar foﬁerparameters (as outlined in [7] in a similar context).

every signal, whereas the initial phase can be very different fromg oy 4 1 - |tis interesting to note that an alternative approach

one signal to another. By using the model (32), the paramettse jempirical Bayes analys[s, p. 307] could also be used for

az, andb;, may vary significantly from one signal to another (deg, o ¢|assification of chirps. Empirical Bayes analysis consists of
pending on the value afy), even if the amplitude is similar for oqyimating the unknown hyperparameters from the observed data
all signals. This precludes the selected Gaussian modeling Wusing an appropriate estimation technique such as the moment
as a consequence, the use of the model (32). method or the maximum likelihood method. The unknown hy-
perparameters are then replaced by their estimated values in the

. _ o . Bayesian model. However, empirical Bayes analysis may suffer
The previous Bayesian model for the classification of chirggom several problems. In particular, the derivation of the esti-

B. Hyperparameter Priors

is specified by the following hyperparameter vector: mator is generally too complicated, and the approximated pos-
. ot ot \ , terior obtained after replacing the hyperparameters by their esti-
® = [m}, 0% , My, 0, Shins Smaxy Yes Bel’ (33) matesis only acceptable for large sample sizes (see[5, p. 309] for

more details). These problems have motivated our choice of im-
Of course, the hyperparameter veciris unknown in prac- plementing HBL instead of empirical Bayes analysis.
tical applications. Following the hierarchical Bayesian model,
the hyperparameters are assumed to be random, whose piibr$iBL Implementation Using MCMC Methods

(displayed in Table V) are summarizedp(®): As outlined before, the first part of the HBL implemen-

tation using MCMC methods consists of generating vectors

p(®) = p(my) p(a)p(ma)p(o)plec)p(Be) 01, ..., 0., ®) forl = {1, ..., L} distributed according
P(Smax|Smin)P(Smin)  (34) to p(64, ..., 8,, ®|X). For the classification of chirps, the
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Fig. 3. Example 1: Histograms of MC samples distributed accordipgne; (1)|X), p(m(2)|X), p(m.(1)|X), p(ma(2)|X), p(3: /(o — 2)|X) (mean of
the inverse Gamma distribution of parameterg2 and3. /2), andp([32/((a. — 2)*(a./2 — 2))]*/?|X) (standard deviation) for classes andws.

into the following three moves for numerical efficiency
(see Appendix B for details):

1) Generation of¢, f, ) distributed according to

generation is conducted by using the following one-vari-
able-at-a-time MH algorithm (see Appendix B for more
details):

* First Step of the SamplerGeneration of L vectors

(01, ...,0.), 1 = {1,..., L}, distributed according (9 1, slz, @)

to p(fy, ..., 0,|®,_1, X). Using the independence of o |[M|'/?exp {—%(f’ —my)' S - mf)}
training samplese;, this step can be decomposed into m 1

n independent generations @f; distributed according X H PR3 B Usrin k], smax k] (8[aSC£(K)])

to p(8;|®;_1, ;). Given a training signat; written in
vector form, the selected priors lead to (the subsgrigt
forgotten for simplicity)

p(a7 ¢7 f7 S? O—€2|$7 (b)

x (02)~(Nte)/D=1 gy, {_ 12
O—E

@ ) M )|

1
>< e —
023!/

1
X exp {— 5,2 (z'z +m! X, 'm, — th_lm)}

ST
X exp {—%(f’ - mf)tEJTl(f/ - mf)}

m

1

1 NIQ<

k=1
X (gt +miE ' m, — mM " lm  g)"(VHea)/2

x Do, 0517 ()0, 11 (¢) (36)

using Metropolis Hastings steps (see Appendix B
for details).

2) Given(g, f, 3), sample the noise variané¢ dis-
tributed according to the inverse Gamma distribu-
tion

p(ols. 6. 1 5. @)

N+a, gz+miS, 'm, —m'M 'm+ j,
2 ’ 2 )
(37)

3) Given allthe other parameters, sample the amplitude
vector distributed according to

x ;E Sl F] = o] ominlt), smaxi (8lasc (R)]) plalz, ¢, f, 3,52, @) ~N(m, 52 M).  (38)
% e—,ﬁc/%fu[& 0.5 (F)Vjo, 17 () (35) « Second Step of the Samplessing {01, ..., 0,;} ob-

whereM ™! = D'D+3X*, andm = M[D'z+3;'m,].
Following the same approach as in [7], the parameters
ands? are integrated out analytically. As a consequence,
the generation of; = (a, ¢, f, 5, 52) is decomposed

tained during the previous step, generation of one vector

&, distributed according t@(®|01;, ..., 0., X) =
(®|64, ..., 0,;). This requires to compute the hyper-
parameter posterior distributiop(®|0y, ..., 8,) (see

Appendix C for details).
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Fig. 4. Example 1: MC samples distributed according(t®.:» [1]|X'), p(smax[1]|X) (figures left), andp(smin [2]|X), P(smax[2]|X") (figures right) for class
w1 and classvs.

The second part of the HBL implementation for the classifi- TABLE V

cation of chirps consists of generating one sar’éptdistributed EXAMPLE 1: ERRORRATES FOR THECLASSIFICATION OF CHIRPSUSING THE
PROPOSEDHBL | MPLEMENTATION AND NONPARAMETRIC TIME—FREQUENCY

according top(#|®;) (where®,; has been obtained during the ¢ assiFiErs(THE LEARNING SET IS COMPOSED OFn; = 15 SIGNALS
first part of the algorithm). This leads to the sampling proce- ForEAacH CLASS, WHEREAS THETEST SET Is COMPOSED OF20 000
dure summarized in Appendix B SIGNALS WITH 10 000FOR EACH CLASS)

Number of training samples n; = ns =

D. Simulation Results Classification method 50 100 200 500
. . Wigner distribution [25] [ 22.30% | 19.39% | 1253 % | 5.38 %
The performance of the proposed HBL implementation for Ambiguity plare [26] | 456 % | 3.84% | 2.68% | 216 %
3 H H R R ; _ Time-Frequency [12] | 225% | 191% | 1.85% | 1.64%
the classification of chirps has been studied via several simula: o implementation [this paper] | 5.24% | 276 % | 142% | 0.85 %

tion results. This paper focuses on two examples:

1) Example 1—Radar Target Identificatiorwe assume that Normalized frequency
the signal observed by the receiver is two-component: one tone,
emitted by an harmonic jammer, and one chirp, corresponding 45
to the signal reflected by the target. Moreover, an additive am- 35
bient noise corrupts the observations. A sensible model is then 28 PRSI

R

obtained as the sum of one chirp and one tone embedded in ad- Ry 7]

ditive white Gaussian noise, namely

2 .07

z[i] = Z ay cos(2n[dn + fai + sxi?]) + €[d] (39)

k=1

Time
. . Fig. 5. Example 2: Instantaneous frequencies for the three chirp components
Where'L == {0, ceey N - 1}, G[Z] ~ N(O, 062)’ andN == 128, (bOth classes).
o2 = 2 [the signal to noise ratio is SNR= 10log;,(a} +

€

a3)/o¢ = 0 dB]. The signal amplitudes and |n|_t|a_1l_frequen0|es1-he possible instantaneous frequencies of the chirp component
areay = ax = 1, fi = 025, f; = 0.4. The initial phases ;. iotted in Fig. 2 for classes, andws, (gray areas). Note

¢1 and¢, are independent and uniformly distributed[@ 1]. 5t the two classes only differ by the slope of the second chirp

The slope of the first componentsg = 0, which corresponds ., honent and that the jammer and target frequencies overlap.
to a pure harmonic. The problem addressed in [12] consists)@forder to simulate a realistic situation, we assume that the

classifying a given signai[¢] into one of the two classes def'nedsignal model parameters are unknown. However, the model

as follows: given by (39) is known (it can be derived from a nonparametric
1) CIaS&uli p(SQ) = U(—030/2N, —020/2N), ana]ysis; see [12])
2) Classwa: p(s2) = U(—0.15/2N, —0.05/2N); The first simulation results illustrate the performance of

where U(a, b) is the uniform distribution onfe, b]. These the learning step. Fig. 3 displays histograms of Markov
classes correspond to targets having the same speed butdatikin samples distributed according to the posterior dis-
ferent accelerations (or the same range and different speeti#)utions of hyperparametersys, m,, 3./(ae — 2), and
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Fig. 6. Example 2: Histograms of the MC samples distributed accordipgict’) for some components @. Left column:p(f:|.X') (dotted line),p( f2|X)
(dashed line), ang( f3|X') (solid line). Middle columnp(a|X’) (dotted line) p(a2|X) (dashed line), and pg|X') (solid line). Right columnp(c2|.X).

32/ ((ae —2)* (/2 — 2))]*/2. These histograms are clearly inplexity of the implicit model used for the classification of chirps.
good agreement with the true values of parameferss, a;  Due to this complexity, the Bayesian classifier requires a large
anda,. The histograms displaying. /(«. — 2) (mean of the number of training samples to learn the class-conditional dis-
inverse Gamma distribution of parameters/2 and /./2) tributions. In contrast, the model used for the classification of
and[32/((a. — 2)(a/2 — 2))]*/? (standard deviation of this chirps is well suited to time—frequency classifiers since energy
inverse Gamma distribution) are also coherent with the trirethe time—frequency plane is well localized for each class.
value ofa2. MC samples drawn from the posterior distributions 2) Example 2—Knock Detectiorifhis second example ad-
P(Smin[1]|A)s P(Smax[1]|A)s p(Smin[2]|X), @andp(smax[2]|X) dresses the knock detection problem in car engines (see [20]
of classw; are shown in the upper row of Fig. 4. Similarand [21] for an overview and a time-frequency detection algo-
results associated with class are shown in the lower row of rithm). The recorded vibration signal is modeled as the sum of
Fig. 4. These plots show that &),;,[1] ands,,.x[1] converge three chirps embedded in additive white Gaussian noise
to O for classess; andws, and 2)[smin[2], smax[2]] CONverge 3
to values close t4—0.30/2N, —0.20/2N] for classw; and il = ‘ ‘ i spd2 i
[-0.15/2N, —0.05/2N] for classw». These results are in ali ; ai cos(2m(n + fid £ 518"]) + ] (40)
good agreement with the definition of, and s, for both ) ) )
classes. Consequently, the learning step of the HBL McMEherei = {0, ..., N — 1}, N = 64, [i] ~ N(0, o7), and
implementation shows good performance for the classificatifa = 0-5- The instantaneous frequencies of each chirp compo-
of chirps (in particular, the minimum and maximum values di€nt are the same in classgsandw, and are defined a§  ~
the slopess, which are the discriminant features, have beel (0-45, 107%), fo ~ N(0.28, 107%), f3 ~ N(0.11, 107%),
learned with good accuracy). 51 = -—0.1/2N,-82. = —0.07/2N,andsz = _—0.04/2]\7 (see
During thetest step, 20 000 test vectors (i.e., 10 000 test veiSO Fig. 5). Theinitial phases , ¢, andg; are independentand
tors from each class different from the training vectors) are cld&diformly distributedirjo, 1]. Inthisexample, the presence or ab-
sified using the MCMC implementation of HBL. Table V dis-S€Nnce of knock is characterized by different chirp amplitudes:
plays the corresponding error rates, which are compared with * Classw; (absence of knock)(a:) = N(0.7, 0.0025),
those obtained with classifiers based on time-frequency repre- p(a2) = N(0.82, 0.0025), p(as) = N (1, 0.0025),
sentations [12], [25], [26]. For a large number of training vec- * Classw, (presence of knock)p(a:) = N(1, 0.0025),
tors, the MCMC method outperforms nonparametric time—fre-  p(az2) = N (1.2, 0.0025), p(az) = N(1.45, 0.0025).
quency classifiers and provides a reference to which suboptiriidle problem addressed in this example is the classification
classifiers can be compared. This result can be explained as fdlan observed vecta in one of the two classas; andws.
lows: 1) The Bayesian classifier is optimal when the prior profihe first simulations illustrate the performance of tearning
abilities and the class-conditional densities are known, andf2gpwith n; = n, = 200. Fig. 6 displays histograms of MC
the observation predictive distributions estimated with the preamples distributed according to the posterior distributions of
posed HBL implementation converge to the true predictive disequencies, amplitudes, and noise variance. As can be seen,
tributions (according to the ergodic theorem) when the numhbegsrameters have been learned with good accuracy. During the
of MC samples increases. However, for a small training set, ttesst step, 20 000 test vectors (i.e., 10 000 test vectors from each
time—frequency classifiers outperform the proposed Bayesialass different from the learning vectors) are classified using
learning MCMC implementation. This is mainly due to the conthe proposed HBL implementation. The estimated error rate is



TABLE VI
EXAMPLE 2: ERRORRATES FOR THECLASSIFICATION OF CHIRPS USING THE

% Generation of the Markov Chain elements

PROPOSEDHBL | MPLEMENTATION AND NONPARAMETRIC TIME—FREQUENCY H
CLASSIFIERS(THE LEARNING SET IS COMPOSED OFn, = no = 200 SenaL ~ While 1 < L, do
FOR EACH CLASS, WHEREAS THETEST SETIS COMPOSED OF20 000 % First step of the Gibbs algorithm
SIGNALS WITH 10 000FOR EACH CLASS) for each training sample z; in
Classification method Probability of error {'1:1’ T I’ n ]‘i’ do di =
Wigner distribution 25] ~ 50 % sample  mj; according to  p (mjlfiu—s, =) o
Ambiguity plane [26] ~ 50 % p(il"j |mj )p(mj |/lefl)
Tlme—‘ﬁ‘equency ) ) [12] 127 % % Second step of the Gibbs algorithm
HBL implementation [this paper] 21.72 % . . ~ -
sample ji; according to  p(u|r, ..., )
n N
p() ITi=y p(el )
compared in Table VI with those obtained with the previou¥ Generation of the samples my
time—frequency classifiers. As can be seen, the proposed HBer 7 ={1,..., L}, do

implementation outperforms the classifiers based on the Wignesample = iy ~ p(mlf) = N(ju, o3,).
distribution and the ambiguity plane for the knock detection
problem. However, the optimized time—frequency classifier
proposed in [12] and [13] performs considerably better for
this problem. This result indicates that more than 200 learning ) _ _ -
samples are necessary to obtain a good approximation of t_ha'ms appendlx denyes the _HBL_aIgonthm for the classifica-
predictive distributions, i.e., to achieve the optimal BayesidtPn Of chirps. The main algorithmiis first presented. Some sub-
classifier performance. procedures are then detailed.
Simulation results presented in this section have shown the
good performance of the proposed MCMC-based HBL impléfain Algorithm
mentation for the classification of chirp signals. Two differends Hyperparameter initialization
scenarios have been studied, for which chirp slopes and chigp each chirp component
amplitudes are the respective discriminant parameters. Thigample g1 [k] ~ U0, 0.5]
shows the robustness of the proposed classification procedure t§ample & s1[k] according to the Jeffrey’s
the nature of discriminant parameters. However, itisimportanttopyior
note that the performance of the proposed HBL implementationsamme

APPENDIX B
HBL ALGORITHM FOR THE CLASSIFICATION OF CHIRPS

k, repeat

ﬁlal [k] ~ U[Oa a/max] with Omax = 10

strongly depends on the number of training samples. sample &,.[k] according to the Jeffrey’s
prior
V. CONCLUSION sample  Smin1  ~  U[sinr; Ssup] @ND Spaxy ~

U S‘minlv Ssup

This paper showed that MCMC methods, which are widely se[t &1 <_12] and /}d — 9
used for Bayesian estimation, are also a suitable tool for S Parameter initialization
pervised classification using hierarchical Bayesian learning. igr each training signal z; do
the proposed HBL implementation, the training samples werefor each chirp component do
used to build Markov chains whose target distributions were the  sample (]’jl[k] ~ U0, 1]
parameter posterior distributions. The class-conditional proba- sample 5;1[k] ~ U[Sint, Seup)
bility densities were then obtained by Monte Carlo ergodic av-for t = {1,...,m}, set the frequencies
eraging of the MC elements. An academic example showed thagfjl[k] ... linearly in [0, 0.5]
the performance of the proposed HBL implementation is veget [ «— 1
close to the theoretical performance obtained with closed-fogn Generation of the Markov chain &,
expressions of the class conditional distributions. Finally, tRghile [ < L do
problem of classifying chirp signals by using HBL combined 9% First step of the Gibbs Sampler
with MCMC methods was studied. The proposed classifier wasy, Generation of samples éﬂ
shown to outperform conventional time—frequency classifiers,for each training signal z;, do
provided the number of training vectors is sufficientto learnthe  for each chirp component kL do
class-conditional distributions. sample q~5j K], fj 1[k], 3, 1[k] according to
the pdf (36) using subprocedure 1

APPENDIX A sample r}fﬂ distributed according to
FIRST EXAMPLE: HBL ALGORITHM (37) - L .
sample a;; distributed according to
% Initialization (38)
set [ —1 % Second step of the Gibbs algorithm
sample [i; according to (). % Generation of samples P,

for j=141,...,n}, do k do

Sample mj 1~ N(ﬁlv 07271)

for each chirp component
sample mgfk] as in (41)



sample & [k] as in (42)
sample  Syin:[k], Smaxi[k] according to the
pdf (43) using subprocedure 2
sample my[k] as in (44)
sample &, [k] as in (45)
sample & according to the pdf (46)
using subprocedure 3
sample 8., as in eq. (47)
% Generation of samples 0,
for 1={1,...,L}, do
sample 6, according to
defined in Section IV-A.

p(0)®;), such as

The three subprocedures consist of a Metropolis—Hastings
step using either a local random walk proposal distribution or
a global proposal distribution. In each subprocedure, the choice
of the proposal distribution depends on a paramet&ach sub-
procedure has the following structure [where the variable to be
sampled is denotedl the target pdf ig(¢), the global proposal

ie., (¢, f*, s*) ~ (U[0; 1], q1(f, s)), wheregi(f, s)
is obtained by discretizing the function

qll(fv 8) X Sbegin(f)send(f + 2N3)

where Sy,egin(f) denotes the frequency spectrum of the
N/4first points of the signal, anf.,a( f) is the frequency
spectrum of théV/4 last points of the signal. One has, e.g.,

x . 2
Sueginl ) = L1 }’Gfif)](f)'
andzhegin = [#[0], ..., z[N/4 — 1]].

Subprocedure 2The proposal probability density; is
the uniform distributionZ{([s,, si,] X [s04, s0,]) With
bl = Sinf» b2 = Inin(ssupv 3111111[1]7 ceey Smin[m])v b3 =
Inax(sz;inv Smax[”v ) Smax[m])v b4 = Ssup;

* Subprocedure 3y; = U[0, Qpax)-

APPENDIX C
HYPERPARAMETERPOSTERIORDISTRIBUTIONS FOR THE

probability density is denoteg;, and the local random walk CLASSIFICATION OF CHIRPS
proposal probability density is denotes]. The hyperparameter priors displayed in Table 1V lead to the

following distributions.

Subprocedures » Frequency hyperparameters
if A > Rand then For each componeiit = {1, ...m}
0, ili -
S/rtythig Sls%l?jal proposal probability den N g [K]|01m) e
sample ¢* distributed according  qi(§*&-1) c 210 0151 [R]) (m[k] =7y (KD 17
it (P (G-11E)/(p(6-1)a(€*1é-1)) > Rand o oel vl
then . oc o, 0.51(ms (k) T1(vy, T¢[K], €4[F]) (41)
elsgé —¢ whereé,.,, = [01, ..., 8,], and7; is a one-dimensional Stu-
& — &y de_nt-t diﬂibQution with param_etevsf =n— 1, vk =
else 12kl — f[k] ., and7¢[k] = f[k] (using the usual notations

TR = (1/n) X20; £ilML and f2IR] = (1/n) 0, F7IRD).
Furthermore, the variance terms are distributed according to the
following inverse Gamma distribution:

% the local proposal probability
% density is used (randomn walk)

sample v according to G2
set &* «— él;l + v 1
i pE)/plés) > Rand Pl H)lm; k], 6...) ~ 76 (g S > (filkl - mf[k1>2> :
en i=1
&= ¢ (42)
else
& — &4  Slope hyperparameters

For each componerit = {1, ...m}, the posterior distribu-

. tion of syin[k], smax[#] IS @ truncated inverse Gamma distribu-
In the three subprocedures, = 0.2, and g is the pdf of tion

a zero-mean Gaussian vector with diagonal variance-covari-
ance matrixX,,. In subprocedure 1, the diagonal elements
of X, are (0.002, 0.001, 0.005/2N), corresponding to  [(n = D! (smax[k] — smin[k])" 1] 7?
(@[k], fIk], s[k]). In subprocedure 2, the elementsXf, are .
(0.001/2N, 0.001/2N), corresponding t@s.a[k], smi[k]). X Vi, sip] (Smin KDV s 8], 520] (Smax[F]). (43)
Finally, 3,, = 0.5 in subprocedure 3. These values ensure an « Amplitude hyperparameters
acceptance rate of about 25%. (Note that the convergence ratgor each componerit = {1,...m}
of the algorithm may depend on these parameters, as opposed
to the Markov Chain invariant distribution.) The proposal P(ma[k]101:0) o< Vo, ayn] (Ma[F]) 71 (Va, Tal], €, (K] (44)
probability densities;; are the following. where v, = n — 1, 7,[k] (1/1a) >z (@ilk]fo2),

* Subprocedure 1:The phase is sampled uniformly inp, = Y7 (1/02), andv€,[k] = (1/pa) > iy (@F[k] /02 ) —

[0, 1], whereas the frequency and slope parameters &i¢/;i2)(>""  (ai[k]/02))?. This is a one-dimensional Stu-

jointly sampled from a stepwise constant distributiordent-t distribution for the variablen,[4], with parameters

p(smin [k] ; Smax [k] |01:n)



Vo, Talk], €,[k], which is limited to the interval0, a,ax]- [15]
Moreover
n 1 o= (a;[k] — mg[k])? [16]
D@2 Klmalk), 61 ~ 76 ( 2, 2 3 (=l
=1 “ [17]
(45)
 Additive noise hyperparameters [18]
The hyperparametery. is distributed according to the [19]
(proper) distribution
20
F(n% + 1/0) P ac/2 1201
p(ae|0l:n) ~ "[0, Oénlax}(a€> 2 |: - :|
T{a/2)" | [Se+ 270 [21]
(46)
. . [22]
where the sufficient statistics afé =[]\, (1/02), andS, =
> i1 (1/02 . The second hyperparametéris distributed ac-  [23]
cording to a Gamma distribution
no S [24]
p(ﬁe|aea ol:n) Nga < 26 + 1o, 76 + ’YO) [25]
x jgnac/2)+l’0_16_(56/2+70)18cHR+(/3(). (47)
[26]
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