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CB reconstruction for the 3-sin trajectory with transverse truncation

Nicolas Gindrier1, Laurent Desbat1, and Rolf Clackdoyle1

1TIMC-IMAG laboratory, CNRS UMR 5525 and Univ. Grenoble Alpes 38000 Grenoble, France

Abstract In cone-beam tomography Differentiated BackProjection
method (DBP) is a suitable approach for image reconstruction from
truncated projections. However, the reconstruction of a point with
this method is possible only if the point lies on a chord connecting
two source positions of the x-ray source trajectory. Using an approach
initially proposed for the reverse helix with axial truncation, we present
a configuration and its associated (theoretical) reconstruction method
to deal with points which do not lie on any chord of the 3-sin trajectory
(sine on a cylinder of period 2π/3) and with transversely truncated
projections.

1 Introduction

Cone beam (CB) geometry is an important part of the com-
puted tomography. A main result of CB tomography comes
from Tuy [1] and Finch [2]. They prove that for an X-ray
source trajectory which is bounded and connected, an exact
reconstruction is only possible within the convex hull of this
trajectory. Moreover, in this case, the Tuy condition says
exact reconstruction is possible if there is no data truncation.
FOV is defined as follows in our article: the measured rays
for each projection are exactly those that intersect the FOV.
In this article, the FOV will be a eeez-axis cylinder and we
deal with transverse truncation, appearing when the detec-
tor is not large enough (the FOV and the object intersect
at their sides). To manage this kind of reconstruction, the
Differentiated BackProjection method (DBP) [3] is suitable,
for example in [4] for the helix trajectory. Yet this method
requires that each point of the object ΩO to be reconstructed
is intersected by a chord (a line segment linking two source
points of the X-ray source trajectory).
However, many trajectories have points within their convex
hull which are not intersected by a chord. For example, this
is the case for the reverse helix [5] and for the 3-sin trajectory,
which is a sinusoid on a cylinder, defined by:

S def
= {(Rcosλ ,Rsinλ ,H cos(3λ )),λ ∈ [0,2π)} (1)

with R> 0, H > 0, see Fig. 1, left. Nevertheless, [6] shows by
numerical methods that exact reconstruction with transverse
truncation appears to be possible even in some regions which
are not intersected by chords. Moreover, S has a convex hull
bigger than that of the saddle trajectory (a 2-sin trajectory
more extensively studied in the literature [7]), which is why
we find it useful to study. We write ΩS for the convex hull
(Fig. 1, right) and CS(⊂ΩS) for the union of all chords c for
the 3-sin trajectory S, and NS

def
= ΩS \CS.

The article [5], treating the reverse helix case, explains how to
perform reconstructions dealing with some points in the con-
vex hull which are not lying on a chord and axial truncation

(the article [8], published at the same time, works on the same
point and proposes a similar approach, except for the last
step). Inspired by the method of [5], the goal of this article
is to describe and to test one configuration for the trajectory
S, where it is possible to reconstruct Ωin

def
= FOV∩ΩO∩NS

despite transverse truncation. To do this, the next section
analyses and describes the regions CS and NS. Section 3
describes the reconstruction principles and a computer sim-
ulation study is presented in section 4. We end with a short
discussion and conclusion.

2 The 3-sin trajectory

2.1 Union of chords

S

eeex

eeey

eeez

Figure 1: Left: the 3-sin trajectory S, which is a sinusoid on a
cylinder. Right: the 3-sin trajectory with its convex hull ΩS. (The
shades of grey vary according to the height).

To build the union of chords CS of the 3-sin trajectory, it is
useful to consider the intersection between the trajectory and
a horizontal plane Πz̃ with equation z= z̃, where−H ≤ z̃≤H,
illustrated in Fig. 2. The angles in this figure are:
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We let SSSA denote SSSλA . The aim is to show that each point of
the hexagon of Fig. 2 (right) is intersected by a chord, except
points in the central triangle (defined by the intersection of the
line segments [SSSC,SSSF ], [SSSD,SSSA] and [SSSE ,SSSB]). Considering
Fig. 3 and with equations (1) and (2), we see chords c1(z̃)
(linking SSSD to SSSE for z̃ ∈ [0,H]) and c̄1(z̃) (linking SSSF to SSSC

for z̃ ∈ [0,H]) move (and meet when z̃ = H), continuously
approaching with respect to increasing z̃, for z̃ ∈ [0,H]. The
chord c2(z̃), where z̃ ∈ [−H,0], moves continuously with
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Figure 2: Intersection between a horizontal plane Πz̃ and S (with
the intersection points linked). Right: The dashed circle is the
projection of S on Πz̃. The red and black lines are chords of S
contained in this plane Πz̃. This section shows that all points
contained in the black polygon, but outside the red triangle, are
intersected by a chord.

respect to decreasing z̃ until c2(−H) = SSSπ . With the union
of all chords c1(z̃) and c̄1(z̃) for z̃ ∈ [0,H] and all chords
c2(z̃) for z̃ ∈ [−H,0], a surface can be created (see Fig. 4,
right). Let’s note that the 3-sin trajectory is invariant through
a rotation of 2π/3 around the eeez-axis and is invariant through
a rotation of π/3 (around the same axis) then a symmetry
with respect to the plane (eeex,eeey). With these invariances it is
possible to create six similar surfaces as described previously
(see Fig. 4, left). By adapting the proof of [7] (appendix
A.2), it is possible to prove that each point between these two
surfaces lies on a chord, i.e. if it exists two points xxx′=(x,y,z′)
and xxx′′ = (x,y,z′′), z′ < z′′, each intersected by a chord, then
each point xxx = (x,y,z), with z′ < z < z′′, is also intersected
by a chord. To finish the construction of CS we must match xxx′

and xxx′′ points, being at the union of the six surfaces, to ensure
that each point within the volume of this union is intersected
by a chord.

We define the blue surfaces as the surfaces generated by the
chords c1 ([SSSDSSSE ], [SSSCSSSB] and [SSSFSSSA] for z̃ ∈ [0,H], [SSSESSSF ],
[SSSBSSSA] and [SSSCSSSD] for z̃ ∈ [−H,0]) and c̄1 ([SSSCSSSF ], [SSSESSSB]
and [SSSDSSSA]). The red surfaces are defined by the surfaces
generated by the chords c2 ([SSSDSSSE ], [SSSCSSSB] and [SSSFSSSA] for
z̃ ∈ [−H,0], [SSSESSSF ], [SSSBSSSA] and [SSSCSSSD] for z̃ ∈ [0,H])(see
Fig. 4). For this section each projection will be an orthogonal
projection onto the plane (eeex,eeey) (which is the plane Π0). The
intersection of the projections of the blue surfaces covers the
regular hexagon defined by the convex hull of the intersection
between Π0 and S (see Fig. 3 and 5). Then a point “between”
two blue surfaces (one above and one below Π0) and whose
projection is in the hexagon is intersected by a chord. A
point whose projection is in the region between the hexagon
defined above and the circle of radius R is intersected by a
chord if it is “between” a red surface and a blue surface on
the same side of Π0. The set of points intersected by a chord
is CS, illustrated in Fig. 7, left.
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Figure 3: Different chords contained in some horizontal planes.
The blue chords, defined for z̃ ≥ 0, are the chords c1(z̃) (linking
SSSE to SSSD for z̃ ≥ 0) and c̄1(z̃) (linking SSSF to SSSC) and are parallel
(and even merged for z̃ = H.). The red chord is c2(z̃) (linking SSSE
to SSSD for z̃≤ 0). The union of these chords, for all z̃ ∈ [−H,H] is
drawn Fig. 4.

Figure 4: Left: One surface created for chords described Fig. 3.
Right: The union of six surfaces from the left figure, using the
invariances of the 3-sin trajectory.

Figure 5: Orthogonal projections on the plane (eeex,eeey) of the
red and blue surfaces. Top: Surfaces defined for z̃ ≥ 0. Bottom:
Surfaces defined for z̃ < 0. The dashed hexagon links the points of
the intersection between S and Π0.
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2.2 Region without chords

We have defined CS, but to be complete now we must be
sure that no chords intersect a point in the central triangle or
equivalently we construct region NS. (see Fig. 2). Consider-
ing a horizontal plane Πz̃, z̃ > 0, we cut S into several pieces
s (short pieces, above Πz̃) and l (long pieces, under Πz̃), see
Fig. 6 (for example s1 is the piece of the trajectory linking
SSSA to SSSB). We study chords linking these pieces. There are
four cases: chords linking s1 to l1 (directly opposite), s1 to l2
or l3 (“l” to “s” but not directly opposite), s1 to s2 or s3 (“s”
to “s”) and l1 to l2 or l3 (“l” to “l”). It is clear that chords
linking s1 to l2 do not intersect the central triangle. Chords
linking s1 to s2 (resp. l1 to l2) are above (resp. below) Πz̃.
The last case (chords linking s1 to l1), is more complicated,
and an analytic approach would be tedious. We show some
numerically calculated intersections between these chords
and Πz̃ in Fig. 6 that suggest that all such intersections occur
outside the triangle.

SSSASSSB

SSSD

SSSE

l1

s1

SSSA

SSSB

SSSD

SSSE

l1 s1

l2

s2 l3

s3

Figure 6: Chords for some values of λ1 ∈ [λA,
λA+λB

2 ] (half of the
s1 piece) and λ2 ∈ [λD,λE ] (l1 piece) and intersections for the plane
Πz̃, z̃ = H/2. Right: Intersections for four values of λ1.

From equations (1) and (2) we are able to draw the central
triangles for each z̃ ∈ [−H,H] and build an illustration of NS,
as shown in Fig. 7, right.

Figure 7: Left: The union of chords of S: CS. Right: The set of
points of ΩS which are not intersected by a chord: NS. (The shades
of grey vary according to the height).

3 Reconstruction

3.1 General method

The regions ΩO and FOV are assumed known, and CS and
NS have been previously calculated. We can summarize the
reconstruction approach in four steps:

1. Reconstruction of ΩDBP⊆ FOV∩ΩO∩CS with the DBP

method, where ΩDBP is the region where DBP is possi-
ble

2. Reprojection of reconstructed points (cone-beam pro-
jections of the new object reconstructed in the region
ΩDBP)

3. Subtraction of reprojections from the original cone-
beam data, to present a new reconstruction problem with
a smaller object, defined on the region ΩO \ΩDBP =

Ωin∪Ωout, with Ωout
def
= ΩO \ (ΩDBP∪Ωin)(the regions

ΩDBP, Ωin and Ωout are mutually disjoint)

4. For reconstruction to be possible, the new configura-
tion must be a problem without truncation satisfying
Tuy condition: reconstruction of Ωin by any of the var-
ious methods for cone-beam reconstruction from non-
truncated projections (e.g. [1], [9], [10]...).

However, in order to apply this method, two points must
be taken into account. Firstly, the DBP method does not
generally allow reconstruction in the whole region FOV∩
ΩO∩CS because although the necessary Hilbert transforms
can be formed along these chords, there are further geometric
conditions required for Hilbert inversion (more precisely,
we consider methods that guarantee the existence, stability
and uniqueness of the inversion, so called 1-sided and 2-
sided inverse Hilbert transforms [11]). Thus the ΩDBP region
must be carefully identified. Secondly, there must be no
contaminated lines, which are defined as measured lines of
Ωin intersecting Ωout. The region Ωout could then be removed
from the reconstruction problem. Note that it would not
be possible to reconstruct the part of the Ωout region being
outside the FOV. If there are contaminated lines this approach
to reconstruction of Ωin fails.

3.2 Configuration proposed

FOV S

ΩO

ΩoutΩin

ΩDBP

FOV S

Ωin
Ωout

Figure 8: Top view of the considered configuration. The dashed
blue triangle (resp. biggest blue triangle) delimits the intersection
of NS with the horizontal plane z = 12mm (resp. z = 20mm). A
zoom on Ωout is done Fig. 9, left. Left: before the subtraction of
the reprojection of ΩDBP (dotted region) from the data. Right: after
the subtraction.

We now propose an example configuration without con-
taminated lines. Other examples are also possible. The
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FOV is a cylinder centered on the eeez-axis of radius 90mm.
The object support ΩO is a cylinder of same direction with
an elliptical base defined by {(acosλe + co,bsinλe),λe ∈
[0,2π),a = 80mm,b = 40mm,co = 20mm}. Its axial extent
(in the z-direction) is the interval [12mm,20mm] and the
FOV is axially extended on a larger interval (no axial trun-
cation). Finally, concerning S, we have H = 60mm and
R = 160mm. We present this configuration in top view,
before and after subtraction of the reprojections from the
data, see Fig. 8. It can readily be shown that, with the
DBP method, we can reconstruct each point of ΩDBP =
FOV∩ΩO ∩CS \A (the dotted region of Fig. 8, left), with
A def
= conv(ΩO \ FOV) \ (ΩO \ FOV) (the orange region of

Fig. 9, left). However it might be possible to reconstruct
some points of the small region A with the M-line methods
[12], but this is not the central aim of this article, which is to
prove that it is possible to reconstruct Ωin. A 3D illustration
is given Fig. 9, right.
We see from Fig. 8, right, that if there is no contaminated
line, the configuration satisfies Tuy condition (there is “no
longer any truncation”). Instead of drawing all measured
lines (here they are the lines from a source point of S and
intersecting the FOV, especially Ωin), we choose to focus on
lines intersecting Ωin and Ωout at the same time. These lines
delimit two cones and a polyhedron (Fig. 10). We see from
Fig. 10 that these cones (and the polyhedron) do not intersect
S, so no contaminated lines exist, and thus reconstruction of
Ωin is possible.

ΩO

FOV

A

S

Figure 9: Left: Zoom on the right-side of ΩO: the dotted region is
ΩDBP, the orange region is A and the non-dotted (white and orange)
region of ΩO is Ωout. Right: The configuration proposed. The FOV
is delimited by both green circles, ΩO by both black ellipses and
NS by the blue triangles (at z = 12mm and z = 20mm). Dark green
and blue dots are used to draw the limit lines of Fig. 10.

4 Simulation

We created a thin cylindrical phantom with an elliptical base
as ΩO, and added some ellipsoid and balls, see Fig. 11. The
configuration for the source trajectory and the FOV was the
same as described in the previous section. The rectangular
detector of 400×430 pixels is at a distance of 290mm from
the source. A total of 360 cone-beam projections were sim-

Figure 10: Cones (red) and the polyhedron (orange) delimiting
the lines intersecting both Ωin and Ωout. They do not intersect the
trajectory S so these lines are not contaminated lines.

ulated along the 3-sin source trajectory. The reconstruction
volume consisted of 162×82×8 voxels (pixels and voxels
have a 1-mm side).

Figure 11: The phantom used for simulations. The orange lines
indicate the location of the profile used in Fig. 13. Left: Top view.
Right: Side view.

The objective was to verify the theory that the triangular
region NS could be accurately reconstructed according to the
theory established above. The goal was to investigate the
results of [6], obtained by an iterative method, so we did not
use the DBP method, with the 4 step approach outlined in
section 3.1. We just used the conjugate gradient to minimize
‖R f − p‖2

2 + γ‖∇ f‖2
2 with R the forward projection operator

and p the measured projections. With γ = 500 we performed
60 iterations at which point we considered that convergence
had been achieved. Some results are shown Figs. 12 and 13
(with another reconstruction performed without truncation,
with a FOV of radius 102mm).

Figure 12: A cross-section at z = 16mm of the reconstruction.
The green circular arc delimits the FOV and the blue triangle is NS
(for this cross-section).
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Figure 13: A profile of the reconstruction at y = 0mm and
z = 16mm. The black line is the phantom, the purple line is the
reconstruction without truncation and the orange line is the recon-
struction with truncation. The dashed green line is the right limit
of the FOV (for the reconstruction with truncation) and the dashed
blue lines are the limits of NS.

5 Discussion and conclusion

We have adapted the scheme introduced in [5] for the reverse
helix with axial truncation to the 3-sin trajectory with trans-
verse truncation. To our knowledge, it is an original way to
manage certain situations of transverse truncation for points
lying in the Tuy-Finch region but not lying on a chord.
We performed a simulation (with an iterative method) which
showed the same quality of reconstruction in the chord zone
as well as the non-chord zone NS. However, our example
only involved very mild transverse truncation. On the other
hand, in [6] we presented results showing good quality recon-
struction for the same trajectory with much more transverse
truncation but without theoretical results to justify it.
The configuration we have presented is rather limited in
practice. For example, the object is quite flat. Nevertheless
this represents a beginning of a lead, and other more general
configurations could be found, for example by considering
sub-trajectories of S after subtraction of the reprojections,
while guaranteeing Tuy’s condition.
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