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Recursive dynamics interconnection framework applied to angular velocity control of drilling systems

In this paper, we apply a recursive dynamics interconnection framework to achieve reliable angular velocity control of a multi-sectional drilling device with the bit offbottom. The proposed model describing the torsional motion of the drill string takes into account the Coulomb friction between the drill string and the borehole. It has been field validated. Compensating the effects of these Coulomb side forces is necessary to avoid stick-slip oscillations. More precisely, the torsional motion of each section of the drilling pipe is modeled by a wave equation (with some non-linear terms corresponding to the Coulomb friction), while the dynamics of the top-drive and Bottom Hole Assembly are modeled by ordinary differential equations. The reference trajectory tracking problem for the drill string is solved by considering each section independently. The Coulomb side forces are seen as disturbances acting on each section of the drill string. These disturbances do not depend on time, providing there is enough energy in the system (i.e., that we have overcome the static friction). We propose here a switching-mode controller: using first a classical PI controller (with poor performance), we break the static friction. Then, the disturbance terms that correspond to the Coulomb friction terms can be estimated and compensated. The trajectory tracking is guaranteed using a recursive control procedure. The performances of the controller are illustrated through simulations using various field scenarios.

I. INTRODUCTION

Due to the depletion of raw materials, extraction and drilling of oil or gas have become more and more challenging. To extract resources in deep hydrocarbon reservoirs, petroleum companies use narrow boreholes with often complex deviating well paths. The drill strings with extreme aspect ratios are usually made of many steel drill pipe sections, ending with a stiffer drill collar, often represented as a lumped element. Drilling involves many dynamic phenomena, in particular vibrations with many negative impacts. It has been pointed out that some unwanted oscillations were caused by the drill string interaction with the boreholes [START_REF] Jansen | Nonlinear dynamics of oilwell drillstrings[END_REF]. Among them, the most prevalent and destructive are torsional vibrations (stick slip) characterized by a sequence of stick (when the bit stops rotating) and slip (with a sudden release of energy) [START_REF] Kamel | Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits[END_REF]. In order to design appropriate controllers to avoid this phenomenon, much research effort has been made to understand it better. It appeared it might be caused by downhole conditions (such as significant drag, tight or formation characteristics [START_REF] Nandakumar | Stability analysis of a state dependent delayed, coupled two DOF model of drill-string vibration[END_REF]). However, since stick-slip also appears with the bit off-bottom, i.e., when there is no such bit-rock interaction, it is assumed that it may also be caused by alongstring Coulomb-type frictions [START_REF] Brett | Uses and Limitations of Drillstring Tension and Torque Models for Monitoring Hole Conditions[END_REF], [START_REF] Halsey | Drillstring Vibrations: Comparison Between Theory and Experiments on a Full-Scale Research Drilling Rig[END_REF], [START_REF] Zhao | Abnormal Down Hole Pressure Variation by Axial Stick-Slip of Drillstring[END_REF], which are not taken into account in most models. This is though of jeanne.redaud@centralesupelec.fr significant importance in the current context of long wellbores with high inclination. In this paper, we consider the distributed model proposed in [START_REF] Aarsnes | Torsional vibrations with bit off bottom: Modeling, characterization and field data validation[END_REF]. Unlike simpler models, [START_REF] Germay | Nonlinear Drillstring Dynamics Analysis[END_REF], the torsional drill string dynamics are here modeled by a set of hyperbolic Partial Differential Equations (PDE), coupled with an Ordinary Differential Equation (ODE) representing the dynamics of the Bottom Hole Assembly (BHA). The Coulomb friction is modeled by a transition between dynamic and static torques and is represented by a differential inclusion that can be seen as a disturbance term acting on each section. Regarding industrial applications, it is crucial, when starting up drill string rotation, to control the down-hole velocity of the drill string while avoiding undesired oscillations with a high Rate Of Penetration (ROP). Using the former understanding of stick-slip phenomenon, many controllers have been developed through the last decades. A wide variety of stick-slip mitigation controllers can therefore be found, Mostly correspond to high gains PI control laws, following the SoftSpeed and SoftTorque approaches. Even though they are easy to analyze and implement with low computational effort, they sometimes fail to compensate for the stick-slip oscillations efficiently. Some approaches proposed to add new compensating terms to the existing PI controllers [START_REF] Aarsnes | Avoiding stick slip vibrations in drilling through startup trajectory design[END_REF], using the differential flatness of the system. More precisely, the reduction from static to dynamic friction is seen as a disturbance that is compensated, thus conforming to the canonical 3-DOF controller design for tracking and disturbance rejection. However, this type of controller has only been designed for uni-sectional drilling devices with a lumped BHA. More recently, a new approach known as recursive dynamics interconnection framework has been introduced in [START_REF] Auriol | Stabilization of a hyperbolic PDEs-ODE network using a recursive dynamics interconnection framework[END_REF]. This framework is particularly appealing for stabilizing the different sections of the drilling device. It is based on an iterative construction of the output feedback controller, using estimation and prediction of the boundary states. Following this approach, we can independently consider each section of the drilling device, leading to a more realistic representation of the wave propagation along the system. We can then apply this new framework to design a control law for the torsional motion of the drilling system. More precisely, the contribution of this paper is to propose an innovative alternative control strategy and a simple estimator of the state for multi-sectional drilling devices. The Coulomb friction terms are taken into account for each section. Unlike existing designs (as the one proposed in [START_REF] Aarsnes | Avoiding stick slip vibrations in drilling through startup trajectory design[END_REF]) that consider uni-sectional drill strings (the collar part being usually lumped with the BHA), our framework can be applied to a drilling device composed of an indefinite number of sections. The performances of the controller resulting from this approach are compared with controllers traditionally used by field engineers (Soft-Torque, Z-Torque). The layout of this paper is as follows. First, the model we use for our drilling system is detailed in Section II. We then design in Section III a new type of controller relying on a recursive interconnected dynamics framework. We present in Section IV an estimation and prediction method for the boundary states based on the same iterative technique. The performance of this approach is illustrated on a validated test case scenario in Section V. Finally, some concluding remarks end the paper in Section VI.

II. TORSIONAL VIBRATIONS MODEL

A distributed model representing the torsional motion of the multi-sectional drilling device is detailed below.

A. Distributed torsional dynamics

As illustrated in Fig. 1, we consider a deviating drilling device of length L. The curvilinear abscissa is denoted x ∈ [0, L]. The torsional dynamics are represented using the popular distributed wave model [START_REF] Aarsnes | Torsional vibrations with bit off bottom: Modeling, characterization and field data validation[END_REF], [START_REF] Germay | Multiple mode analysis of the self-excited vibrations of rotary drilling systems[END_REF], and validated against field data.

1) Structural assumptions: We neglect the axial motion of the drill string, and only consider the torsional dynamics. The bit is off-bottom (no bit rock interaction). We neglect the effects of pressure differential along the drill string and the Stribeck curve, such that the transition from static to dynamic Coulomb friction is not continuous.

2) Multi-section drill string model: The discontinuities between the different sections of the drilling device, and, in particular, the junctions between the drill pipes and the drill collars are represented by a discontinuity in impedance. For practical reasons, the drill string is usually made up of interconnected pipes with different material properties (lengths, density, inertia or Young's modulus). These changes in the characteristic line impedance cause reflections in the traveling waves [START_REF] Aarsnes | Linear stability analysis of selfexcited vibrations in drilling using an infinite dimensional model[END_REF] that may be difficult to compensate. For any N ∈ N, i ∈ 0, N -1 , the spatial coordinate x i corresponds to the junction between the (i) th -section and the (i + 1) th -section. By convention, we have x 0 = 0, x N = L. We use the superscript • i to denote a variable or physical parameter related to section 1 i.

3) Angular motion: Denote by Φ(t, x) the angular displacement of the drill string. Define for (t, x) ∈ [0, ∞) × [0, L], ω(t, x) = ∂Φ(t,x) ∂t the angular velocity, and τ (t, x) the angular torque derived from the strain. It is given as the local 1 When referring to general variables, it may be omitted.

relative compression τ (t, x) = JG (Φ(t,x)-Φ(t,x+dx)) dx , with J the polar moment of inertia, and G the shear modulus. Using the adequate Euler-Bernoulli model, we can derive the torsional dynamics under the assumption of elastic deformations and by using equations of continuity and state. For each section i of density ρ i , we have

∂τ i (t, x) ∂t + J i G i ∂ω i (t, x) ∂x = 0, (1) 
J i ρ i ∂ω i (t, x) ∂t + ∂τ i (t, x) ∂x = S i (t, x). (2) 
The source term S i (t, x) models the frictional contact with the borehole (see below for a proper definition). Continuity of the angular velocity and torque are imposed at the boundary, such that τ i (t,

x i ) = τ i+1 (t, x i ), ω i (t, x i ) = ω i+1 (t, x i ).
4) Coulomb friction model: Following the approach of [START_REF] Aarsnes | Torsional vibrations with bit off bottom: Modeling, characterization and field data validation[END_REF], the interaction with the borehole along section i is modeled by

S i (t, x) . = -F i (t, x) -k t ρ i J i ω i (t, x)
, where k t is the viscous shear stress, and F i (t, x) the along-side Coulomb friction between the drill string and the borehole. In practice, we can consider that the viscous shear stresses are negligible, such that for all sections k t ≈ 0. The function F is modeled by using the following inclusion

F(t, x) = sign(ω(t, x))F d (x), |ω(t, x)| > ω c , F(t, x) ∈ [-F s (x), F s (x)], |ω(t, x)| < ω c ,
where

F d (x) . = r o (x)µ k F N (x) (resp. F s (x) . = r o (x)µ s F N (x)
) corresponds to the dynamic (resp. static) Coulomb torque, and where ω c is the angular velocity threshold where the Coulomb friction transits from dynamic to static. They depend on the outer drill string radius r o (x), the static (kinetic) friction coefficient µ s (µ k ) and the normal force acting between the borehole wall and the drill string

F N (x). The function F(t, x) ∈ [-F s (x), F s (x)] denotes the inclusion where F(t, x) = -∂τ (t,x) ∂x -k t ρJω(t, x) ∈ [-F s (x), F s (x)].
The expression of F N (x) can be deduced from the torque model presented in [START_REF] Sheppard | Designing Well Paths To Reduce Drag and Torque[END_REF], [START_REF] Aarsnes | Torsional vibrations with bit off bottom: Modeling, characterization and field data validation[END_REF], and, in our case study, is supposed to be known.Note that when |ω(t, x)| > ω c , the alongside friction term F only depends on the space. It is therefore easier to estimate and reject the disturbance caused by the side-forces in this case.

B. Underactuated network of interconnected hyperbolic PDE-ODE systems 1) Actuated boundary (top-drive):

In the sequel, subscript • T D denotes variables in x = 0. The top-drive is actuated by an electrical motor and travels vertically up and down to impart torque to the drill string. The motor torque corresponds to the control input U (t) = τ m (t). Its dynamics satisfy

d dt ω T D (t) = 1 I T D (τ m (t) -τ T D (t)), (3) 
where I T D corresponds to the top-drive inertia.

2) Coupling with the lumped BHA (downhole): Similarly, we use subscript • DH to denote variables in x = L. By assumption, the bit is off-bottom such that τ DH (t) = 0. Here, similarly to many drill string models, the lower part of the drill string or downhole assembly (made of the collars and the bit) is approximated as a single lumped element (due to its relative shortness and heaviness), with average inertia

I DH = ρ DH L DH J DH .
It has a major impact on the drill string dynamics. In addition, in view of future extensions, it is particularly interesting to consider such a PDE-ODE coupling at the downhole (as such kind of coupling naturally appears when adding a bit-rock interaction in the model, for instance). A force balance on the lumped BHA yields

d dt ω DH (t) = 1 I DH (τ DH (t) -D(t)). (4) 
The term D accounts for the now lumped effect of the distributed source terms acting on the collars. We have D(t) = collar S(t, x)dx.

3) Riemann invariants: We now rewrite the dynamics (1)-( 2) in the form of a chain of hyperbolic PDEs. Define the standard Riemann invariants [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] by

α i = ω i + c i t J i G i τ i , β i = ω i - c i t J i G i τ i , (5) 
with

c i t = ρ i
J i the velocity of the torsional wave on the i th -section. These new variables satisfy

∂α i (t, x) ∂t + c i t ∂α i (t, x) ∂x = S i (t, x) J i ρ i , (6) 
∂β i (t, x) ∂t -c i t ∂β i (t, x) ∂x = S i (t, x) J i ρ i . (7) 
The continuity conditions now read as

α i+1 (t, x i ) = a i 1 α i (t, x i ) + a i 2 β i+1 (t, x i ), (8) 
β i (t, x i ) = a i 3 α i (t, x i ) + a i 4 β i+1 (t, x i ), (9) 
where

a i 1 = 2 1+Z i , a i 2 = Z i -1 1+Z i , a i 3 = 1-Z i 1+Z i , a i 4 = 2Z i 1+Z i , and where Z i = c i t J i G i / c i+1 t J i+1 G i+1
is the relative magnitude of the impedance. It corresponds to reflections of incoming waves from both sides. At the two ends, we have

α 1 (t, 0) = -β 1 (t, 0) + 2ω T D (t), (10) 
β N (t, L) = 2ω DH (t) -α N (t, L). (11) 
The boundary conditions (3)-( 4) read

ωT D (t) = 1 I T D U (t) - J 1 G 1 c 1 t I T D (ω T D (t) -β 1 (t, 0)), (12) 
ωDH (t) = J N G N c N t I DH (α N (t, L) -ω DH (t)) - D(t) I DH . (13) 
To avoid useless case distinctions, we use the convention:

α 0 (t, 0) = ω T D , β N +1 (t, L) = ω DH , (14) 
a 0 1 = 2, a 0 2 = -1, a 0 3 = 0, a 0 4 = J 1 G 1 c 1 t I T D , (15) 
a N 1 = J N G N c N t I DH , a N 2 = 0, a N 3 = -1, a N 4 = 2. ( 16 
)
Using the method of characteristics, we obtain

α i (t, x i ) = α i (t - (x i -x i-1 ) c i t , x i-1 ) + d i (t), (17) 
β i (t, x i-1 ) = β i (t - (x i -x i-1 ) c i t , x i ) + d i (t), (18) 
where

d i (t) = xi xi-1 1 J i ρ i c i t S i (t -s-xi-1 c i t , s + x i -x i-1 )dx.
Thus, the effect of the Coulomb friction terms can be seen as disturbances acting at the different junctions. Note that if |ω| < ω c all over the drilling device, the terms d i are constant.

C. Control objective and specifications

The objective of this paper is to design a torque control input τ m (t) that regulates the downhole angular velocity ω DH (t) at the beginning of a drilling operation while avoiding entering a stick-slip limit cycle. It can be seen as a classical linear disturbance rejection and tracking problem. Following the approach from [START_REF] Aarsnes | Avoiding stick slip vibrations in drilling through startup trajectory design[END_REF], we can construct a reference trajectory ω ref (t) using smooth functions, for instance mollified bump functions. As previously mentioned, when the drilling device is in a slipping mode (|ω(t, x)| > ω c ), the estimation and rejection of the disturbance terms is facilitated. It motivates a switching mode control law, in which we first increase the torque to break the static friction. Then, we apply the recursive control procedure presented in this paper. The reference trajectory must ensure that the angular velocity stays in the controllable zone |ω(t)| > ω c , such that the disturbance terms d i (t) are constant. Even though we consider herein that they are known, these terms can be estimated using the soft-sensor described in [START_REF] Aarsnes | Estimating friction factors while drilling[END_REF]. After the release of the BHA from the stick phase, the control objective consists in tracking the reference trajectory, i.e. we want ω DH → ω ref .

III. RECURSIVE DYNAMICS INTERCONNECTION

FRAMEWORK

To reach our control objective, we use the recursive dynamics interconnection framework introduced in [START_REF] Auriol | Stabilization of a hyperbolic PDEs-ODE network using a recursive dynamics interconnection framework[END_REF] and completed in [START_REF] Redaud | Output-feedback control of an underactuated network of interconnected hyperbolic pde-ode systems[END_REF] to design output-feedback controllers. In this approach, we consider each section of the drill pipe as an independent subsystem, for which we solve a stabilization and output tracking problem. Roughly speaking, the proposed control law is recursively obtained by considering for each subsystem a virtual input that guarantees that its output converges to the virtual input of the next subsystem. In the end, we ensure that the virtual input of the last subsystem guarantee ω DH (t) -→ ω ref (t). More precisely, considering a section i, let us define the virtual input Vi (t), corresponding to the action of the (i-1) th (upstream) section on this section.

A. Reference trajectory tracking for the downhole ODE

First, let us determine the virtual input VN+1 ≡ α N (t, L) guaranteeing the convergence of ω DH to the reference trajectory ω ref . With [START_REF] Jansen | Nonlinear dynamics of oilwell drillstrings[END_REF], equation [START_REF] Germay | Multiple mode analysis of the self-excited vibrations of rotary drilling systems[END_REF] rewrites ωDH (t) = a N 1 ( VN+1 (t)-ω DH (t))-D(t) I DH . Then, we can define VN+1 (t) as

VN+1 (t) . = 1 a N 1 ( ωref (t) + a N 1 ω ref (t) -K D (ω DH (t) -ω ref (t))) + 1 a N 1 I DH D(t), (19) 
with K D > 0 allowing the first term to stabilize the system without perturbation, while the second term cancels the effect of disturbance. We therefore ensure that (ω DH (t) -ω ref (t)) exponentially converges to zero.

B. Recursive output tracking for the N sections Denote t i = xi-xi-1 c i t the transport time along the i th section. Using the boundary conditions ( 8) in [START_REF] Kamel | Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits[END_REF], we obtain

α i (t, x i ) = a i-1 1 α i-1 (t -t i , x i-1 ) + d i (t) + a i-1 2 β i (t - t i , x i-1 ). To ensure that α i (t, x i ) tracks Vi+1 (t), we define Vi (t) . = 1 a i-1 1 ( Vi+1 (t + t i ) -d i (t + t i )) - a i-1 2 a i-1 1 β i (t, x i ).
This paves the way to a recursive definition of the virtual inputs. Note that each Vi requires future values of Vi+1 (and consequently, future values of the downstream section states). The causality of the control law will be guaranteed using state-predictors (described in Section IV).

C. Output tracking for the top-drive ODE

Iterating the procedure on the N sections, we go back to the first section, whose state is interconnected with the topdrive ODE [START_REF] Brett | Uses and Limitations of Drillstring Tension and Torque Models for Monitoring Hole Conditions[END_REF]. To get ω T D converge to V1 (t), we define the control input U as

U (t) = IT D ( V1(t) + a 0 4 (ωT D (t) -β 1 (t, 0)) -K0(ωT D -V1(t)). (20) 
For any K 0 > 0, the output (ω T D (t) -V1 (t)) exponentially converges to zero. Therefore, using the recursive definition of the virtual inputs Vi (t), starting from the downhole, up to V1 (t), we obtain a control input τ m (t) guaranteeing the tracking of the reference downhole angular velocity.

D. Limitations

The control law [START_REF] Nandakumar | Stability analysis of a state dependent delayed, coupled two DOF model of drill-string vibration[END_REF] features several important drawbacks. First, as previously mentioned, the recursive definition of the virtual inputs requires the knowledge of future values of the PDE states and at the end of the downhole ODE state. Then, since the definition of the virtual inputs relies on the inversion of the ODE dynamics, it may result in a control law with zero-delay margins. It would then be unusable on the field due to the inevitable delays in the sensors and mechanical transport times. Finally, if the disturbance terms d i (t) are unknown, we would need to estimate them (and predict future values if they are not constant). To overcome these limitations, we propose in the next section an observer-predictor design. It provides future values of the different states of the system. To obtain a strictly proper control law (thus guaranteeing acceptable robustness margins), it is possible to low-pass filter the control input τ m (see [START_REF] Auriol | Advances in Distributed Parameter Systems[END_REF]Chapter 7] or [START_REF] Bou Saba | Strictly proper control design for the stabilization of 2× 2 linear hyperbolic ODE-PDE-ODE systems[END_REF] for details).

IV. STATE ESTIMATION AND PREDICTION

For sake of simplicity, we assume here that the disturbance terms are known and constant. Indeed, considering the switching-mode strategy aforementioned (sending a sufficient amount of energy to break the static friction before stabilizing the system aroung the reference trajectory), we can guarantee that |ω(t)| > ω c (see [START_REF] Auriol | Comparing advanced control strategies to eliminate stick-slip oscillations in drillstrings[END_REF] for more details) such that the d terms are constant. However, to guarantee that the transient satisfies the condition |ω(t)| > ω c , control Barrier Functions [START_REF] Koga | Safe PDE backstepping QP control with high relative degree CBFs: Stefan model with actuator dynamics[END_REF] may be of interest. Unlike simple control algorithms (as PID controllers), the recursive control law we design requires a real-time estimation of the distributed states all over the drill string, as well as a prediction of their future values. In this section, we propose an state observer state on the recursive dynamics interconnection framework presented in [START_REF] Redaud | Output-feedback control of an underactuated network of interconnected hyperbolic pde-ode systems[END_REF]. It will be combined with a state-predictor to design an output-feedback control law. Though the resulting controller will be computationally more expensive than classical control laws, taking into account the delays and high-frequency content should lead to better performances.

A. Boundary state estimation

Consider the PDE system ( 6)- [START_REF] Auriol | Advances in Distributed Parameter Systems[END_REF]. We assume that the friction coefficients µ k , µ s are known (see [START_REF] Auriol | Estimating drill string friction: Comparing model-based and data-driven methods[END_REF]). When |ω(t)| > ω c , the disturbance terms are constant. It is then sufficient to know the boundary states α i (t, x i ), β i (t, x i-1 ) to estimate the whole distributed states (α i , β i ).

1) Estimation of the boundary terms at the surface: At the surface, we measure the torque and top-drive angular velocity at high speed (from 20Hz to 100Hz). We obtain β 1 (t, 0) (or its delayed values) from ( 12): β1 (t, 0) =

c 1 t I T D J 1 G 1 ( ωT D (t) - 1 I T D U (t)) + ω T D (t).
Then, we can compute an estimation of α 1 (t, 0) using ( 10):

α1 (t, 0) = -β1 (t, 0) + 2ω T D (t).
To compute an accurate value of the derivative of the measurement and prevent the amplification of noise, we can use an adequate low-pass filter w(s).

2) Estimation of the distributed states: Injecting ( 8)-( 9) into the time-delay equations ( 17)- [START_REF] Koga | Safe PDE backstepping QP control with high relative degree CBFs: Stefan model with actuator dynamics[END_REF], we obtain

α i (t, xi) = a i-1 1 α i-1 (t - (xi -xi-1) c i t , xi-1) (21) 
+ a i-1 2 β i (t - (xi -xi-1) c i t , xi-1) + d i , β i+1 (t, xi) = 1 a i 4 β i (t, xi) - a i 3 a i 4 α i (t, xi) = 1 a i 4 β i (t + xi -xi-1 c i t , xi-1) - a i 3 a i 4 α i (t, xi) -d i . (22) 
Consider i ∈ 1, N and assume that α i (t, x i-1 ), β i (t, x i-1 ) are known on the time interval [t, t + t i ]. Then, there exist L α i and L β i , such that

α i (t, x i ) = L α i (α i-1 (•, x i-1 ), β i (•, x i-1 )), β i+1 (t, x i ) = L β i (α i-1 (•, x i-1 ), β i (•, x i-1 )).
The expressions of the two linear operators directly derive from ( 21)- [START_REF] Sheppard | Designing Well Paths To Reduce Drag and Torque[END_REF].

Consequently, it is possible to get an estimation of delayed values of the boundary states

α i (t, x i ), β i+1 (t, x i ), knowing α i-1 (t, x i-1 ), β i (t, x i-1
). The corresponding delay δ i . = i j=1 t j depends on the section we consider. Let us denote t tot as the largest delay (t tot = δ N ). Define the t tot -delay operator • such that for any function γ, we have γ(t) = γ(t -t tot ). We can then define αi (t, x i ), βi+1 (t, x i ) the estimations of the t tot -delayed states (ᾱ i (t, x i ), βi+1 (t, x i ). These estimations are available on a time horizon [t, t+t tot -

δ i ].
3) Estimation of the downhole state: We can now estimate t tot -delayed values of the downhole ODE using these estimations. Indeed, assuming that we have estimates αN (t, L), βN (t, L), we can define an estimation of the downhole angular velocity as ω T D = αN (t,L)+ βN (t,L) 2

.

B. State-prediction

So far, we designed a state-observer that provides a real-time estimation of the delayed ODE-states and of the delayed boundary states. We now combine these estimations with state predictors to obtain a real-time estimation of the undelayed states. Moreover, as the virtual control inputs Vi requires the knowledge of future values of the states, the predictors of the boundary states ᾱi (t, x i ), βi (t, x i ), will give t tot +δ i ahead of time values of these delayed boundary states. We denote P βi (t, s) (resp. P ᾱi (t, s)), the state prediction of βi (t, x i-1 ) (resp. ᾱi (t, x i )) ahead a time t tot + δ i-1 (resp. t tot + δ i ) [START_REF] Redaud | Output-feedback control of an underactuated network of interconnected hyperbolic pde-ode systems[END_REF]. We define them as follows

P ᾱi (t, s) =          αi (s + t tot + δ i , x i ) if s ∈ [t -3t tot -δ i , t -t tot -δ i ] a i-1 1 P ᾱi-1 (t, s) + a i-1 2 P βi (t, s) + d i otherwise, (23) 
P βi (t, s) =          βi (s + t tot + δ i-1 , x i-1 ) if s ∈ [t -3t tot -δ i-1 , t -t tot -δ i-1 ] a i 4 P βi+1 (t, s -2t i ) + a i 3 P ᾱi (t, s -2t i ) + d i otherwise. ( 24 
)
Finally, the state-prediction P ωDH (t, s) of the downhole ODE ωDH ahead a time δ N is classically (see [START_REF] Bekiaris-Liberis | Simultaneous compensation of input and state delays for nonlinear systems[END_REF], [START_REF] Bresch-Pietri | Prediction-based control of linear input-delay system subject to state-dependent state delay-application to suppression of mechanical vibrations in drilling[END_REF]) defined for s ∈ [t -2t tot , t] by (25)

P ωDH (t, s) =                    ωDH (s + 2t tot ) if s ∈ [t -3t tot , t -2t tot ]
These predictors are well-defined and causal. From these definitions, we immediately have

P ᾱi (t, s) = αi (s + t tot + δ i , x i ), s ∈ [t -2t tot -δ i , t], P βi (t, s) = βi (s + t tot + δ i-1 , x i-1 ), s ∈ [t -2t tot -δ i-1 , t], P ωDH (t, s) = ωDH (s + 2t tot ), s ∈ [t -3t tot , t].
The numerical values of the predictors are updated at each time step, using past values stored in a buffer. They are initialized with the estimations.

V. SIMULATION RESULTS In this section, we illustrate the performances of our approach using simulated data representing field scenarios. The test case we consider a 3000m long drilling device composed of a vertical section [0, L c ], and a lateral section [L c , L c + L p ] with a 60 • deviation (denoted Well A in [START_REF] Aarsnes | Torsional vibrations with bit off bottom: Modeling, characterization and field data validation[END_REF]). The drilling device is made of two sections whose parameters are given in Table V. The controller gain defined in [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] (resp.( 20)) satisfies K D = 2 (resp. K 0 = 10). The transport equations are solved with Matlab using a first-order upwind scheme, to ensure numerical robustness and avoid spurious oscillations. Indeed, higher-order schemes perform poorly due to the temporal discontinuities introduced by the distributed Coulomb friction. Initially, we have a null angular velocity and neglect eventual residual torque. We use a spatial grid of 500 cells for the drill string. Here, the purpose of the simulation is to compare the performances of two algorithms on an idealized case. Before implementation on real systems, the computational effort should be taken into consideration. The time-step is chosen to satisfy Courant-Friedrichs-Lewy (CFL) condition. Initially, the drill string is at rest. After 20s, we first change the velocity setpoint to 120 RPM with a transition time of 10s. After 60s, we change it back to 60 RPM with the same transition time.

A. Free drill string Following the simulation scenarios given in [START_REF] Aarsnes | Avoiding stick slip vibrations in drilling through startup trajectory design[END_REF], we first consider the case of a drill string spinning freely, and neglect the kinematic and static friction terms µ k = µ s ≡ 0. This scenario may correspond to the vertical part of Well A. On Fig. 2 is represented the evolution of the angular velocity at the bottom of the pipe ω DH (t) = ω(t, L p + L c ), for the control input U (t) designed with the recursive approach (20), and for the classical Z-torque controller (see [START_REF] Aarsnes | Avoiding stick slip vibrations in drilling through startup trajectory design[END_REF]). The two algorithms present similar behaviors (there is a slight overshoot for the Z-torque controller). 

B. Drill string with stick-slip

Next, we consider the real deviated Well A, where the side forces cannot be neglected anymore. They are assumed to be known without bias (using the estimation procedures given in [START_REF] Auriol | Estimating drill string friction: Comparing model-based and data-driven methods[END_REF] for instance). For sake of simplicity, we assume they are constant along the drill string (µ s , µ k ) = (0.45, 0.28). The controller we propose is however somehow robust to small discrepancies in the estimation, due to the effect of the filter. In practice, they may vary piecewise continuously (piecewise constant functions) with the type of rocks being drilled. This could be integrated in our model by considering more subsections. We apply the switching-mode controller [START_REF] Auriol | Comparing advanced control strategies to eliminate stick-slip oscillations in drillstrings[END_REF], such that the torque is first increased to break the static friction before starting the control procedure. The time evolution of the downhole angular velocity is pictured in Fig. 3 for both control strategies. With the Z-torque control law, ω DH (t) exceeds the reference values during the transient and keeps oscillating. It fails taking into account the side forces (this is a consequence of the deviation of the well). Here, one can easily notice the importance of the feedforward component and the disturbance cancellation term to reduce the oscillations induced by the Coulomb friction terms. With the new proposed controller, ω DH (t) quickly converges to the reference trajectory as expected and has a smoother behaviour. A more detailed comparison of the controllers can be found in [START_REF] Auriol | Comparing advanced control strategies to eliminate stick-slip oscillations in drillstrings[END_REF]. 

VI. CONCLUDING REMARKS

In this paper, we proposed an innovative controller design to stabilize the angular velocity of a multisectional drilling device. It is adapted for avoiding torsional stick-slip vibrations at the beginning of drilling operations. These stick-slip oscillations may occur due to the Coulomb side forces. The lower part of the drill string and the BHA are lumped into an ODE, and the resulting ODE-PDE-ODE system is rewritten in a time-delay form using Riemann invariants. The Coulomb friction terms can be seen as disturbances acting on this time-delay system. We proposed a switching mode control strategy. In the first mode, we break the static friction (using classical elementary control strategies and guaranteeing that the top drive velocity remains larger than ω c ) so that the disturbance induced by the side forces is now constant. Next, we use the recursive dynamics interconnection framework inspired by [START_REF] Redaud | Output-feedback control of an underactuated network of interconnected hyperbolic pde-ode systems[END_REF], associating estimations and predictions of the boundary states. The robustness of the resulting control law can be guaranteed using a low-pass filter.

The performances of our controller have been verified in simulations against a test case scenario. Compared to stateof-the-art PI controllers (soft-torque, Z-torque), the current control strategy shows better performance at the cost of an important computational effort. Indeed, the controller design requires computation of future values of the state (predictors), based on past values stored in buffer, and not direct integration of the output as for PI controllers. It would be of high interest to define several relevant specifications to compare the performances of the different controllers more precisely.

Moreover, the torsional motion of the drill string was assumed to be the dominating dynamic behavior. However, longitudinal or axial oscillations may also negatively impact the drilling device and should be taken into account to improve the quality of the model. Moreover, the parameters of the drilling device were assumed to be perfectly known (including the friction terms). Future works may focus on parameter estimation and the robustness of the proposed control law regarding errors in the system parameters.
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 1 Fig. 1. Schematic drill string in a deviated borehole.
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 2 Fig. 2. Evolution of the downhole angular velocity.
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 3 Fig. 3. Evolution of the downhole angular velocity.
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