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A dry deposition model suitable for use in the microscale solver based on the moment method has been developed. Contributions from five main processes driving the deposition -Brownian diffusion, interception, impaction, turbulent impaction, and sedimentation -are included in the model. The deposition model was employed in the moment method solver implemented in the OpenFOAM framework. Applicability of the developed expression and the moment method solver was tested on two example problems of particle dispersion in the presence of a vegetation on small scales: a flow through a tree patch in 2D and a flow through a hedgerow in 3D. Comparison with the sectional method showed that the moment method using the developed deposition model is able to reproduce the shape of the particle size distribution well. The relative difference in terms of the volume concentration was below 3% in both tested cases, and decreased away from the vegetation. When tested on the 3D test case, the moment method achieved approximately fivefold acceleration compared to the sectional method using 51 bins.

Introduction

Urban vegetation is receiving a significant amount of attention from researchers in recent years. This interest stems from its impacts on the environment, affecting the pedestrian comfort and mitigating the negative health effects of the air pollution [START_REF] Litschke | On the reduction of urban particle concentration by vegetation -a review[END_REF][START_REF] Janhäll | Review on urban vegetation and particle air pollution -deposition and dispersion[END_REF].

Microscale modelling using the computational fluid dynamics (CFD) proved to be an indispensable tool for assessing the impacts of the vegetation in the urban settings. In the microscale models, the flow through the vegetation is resolved by modelling the vegetation as a porous zone. Such models are thus well suited for problems with small patches of vegetation, for which the parameterizations used in large scale models are too crude. Some numerical studies focused only on the effects of the vegetation on the flow [START_REF] Kenjereš | Modelling and simulations of turbulent flows in urban areas with vegetation[END_REF] or on the thermal comfort of the pedestrian [START_REF] Mochida | Prediction of wind environment and thermal comfort at pedestrian level in urban area[END_REF]. Others investigated pollutant dispersion in the presence of the vegetation, but without taking the deposition of the pollutant into account [START_REF] Jeanjean | A CFD study on the effectiveness of trees to disperse road traffic emissions at a city scale[END_REF]Gromke and Blocken, 2015a,b).

Use of the complex dry deposition models expressing the dependence of the deposition velocity on various parameters such as the particle size or the wind speed is so far quite rare in microscale CFD studies. Many such models exist for large scale air quality models, where the flow inside the canopy is parameterized and not resolved [START_REF] Slinn | Predictions for particle deposition to vegetative canopies[END_REF][START_REF] Peters | Modelling the dry deposition velocity of aerosol particles to a spruce forest[END_REF][START_REF] Zhang | A size-segregated particle dry deposition scheme for an atmospheric aerosol module[END_REF]Petroff et al., 2008b). However, these dry deposition models typically formulate the deposition velocity in terms of the friction velocity above the canopy. They cannot be directly used in the microscale models, because the friction velocity above the small patches of vegetation may not be the representative parameter of the flow inside it, as it is the case of the continuous forest covers in the large scale models. Nevertheless, there are some options for microscale problems. One dry deposition model formulated for such problems was presented by Raupach et al. (2001b). Also, the dry deposition scheme for large scale models of Petroff et al. (2008b) is derived using a 1D differential equation for the pollutant concentration inside the canopy, and the formulation of the dry deposition velocity used in this equation is suitable for microscale models. The models differ in the included removal processes as well as in the parameterization of the processes.

Atmospheric aerosols in general and in urban areas in particular are often described by their particle size distribution, which brings another layer of complexity to the simulations of their dispersion. The dispersion of the particles with a fixed size can be described by one scalar partial differential equation (PDE). When the behaviour of the particle size distribution is of interest, the straightforward approach -so called sectional approach -is to divide the size range into a number of discrete bins and then model the appropriate number of scalar PDEs, i.e. one for each bin. Other option is to use the transport equation for the moments of the particle size distribution. Such approach can reduce the number of PDEs to be solved, and therefore reduce the computational demands. This class of methods, here referred to as the moment method, has been used for the simulation of the aerosol behaviour for a long time [START_REF] Whitby | Modal aerosol dynamics modeling[END_REF].

Adapting the dry deposition models to the moment method framework is not straightforward, since the mathematical formulation of the moment method requires all terms in the equation to be in the form of the power law of the particle size. Some work on this problem was done in the context of large scale models. [START_REF] Binkowski | The regional particulate matter model: 1. model description and preliminary results[END_REF] simplified the problem by using the resistance model with the Brownian particle diffusivity and the settling velocity averaged over the particle size range. [START_REF] Bae | Development of an aerosol dynamics model for dry deposition process using the moment method[END_REF] developed a deposition velocity model by a careful approximation of the terms of the model proposed by Raupach et al. (2001a). In the context of microscale models, the moment method was not yet used in conjuction with the dry deposition model to the authors' best knowledge, and suitable formulation is thus missing.

This study aims to fix this shortcoming by adapting a microscale dry deposition model for the use in the moment method. We chose to adapt the model by Petroff et al. (2008b), as it includes the five main processes of the dry deposition, and shows a good agreement with the available wind tunnel measurements, as we will show in section 2.3. The methods used for the adaptation of the model are similar to those of [START_REF] Bae | Development of an aerosol dynamics model for dry deposition process using the moment method[END_REF], i.e. careful approximation of each term by a term in a form suitable for the moment method framework. Compared to their work, our effort differs mainly in our focus on the microscale problems, as opposed to the large scale problems in their study. This focus is reflected in the formulation of the dry deposition model as well as in the example problems chosen for the demonstration of the developed solution. The two example problems are selected to represent the typical problems of microscale pollution dispersion in the presence of vegetation. The results from the moment method solver with the developed expression are compared to the sectional model using the original model to show the applicability of the approach.

Mathematical formulation

Number concentration equation

The governing equation for the transport and the deposition of the aerosol particles of a diameter d p in the flow field given by the velocity u can be formulated as

∂n(d p ) ∂t = -∇ • un(d p ) Convection + ∇ • D∇n(d p ) Diffusion -∇ • u s (d p )n(d p ) Gravitational settling -LADu d (d p )n(d p ) Deposition ,
(1) where n(d p ) is the number concentration of the particles [START_REF] Whitby | Modal aerosol dynamics modeling[END_REF]. Diffusion coefficient D = ν T /Sc T is expressed as a fraction of the turbulent viscosity and the turbulent Schmidt number. Effects of the gravitational acceleration g are captured in the terminal settling velocity of a particle, given by the Stokes' equation,

u s (d p ) = d 2 p ρ p gC C 18µ , (2) 
where ρ p is the density of the particle, µ is the dynamic viscosity of air, and C C is the Cunningham correction factor [START_REF] Hinds | Aerosol technology: Properties, Behavior, and Measurement of Airborne Particles[END_REF]. The formula used for the correction factor is discussed in section 2.3.1. The removal of the particles via dry deposition is modelled by a product of three parameters: leaf area density (LAD), defined as a leaf area per unit volume (m 2 m -3 ), deposition velocity u d (m s -1 ) measuring the filtration efficiency of the vegetation under given conditions, and the particle concentration (Raupach et al., 2001b). Its form is discussed in section 2.3.

Moment equations

The moment method is based on the idea that in order to model the size distribution of the particles, we can investigate the behaviour of the moments of the distribution. Moment of the distribution is defined as

M k = ∞ 0 d k p n(d p )dd p , (3) 
where k is the order of the moment. Some moments have straightforward physical interpretation:

• M 0 = ∞ 0 n(d p )dd p = N is the total number concentration, • M 2 = ∞ 0 d 2 p n(d p )dd p = 1/π • S is proportionate to the surface area con- centration, • M 3 = ∞ 0 d 3 p n(d p )dd p = 6/π • V is proportionate to the volume concentra- tion.
Assuming n(d p ) is sufficiently smooth in space and time, moment equations are obtained by multiplying Eq. ( 1) by d k p , integrating over the whole size range and interchanging the derivatives and the integrals:

∂M k ∂t = -∇ • uM k Convection + ∇ • D∇M k Diffusion - ∞ 0 d k p ∇ • u s (d p )n(d p )dd p Gravitational settling -LAD ∞ 0 d k p u d (d p )n(d p )dd p Deposition . (4) 
Now we are left with the evaluation of the integrals in (4). This can be done easily if the multiplicative terms are in a form of a polynomial function of d p .

Such is the case with the gravitational term, if we take into account that gravity plays significant role only for larger particles, where the Cunningham correction factor C C in (2) can be left out. Using (2) in the third term on the RHS of (4), the term can be rewritten as

-∇ • g ρ p 18µ ∞ 0 d k+2 p n(d p )dd p = -∇ • g ρ p 18µ M k+2 . (5) 
Here we introduced a dependence on the moment of a higher order. That necessitates that we either solve a separate moment equation also for this higher order moment, or that this moment can be calculated from the moments that we solve for. The task of integrating the deposition term is more difficult and will be examined in the following section.

Dry deposition model for the moment method

Variety of models describing the rate of particle transport from the air to the vegetation surface of coniferous trees has been proposed for large scale models (Petroff et al., 2008a). However, as noted in the introduction, the dry deposition models for large scale problems are in general not directly applicable for microscale solvers, as they parameterize the flow inside the vegetation by a single parameter, which is the friction velocity above the canopy, and thus ignore the detailed information above the flow available in the microscale solvers. Some options however exist. Here we consider two models available for microscale problems.

First, it is the model by Raupach et al. (2001b). The model parameterizes two removal processes: Brownian diffusion and inertial impaction. Dry deposition due to the Brownian diffusion is the dominant removal process for the particles smaller than 0.1 µm. Inertial impaction occurs when particles do not follow the streamlines due to their inertia, resulting in the collision with the obstacle. Raupach's model was subsequently used in other microscale studies [START_REF] Tiwary | Modelling the size-dependent collection efficiency of hedgerows for ambient aerosols[END_REF][START_REF] Guo | Numerical simulation of airflow and particle collection by vegetative barriers[END_REF].

Second model can be obtained from (Petroff et al., 2008b). To construct their dry deposition scheme for the large scale models, authors used a 1D differential equation describing the aerosol behaviour inside the canopy. The parameterization of the deposition velocity (called the collection velocity in the original paper) in this equation can be directly used in microscale models. In addition to the two processes included in the Raupach's model (which are parameterized similarly, although with different model constants), Petroff's model parameterizes further three: Interception, which denotes the process where the particle follows the streamline, but too close to the obstacle so that it is captured on the surface. The impaction due to the turbulent processes is in the model parameterized separately as a turbulent impaction. Lastly, it is the sedimentation, i.e. collection of the falling particles on the vegetation. Sedimentation plays a major role for the particles with the diameter above 10 µm. Detailed description of these removal processes and of their parameterizations in various large scale models can be found in the review by Petroff et al. (2008a).

Comparison of the predictions by these two models with existing wind tunnel measurements is shown on Fig. 1, and the contributions of each processes in the Petroff's model are shown on Fig. 2. Most notable difference arises from the absence of the interception term in the Raupach's model, which results in lower predicted values of the deposition velocity compared to the Petroff's model for particles around 1 µm. The latter model is closer to the measured values. This is the main reason why we chose to to adapt the Petroff's model for use in the moment method in this study.

The model assumes that five removal processes (i.e. Brownian diffusion, interception, impaction, turbulent impaction, and sedimentation) are acting in parallel and independently. The deposition velocity thus can be written as a sum of the deposition velocities of all processes,

u d = u BD + u IN + u IM + u T I + u SE .
(6) Figure 1: Comparison of the deposition velocity predicted by the models with the wind tunnel measurement of conifer trees at two different wind speeds. Parameters of both models (Raupach et al., 2001b;Petroff et al., 2008b): Wind speed U as given in the panel title, particle density ρ = 1300 kg m -3 , needle diameter de = 2 mm. Petroff's model was used for the plagiophile needles orientation distribution and with the local friction velocity u f = 0 m s -1 .

Wind tunnel measurements were performed with: Pinus sylvestris [START_REF] Belot | Transport of micronic particles from atmosphere to foliar surfaces[END_REF][START_REF] Belot | Étude de la captation des polluants atmosphériques par les végétaux[END_REF][START_REF] Belot | Uptake of small particles by tree canopies[END_REF], data taken from (Petroff et al., 2008b)), Pinus nigra and ×Cupressocyparis leylandii [START_REF] Beckett | Particulate pollution capture by urban trees: effect of species and windspeed[END_REF], Pseudotsuga menziesii [START_REF] Freer-Smith | Capture of particulate pollution by trees: A comparison of species typical of semi-arid areas (ficus nitida and eucalyptus globulus) with European and North American species[END_REF], and Pinus taeda [START_REF] Lin | A branch scale analytical model for predicting the vegetation collection efficiency of ultrafine particles[END_REF], for which the case of packing density 0.040 and orientation II is shown. Measurements from [START_REF] Beckett | Particulate pollution capture by urban trees: effect of species and windspeed[END_REF][START_REF] Freer-Smith | Capture of particulate pollution by trees: A comparison of species typical of semi-arid areas (ficus nitida and eucalyptus globulus) with European and North American species[END_REF] on the right panel were performed at lower wind speed 3 m s -1 .

The assumption of the parallel and independent acting is advantageous for adapting the model to the moment method, since it allows us to split the rightmost integral in Eq. ( 4) into integrals pertaining to the every physical process separately. In the following subsections we will describe each process in more detail and show how it can be adapted to the moment method. Few simplifications were made to the original model to make the subsequent analysis simpler: we considered only plagiophile canopies and Dirac distribution of the needle sizes. Also note that here we focus only on needle-like obstacles. Similar model for broadleaf canopies, given in [START_REF] Petroff | An extended dry deposition model for aerosols onto broadleaf canopies[END_REF], could be adapted to the moment method as well.

Brownian diffusion

The original model formulates the contribution to the deposition velocity due to the Brownian diffusion as

u BD = U C B Sc -2/3 Re n B -1 (7)
where U is the magnitude of the wind velocity, Sc = ν a /D B is the Schmidt number (with ν a being the kinematic viscosity of air and

D B the Brownian diffusion coefficient, D B = (C C k b T a )/(3πµ a d p )), Re = U d e /ν a is the Reynolds number,
and d e is the needle diameter. Assuming laminar boundary layer around the obstacles, the model constants hold the values n B = 0.5 and C B = 0.467.

Cunningham correction factor C

A C = 1 + 2λ/d p (1.257 + 0.4 exp(-1.1d p /2λ
)) is used in the original model (Petroff et al., 2008b), where λ is the mean free path of the particle in the air. In this whole study we use simpler approximation [START_REF] Bae | Development of an aerosol dynamics model for dry deposition process using the moment method[END_REF]. Comparison of these expressions is on Fig. 3, where it can be seen that their difference peaks to 12% for particle diameter around 0.2 µm. 

C B C = 1+3.34λ/d p
(C B C -C A C )/C A C .
Furthermore, for the Brownian diffusion we take into account only the sizedependent part of the correction factor, dominant in the particle size range 185 where the diffusion is significant, C C ≈ 3.34 λ dp . Putting the expressions above into Eq. ( 7), we obtain

u BD ≈ u BD = U n B γ 1 γ 2/3 2 d -4/3 p , (8) 
where

γ 1 = C B (d e /ν a ) n B -1 3πν 2 a ρ a /(k b T a ) -2/3 and γ 2 = 3.34λ.
Using this formula, the contribution to the moment equation can be written as

∂M k ∂t BD = -LAD U n B γ 1 γ 2/3 2 M k-4/3 . (9)

Interception

The contribution of the interception to the deposition velocity is parameterized in the original model as

u IN = 2U k x d p d e , (10) 
where k x = 0.27 is the ratio of the leaf surface projected on the plane perpendicular to the flow to the total leaf surface.

Since there is a linear dependence on the particle diameter, the expression can be integrated as is, resulting in

∂M k ∂t IN = -LADγ 3 U M k+1 , (11) 
with γ 3 = 2k x /d e .

Inertial impaction

The deposition velocity due to the inertial impaction is written as

u IM = U k x E IM , (12) 
where

E IM = St St+β 2 is the impaction efficiency, St = τ p U/d e is the Stokes number, τ p = (ρ p C c d 2 p )(18µ)
is the particle relaxation time, and β = 0.6 is the model constant. To use this deposition velocity in the moment equations, we replace the impaction efficiency (considered as a function of the Stokes number) by its piecewise linear approximation,

E IM =    0 if St < s 0 , a i St + b i if s i ≤ St < s i+1 , i = 0, . . . , m -1, 1 if St ≥ s m , (13) 
where {s i } m i=0 are selected interpolation points, a i and b i are coefficients calculated so that

E IM (s i ) = E IM (s i ) for i = 0, . . . , m. (14) 
Here we have set {s i } = {10 -2 , 10 -1 , 1, 10, 10 2 }. Low number of interpolation points was chosen deliberately to limit the computational needs. The original function and the approximation are shown on Fig. 4.

This approximation introduces an underprediction of the impaction efficiency especially for Stokes numbers between 1 and 10. This was however deemed to be an acceptable compromise between the accuracy and the computational efficiency. A higher number of interpolation points would reduce this error. Approximated deposition velocity can then be formally written as

u IM = U k x E IM .
(15) The corresponding term in the moment equation is obtained by calculating the integrals in

∂M k ∂t IM = -LAD ∞ 0 d k p U k x E IM (d p )n N (d p )dd p = -LAD U k x m-1 i=0 si+1 si d k p (a i St + b i )n N (d p )dd p + ∞ sm d k p n N (d p )dd p . (16) 
After some algebraic manipulations, the term may be written using the incomplete moments

M - k (x) = x 0 d k p n N (d p )dd p and M + k (x) = ∞ x d k p n N (d p )dd p as ∂M k ∂t IM = -LAD U k x γ 4 m-1 i=0 a i (M - k+2 (s i+1 ) -M - k+2 (s i )) (17) + m-1 i=0 b i (M - k (s i+1 ) -M - k (s i )) + M + k (s m ) , (18) 
where γ 4 = ρ p U/(18µd e ).

Turbulent impaction

Effect of the particle impaction due to the canopy turbulence is described by the deposition velocity

u T I = u f K T I1 τ + p 2 if τ + p < 20, u f K T I2 if τ + p ≥ 20. ( 19 
)
Here τ + p = τ p u 2 f /ν a is the dimensionless particle relaxation time, τ p = ρpCcd 2 p 18µa is the particle relaxation time, u f is the local friction velocity, K T I1 = 3.5 • 10 -4 , and K T I2 = 0.18. The contribution to the moment equation can be again expressed using the incomplete moments,

∂M k ∂t T I = -LAD u 5 f γ 5 M - k+4 (d T 2 p ) + u f K T I2 M + k (d T 2 p ) (20) with the threshold d T 2 p = 360µaνa ρpu 2 f and γ 5 = K T I1 ρ 2 p ρ 2 a (18µ 2 a ) 2 .

Sedimentation

The sedimentation contribution to the deposition velocity is expressed as

u SE = k z gρ p C C d 2 p 18µ a , (21) 
where k z = 0.22 is the ratio of the leaf surface projected to the horizontal plane to the total leaf surface. Substituting this expression to the integral in the moment equation, after some algebraic manipulations we obtain

∂M k ∂t SE = -LADγ 6 (M k+2 + γ 2 M k+1 ) ( 22 
)
with γ 6 = kzgρp 18µa and γ 2 = 3.34λ as before.

Comparison with the original model

The developed model can be formally written as

u d = u B + u IN + u IM + u T I + u SE (23)
using the Equations ( 8), ( 10), ( 15), ( 19) and ( 21). In the moment method solver it is however implemented via the Equations ( 9), ( 11), ( 18), ( 20) and (22). To summarize, two major approximation were made: first, Cunningham approximation factor is replaced by its size-dependent part in the Brownian diffusion term. Secondly, the impaction efficiency is approximated by a piecewise linear function of Stokes number.

Comparison of this model with the original for an exemplary set of parameters is shown on Fig. 5. The maximal difference of the deposition velocity given by the two models was determined by evaluating the deposition velocity for every combination of the parameters in the ranges expected in real-world situations (ρ p ∈ [500; 3000] kg m -3 , U ∈ [0, 10] m s -1 , d p ∈ [10 -3 , 10 2 ] µm, and d e ∈ [0.5; 5] mm for needles or d e ∈ [1; 5] cm for broadleaves). Each interval was discretized using 50 points. Local friction velocity u f was set to 0 m s -1 , as the turbulent impaction is implemented exactly and its contribution can only reduce the relative difference of the deposition velocities.

The largest relative difference |u orig 

Lognormal distribution

Before we move on to the description of the implementation, it is necessary to provide some assumptions on the particle size distribution. Size distributions of the atmospheric aerosols are often well fitted by a multimodal lognormal distribution [START_REF] Seinfeld | Atmospheric Chemistry and Physics: From Air Pollution to Climate Change[END_REF]. This is the distribution we will use from now on. We restrict ourselves only to the case of unimodal distribution, noting that the multimodal distribution can be modelled by a superposition of several unimodal distributions.

Unimodal lognormal distribution can be described by three parameters: total number concentration N , geometric mean size d gn and geometric standard deviation σ g . Its probability density function is

n(ln d p ) = N √ 2π ln σ g exp - (ln d p -ln d gn ) 2 2 ln 2 σ g . ( 24 
)
Knowing the three parameters, k-th moment can be calculated using the formula

M k = N d k gn exp k 2 2 ln 2 σ g . (25) 
From the three moments of order 0, k 1 and k 2 the three parameters can be obtained using the relations

N = M 0 , (26) 
d gn = M 1 r(k 2 -k 1 ) k1 M r k 1 -k 2 k2 , ( 27 
)
ln 2 σ g = 2 k 1 (k 1 -k 2 ) ln M k1 M r k2 , (28) 
where M k = M k M0 and r = k1 k2 [START_REF] Whitby | Modal aerosol dynamics modeling[END_REF].

For the incomplete higher order moments following holds:

M - k (x) = x 0 d k p n(d p )dd p = M k Φ ln x -ln d gn -k ln 2 σ g ln σ g , (29) 
M + k (x) = ∞ x d k p n(d p )dd p = M k 1 -Φ ln x -ln d gn -k ln 2 σ g ln σ g , ( 30 
)
where Φ is the normal cumulative distribution function.

Choice of the moments

Now we turn our attention to the choice of the moments. For which orders we decide to solve the moment equation ( 4) is to a degree an arbitrary decision. When this problem is discussed in literature, cited reasons for a certain choice include the mathematical simplicity and ease of the formulation of the modelled processes or the physical interpretation of some moments [START_REF] Whitby | Modal aerosol dynamics modeling[END_REF][START_REF] Binkowski | The regional particulate matter model: 1. model description and preliminary results[END_REF]. Choices of the moments used in the field of atmospheric aerosol modelling in the selected literature are summarized in Tab. 1.

Reference

Moments [START_REF] Binkowski | The regional particulate matter model: 1. model description and preliminary results[END_REF] 0, 3, 6 [START_REF] Pirjola | Formation of sulphuric acid aerosols and cloud condensation nuclei: an expression for significant nucleation and model comparison[END_REF] 0, 2, 3 [START_REF] Jung | A moment model for simulating raindrop scavenging of aerosols[END_REF] 0, 2, 3 [START_REF] Koziol | The moments method for multi-modal multicomponent aerosols as applied to the coagulation-type equation[END_REF] 0, 1, 2 [START_REF] Bae | Development of an aerosol dynamics model for dry deposition process using the moment method[END_REF] 0, 3, 6

Table 1: Choices of the moments in the selected literature

The recurrent usage of zeroth order moment brings substantial advantage, as it is equal to the total number concentration, and it is the order we will use as well. On the choice of the other moments authors differ.

To assess the influence of the choice of the moments, following numerical experiment was performed. We investigated the particle deposition in a 1D tube, spanning between 0 and 300 m. Homogenous vegetation block of LAD = 3 m 2 m -3 was placed between 100 a 150 m. Velocity of the air in the whole tube was set to constant 1 m s -1 , unaffected by the vegetation. Source of the pollutant was placed at 50 m from the inlet with the intensity of number of particles 1 s -1 and the distribution parameters σ g = 0.7, d gn = 3µm. The tube was discretized using 400 cells.

Beside the choices mentioned in Tab. 1, we tested also a variant with a negative order moment: 0, -1, 1. Non integer choices of the orders would also be possible to use, but we saw no advantage that such choice could bring.

Transport and the deposition of the pollutant was calculated by the sectional model based on the Eq. ( 1) and by the moment method based on the Eq. (4) (see section 2.6 for details on the implementation). To discard possible errors due to the inexact approximation of the deposition velocity, only the sedimentation contribution, adapted exactly, was taken into account. The numerical experiment is not meant to model any real-world situation, rather just demonstrate the behaviour of the moment method in a simple setting. Effect of the vegetation, while small in number concentration, is significant in volume concentration. Only the variant using the moments of orders 0, -1, and 1 reproduces well the number concentration distribution, but overpredicts the peak of the volume concentration. Variants using the orders 0, 1, 2 and 0, 2, 3 produce result closer to the sectional model in volume concentration, but with larger differences in number concentration. Variant using the orders 0, 3, 6 shows no advantages over the other variants.

Choosing between the orders 0, 1, 2 and 0, 2, 3, we opted for the latter variant, as the third moment is proportionate to the main quantity of interestvolume (and mass) concentration of the pollutant.

Numerical implementation

Both the sectional model and the moment model were implemented using the OpenFOAM platform [START_REF] Greenshields | OpenFOAM -The Open Source CFD Toolbox -User's Guide[END_REF]. Second order upwind scheme was used for convective terms in Equations ( 1) and (4) and second order scheme based on the Gauss theorem was used for the diffusive terms. Residual levels of 10 -5 were used to test for convergence of the steady state solver.

When using the moment method, we have to solve the discretized Eq. ( 4) for the three selected moments. These equations are coupled through the gravitational settling term and the deposition term, which depends on the moments of a different order than the one solved by the equation. The coupling is dealt with the following way. In every iteration, first the parameters of the lognormal distribution N , d gn and σ g are calculated using the Equations (26-28) from the values in the preceeding iteration. Three moment equations are then solved one after another with the coupling terms resulting from the deposition being treated explicitly.

Fully explicit treatment of the gravitational settling term (5) can result in numerical instability, unless low values of the relaxation factors are used. That would however lead to slower convergence, therefore we employed a semi-implicit treatment. Moment M k+2 in ( 5) is rewritten as

M k+2 = F k,2 M k with F k,m = M k+m /M k = d m gn exp m(m + 2k) 2 ln 2 σ g (31)
and the term F k,2 is then treated explicitly and M k implicitly. Relaxation factors 0.95 were used both for the sectional equations and for the moment equations. For the first five iterations of the moment method the relaxation factors for the moment equations were however set to lower value 0.8, as the computations proved to be less stable at the beginning.

Calculation of the distribution parameters d gn and ln 2 σ g via Eq. ( 27) and ( 28) includes the division of the moments, potentially very small far away from the source of pollutant. To avoid this problem, small background concentration in the whole domain is set as an initial condition and used as a boundary condition where zero would be used otherwise.

Applications

Here we describe two example problems of microscale flows through and around the vegetation and assess the applicability of the developed moment method to the simulation of pollutant dispersion. Two vegetation elements that could be encountered in the urban settings are investigated in this test: small patch of full grown trees and a dense hedgerow.

The flow field in both cases was precomputed by an in-house finite volume CFD solver. The solver is based on the Navier-Stokes equations in the Boussinesq approximation and utilizes kturbulence model. Inlet profiles of velocity and the turbulence quantities, as well as the wall functions, are prescribed by the analytical expressions given by [START_REF] Richards | Appropriate boundary conditions for computational wind engineering models using the k-turbulence model[END_REF]. Vegetation model for the momentum and kequations described by [START_REF] Katul | One-and two-equation models for canopy turbulence[END_REF] is employed. For further details we refer to [START_REF] Šíp | CFD optimization of a vegetation barrier[END_REF], where the solver is described in more detail. Turbulent Schmidt number was set to Sc T = 0.7 in both cases, based on the analysis by [START_REF] Tominaga | Turbulent Schmidt numbers for CFD 685 analysis with various types of flowfield[END_REF].

In both cases presented below, we simulated the dispersion of a trimodal distribution of the particles, consisting of a nuclei, accumulation, and coarse modes. The source particle size distribution is set to be proportional to a distribution typical for urban environments following [START_REF] Hinds | Aerosol technology: Properties, Behavior, and Measurement of Airborne Particles[END_REF], and its parameters are given in Tab. 2. To avoid numerical problems that would arise if the moments would have zero value, a small, but non-zero background pollution proportionate to the source distribution is prescribed as the initial condition and at the inlet boundary.

Mode

Q Table 2: Parameters of the pollutant source particle size distribution and of the background particle size distribution. Q N is the line source intensity and N bg is the number concentration of the background pollutant. The geometric mean size dgn and the geometric standard deviation σg are the same for both the source and background distributions.

N [10 6 m -1 s -1 ] N bg [cm -3 ] d gn [µm] σ g [1] Nuclei
Evaluation of the developed moment method was based on the comparison with the results obtained by the sectional model. In the sectional model, Eq. ( 1) is solved for 51 particle sizes distributed uniformly between 0.001 µm and 100 µm. The interval is chosen so that the behaviour of the number distribution as well as the volume distribution can be captured by the sectional model.

Tree patch in 2D

Case description

First case investigates the filtering properties of a small patch of full grown conifer trees. A simplified 2D model is constructed as follows. The 30 meters wide and 15 meters high tree patch is represented as a horizontally homogeneous vegetation block. Pollutant source, representing 1 meter long line source, is placed 15 meters upstream from the vegetation, 5 meters above the ground. LAD profile of the vegetation is prescribed by a formula given by Lalic and (2004),

Mihailovic

LAD(z) = L m h -z m h -z n exp n 1 - h -z m h -z , (32) 
n = 6 if 0 ≤ z < z m , 0.5 if z m ≤< z ≤ h,
where h = 15 m is the height of the trees, L m is the maximum LAD, chosen so that leaf area index, LAI = h 0 LAD(z)dz, is equal to 10, and z m = 0.4h is the corresponding height of maximal LAD. The sketch of the domain and the LAD profile of the vegetation is shown on Fig. 8. Trees are modelled as generic conifers with d e = 2 mm. The drag coefficient is chosen as C d = 0.3 [START_REF] Katul | One-and two-equation models for canopy turbulence[END_REF].

Inlet wind profile is set as logarithmic with u ref = 10 m s -1 at height 20 m and z 0 = 0.1 m. For the number concentration in the sectional model and for all moments in the moment method the Neumann boundary conditions are used on the ground, at the top and at the outlet. No resuspension of the particles is allowed, i.e. any particle that falls on the ground stays on the ground indefinitely.

Domain is discretized using a cartesian grid with 220 cells in horizontal direction and 100 cells in vertical direction, graded so that the grid is finer near the ground and around the tree patch. The near ground cells are 0.25 m high, and the vegetation block itself consists of 42 x 40 cells.

Flow field obtained by the CFD solver is shown on Fig. 9. As visible, the vegetation block slows the wind down, but allows the air to pass through.

Results

Results from the sectional and the moment model are compared in terms of the volume concentration, which is proportionate to the third moment of the particle size distribution. As we assume that the density is the same for particles of all sizes, it is also proportionate to the mass concentration of the particles.

Calculated field of the volume concentration by the moment method is shown on Fig. 10 (top). The relative difference of the results obtained by the moment method, V mm , and by the sectional model, V sec , is shown on the bottom panel of Fig. 10. The source of the largest discrepancies between the two methods is the vegetation block. The relative difference raises up to 1.0% inside the vegetation block, and decreases with the increasing distance from the vegetation.

Further insights can be obtained from Fig. 11. It shows the number and volume concentration distributions at the point on the upper edge of the tree patch (top row) and at the downstream edge of the tree patch (bottom row), where the highest differences are indicated by Fig. 10. Several things can be observed from the figure. First, the number distribution is virtually unaffected by the dry deposition due to the low deposition velocity of the small particles in accumulation and nuclei mode, which dominate the number distribution. Mass distribution is more affected, although only for the particles in the coarse mode larger than roughly 3 µm. The most significant effect can be seen for the particles larger than 20 µm, which are almost absent behind the barrier. Comparing the results from the two sectional models, we can see that the absence of the interception and turbulent impaction removal mechanisms in the dry deposition model of Raupach et al. (2001b) leads to the higher concentration values in the size range 5 µm to 10 µm at both inspected positions.

The moment method with the dry deposition scheme developed here repro- Raupach et al. (2001b, Sec-RA) and by Petroff et al. (2008b, Sec-PE). Lines are the results from the moment method with the adaptation of the Petroff model developed in this study (MM-AP), and from the moment method without the size dependent deposition and gravitational settling terms (MM-none), which is shown as a reference.

duces the results of the sectional model with the original dry deposition scheme of Petroff et al. (2008b) well, although the peak of the coarse mode reduced by up to 20%. The difference is reduced further away from the tree patch, as can be seen on Fig. 10, which can be explained by the mixing of the filtered air with the unfiltered air flowing above the vegetation.

Hedgerow in 3D

Case description

Next we tested the method on a 3D model of a dense hedgerow placed near a line source of the pollutant. This case is a three dimensional extension of the 2D situation investigated in [START_REF] Tiwary | Modelling the size-dependent collection efficiency of hedgerows for ambient aerosols[END_REF]. The yew hedge is 10 m wide, 3.2 m deep and 2.4 m high. It is placed in the 40 m wide, 40 m long, and 20 m high computational domain. Two meters upstream from the hedge is a line source at height 0.5 m above ground.

Sketch of the domain is shown on the left panel of Fig. 12. Right panel shows the LAD profile of the hedge, taken from the original article. Vegetation is further described by the needle diameter is, d e = 3 mm, and the vegetation drag coefficient which is set to C d = 0.5 as in [START_REF] Tiwary | Modelling the size-dependent collection efficiency of hedgerows for ambient aerosols[END_REF]. The computational mesh was created using the OpenFOAM snappyHexMesh generator. The domain consist of 376 000 cells, refined near the ground and around the hedge. The near-ground cells are 0.07 m high and the hedge itself is discretized using 54 x 20 x 22 cells.

Wind profile at the inlet is set as logarithmic with u ref = 2.5 m s -1 at height 2.4 m and z 0 = 0.1 m. Boundary conditions for the sectional solver and moment method solvers are set similarly as in section 3.1: Neumann boundary conditions are used at the ground, top, sides, and at the outlet. No resuspension of the particles fallen to the ground is allowed. Again, small amount of the particles is prescribed at the inlet. Streamlines of the flow field calculated by the separate CFD solver are shown on Fig. 13. As in the 2D simulation in [START_REF] Tiwary | Modelling the size-dependent collection efficiency of hedgerows for ambient aerosols[END_REF], recirculation zone is developed behind the dense hedge. Unlike the 2D case, here we can observe part the of the flow to be deflected to the sides.

Results

Volume concentration obtained by the moment method is shown on the top panels of Fig. 14 and Fig. 15. While a portion of the pollutant penetrates the barrier, part is deflected to the sides of the hedgerow, creating a zone with a reduced pollutant concentration behind it. Relative difference between the solution obtained by the moment method and sectional approach is shown on the bottom panels of Fig. 14 and Fig. 15. As in the 2D tree patch case, the vegetation block is the source the differences between the two methods, and the relative difference of the total volume in this case is below 3%, and decreases away from the barrier. Effects of the coarser mesh in the upper part of the computational domain are visible on Fig. 15. However, it does not negatively affect the difference between the two methods. Number and volume concentration distributions at two points -inside the vegetation and downstream from the vegetation -are shown on Fig. 16. In this case, the particles in the nuclei mode are affected by the deposition driven by the Brownian diffusion, albeit only slightly, as can be seen on the shape of the number distribution. Otherwise, we can see similar behaviour as in the 2D forest case. The accumulation mode is unaffected, while the volume of the coarse mode particles is reduced by the dry deposition. The two sectional models again produce different predictions for the particles around 5 µm due to the absent interception and turbulent impaction term in the model by Raupach et al. (2001b). The moment method again shows a good agreement, but with an underpredicted peak of the coarse mode. Similarly as before, better fit can be observed further from the barrier due to the mixing with unfiltered air.

Computational performance

To compare the computational performance of the developed model, we measured the runtime of the sectional approach (with the dry deposition model by Petroff et al. (2008b)) and the moment method approach developed here for the 3D case described in section 3.2. Both solvers were run on a single core of an Intel Core i7-6700 processor running at 3.40GHz. calculating the behaviour of three modes, and therefore comprised of 9 PDEs, finished in 388 seconds. Runtime per one equation would thus be 43.1 seconds. Overall, the use of the moment method gives us roughly fivefold acceleration compared to the sectional model. Even though the high number of bins might not be necessary to obtain sufficiently accurate results, to get an equivalent workload as the moment method in this case, only 10 bins could be used in the sectional model. Such number seems insufficient to model the trimodal distribution well. Furthermore, the acceleration would be even larger if we were 490 interested only in a bimodal distribution (that can be calculated with 6 PDEs) or a unimodal one (3 PDEs).

Two points can be made in favor of the sectional method though. First, the solution process of every equation is independent on the other equations, therefore the approach offers effortless parallelization for the number of cores up to the numbers of bins used. This is not especially advantageous in our implementation, as the OpenFOAM solvers are already parallelizable, but it could be an important factor for other implementations. Secondly, the relaxation factor 0.95 used for all simulations in the sectional approach was needed only for the bins representing the larger particles. Using different values of this parameter

Conclusions

In this study, we introduced a formulation of a dry deposition model suitable for implementation in a moment method. As the starting point for our efforts we chose to use the model by Petroff et al. (2008b), which shows a good agreement with wind tunnel measurements of dry deposition velocities on conifer trees. As the original model, the approximation developed here includes five main processes of the dry deposition: Brownian diffusion, interception, impaction, turbulent impaction, and sedimentation.

The developed deposition velocity model was implemented in a microscale finite volume solver based on the OpenFOAM platform. The solver employs the moment method to calculate the particle size distribution in the domain. The deposition model was tested on two example problems of microscale pollutant dispersion. Comparison with the sectional method using the original dry deposition model revealed that the moment method is able to reproduce the shape of the particle size distribution well. The relative differences between the sectional and the moment method in terms of the total volume of the particles were below 3%. We assume that the cause of this difference lies mainly in the fact that the particle size distribution is not guaranteed to stay lognormal, even if the source distribution is, due to the acting of the deposition and settling processes. The assumptions of the moment method are thus not satisfied. Nevertheless, the agreement with the sectional method is good despite this obstacle.

One might ask whether it was necessary to base our dry deposition formulation on a such a complex model as the one by Petroff et al. (2008b). The second model for microscale problems considered in this study was the model by Raupach et al. (2001b), which includes only two processes: Brownian diffusion and impaction. While this model has shown a worse fit to the wind tunnel data, the largest difference of the predicted deposition velocity was for particles with diameter around 1 µm, where the deposition velocity is low even for the complex model of Petroff. One might thus think that difference would not have any significant effects in real situations. In our two example problems the use of this simpler model resulted in the peak of the size distribution of the coarse mode behind the vegetation barrier being approximately 10% higher than with the Petroff's model. This difference thus shows that the effect of the processes excluded in Raupach's model is small, but not entirely negligible in these cases.

We further examined the performance improvements of the moment method with the developed dry deposition model against the sectional method with the original model. The moment method, described by nine coupled PDEs for trimodal size distribution, proved to be more computationally efficient than the sectional model using 51 bins. The speedup was approximately fivefold, and a workload equivalent to the moment method would be achieved by running a sectional model that uses only 10 bins. This performance improvement together with the reliable results shows that the moment methods, often used in large scale atmospheric models, can be useful also for the microscale problems of pollutant dispersion in the urban environment.

The developed method as formulated here is applicable only when the parti-cle size distribution can be approximated as a lognormal distribution, or a sum of lognormal distributions. Furthermore, the method could be reformulated for other distributions, provided that algebraic relations between the moments and distribution parameters are known. 
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Figure 2 :

 2 Figure2: Dependence of the deposition velocity on the particle diameter in the model byPetroff et al. (2008b). Parameters: particle density ρp = 1300 kg m -3 , needle diameter de = 2 mm, wind speed U = 1 m s -1 , local friction velocity u f = 0.3 m s -1 .
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 93 Figure 3: (Left) Two expressions for the Cunningham correction factor. (Right) Relative difference (C B C -C A C )/C A C .

Figure 4 :

 4 Figure 4: Original and approximated expressions for the impaction efficiency.

  29 for the parameter values at the end of the expected ranges (ρ p = 3000 kg m -3 , d e = 4.72 mm, U = 10 m s -1 ) and particle diameter d p = 0.72 µm, giving the deposition velocities u orig d = 0.385 cm s -1 and u approx d = 0.168 cm s -1 . This difference was considered acceptable considering that measured values shows higher variability, as demonstrated on Fig.1or in the review by[START_REF] Litschke | On the reduction of urban particle concentration by vegetation -a review[END_REF].

Figure 5 :

 5 Figure 5: Comparison of the deposition velocities given by the original model and the one developed in this study (ρp = 1300 kg m -3 , de = 2 mm, U = 1 m s -1 , u f = 0.3 m s -1 ). Relative difference is calculated as (u orig d u approx d
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 7 Figure 6: (Left) Number concentration (Right) Volume concentration

Figure 8 :

 8 Figure 8: (Left) Sketch of the domain. All dimensions in meters. Sketch is not to scale. (Right) LAD profile of the vegetation.

Figure 9 :

 9 Figure 9: Flow field for the 2D tree patch case. Shown are the streamlines, background is coloured by velocity magnitude. Position of the tree patch is marked by a green rectangle.

Figure 10 :

 10 Figure 10: Results for the 2D tree patch case. (Top) Volume concentration V mm calculated by the moment method. (Bottom) Relative difference (V mm -V sec )/V mm of the volume concentration calculated by the moment method and the sectional approach.

Figure 11 :

 11 Figure 11: Results for the 2D tree patch case. (Top) Number and volume concentration at [60; 15] (Bottom) Number and volume concentration at [80; 2]. The discrete points are calculated by the sectional method with the dry deposition model by Raupach et al. (2001b, Sec-RA) and byPetroff et al. (2008b, Sec-PE). Lines are the results from the moment method with the adaptation of the Petroff model developed in this study (MM-AP), and from the moment method without the size dependent deposition and gravitational settling terms (MM-none), which is shown as a reference.

Figure 12 :

 12 Figure 12: (Left) Overhead view of the domain (not to scale) (Right) LAD profile of the vegetation.

Figure 13 :

 13 Figure 13: Streamlines of the flow around the hedgerow. Streamlines are released at height 0.5 m and are coloured by the velocity magnitude.

Figure 14 :

 14 Figure 14: Results for the 3D hedgerow case. Horizontal cut at height z = 0.5 m. Quantities shown are as on Fig. 10.

Figure 15 :

 15 Figure 15: Results for the 3D hedgerow case. Vertical cut at y = 0 m. Quantities shown are as on Fig. 10.

  The sectional model, comprised of 51 scalar PDEs, finished in 1978 seconds. The average runtime per each equation was thus 38.8 seconds. Moment model

Figure 16 :

 16 Figure 16: Results for the 3D hedgerow case. (Top) Number and volume concentration at [15; 0; 2] (Bottom) Number and volume concentration at [30; 0; 2]. Abbreviations in the data labels are the same as in Fig. 11.
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for different bins can provide some reduction of the runtime.
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