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Abstract

We consider Local Asymptotic Normality (LAN) and Uniform Local Asymptotic
Normality (ULAN) conditions for Linear Functional Autoregressive Processes with
multi dimensional parameter. The correlation operator depends on an unknown
multi-dimensional parameter and we establish the LAN and ULAN conditions.
Then we derive with asymptotic properties of the conditional maximum likelihood
and Bayes estimators giving Hajek minimax bound, consistency, asymptotic nor-
mality and efficiency of these estimators yielding their optimality.

Keywords. Linear Functional AR processes- Local Asymptotic Normality-
Maximum likelihood estimators-Hajek bound- Efficiency.

1. Introduction

Nowadays in many fields such that economy, biology, medicine etc., a huge
quantities of data is collected and used to draw modeling evolution problems and
prediction information. Doing so, generated models can be described by contin-
uous smooth dynamics allowing often to accurate estimates of parameters in the
phase analysis, or with effective data noise reduction through curve smoothing
leading to data with irregular time sampling schedules. In order to describe conve-
niently such continuous flow of data, practitioners and statisticians often consider
them as "high dimensional" vectors resulting from realizations of random curves or
a sample of a valued function space random variable. Then they may apply statisti-
cal concepts coming from multivariate data analysis. Now their statistical analysis
is carried out through the well-known Functional Data Analysis (FDA)that we may
find out some basic concepts in Ramsay [26] with strong arguments for its wide
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scoop. Since this area becomes more attractive giving a central topic of studies of
modern statistics. There exist many textbooks and we may cite without be exhaus-
tive the monographs by Bosq [4], Ferraty and Vieu [5], Ramsay and Silverman [26]
(and references therein), Horvath and Kokozka [9],Hsing and Eubank [30] where
generalizations of existing models and classical inference procedures are well de-
veloped.We also mention recent surveys in FDA realised by differents authors, we
cite (Cuevas [7], Goia [6]....)

We are interested by the class of Linear Functional Autoregressive Processes.
This class of processes has received more attention and investigated by many au-
thors for predicting continuous time random processes. We may cite a few Bosq [4],
Mas [21], Antoniadis and Sapatinas [2], [23] etc... We also refer to the papers by
[19] and references therein. We quote the article by Arkoun and Pergamenchchikov
[3] and references therein, concerning recent progress in nonparametric functional
time series and Vincent Lefieux’s thesis [31] for semi-parametric functional ap-
proaches. Various applications have been successfully performed in a many areas.
The examples range from prediction of electricity consumption, road traffic, El-
Nino temperature to concentration levels in air pollution (see Bosq [4]). An appli-
cation to environmental data processing was given by Omatu et al. [24] predicting
the concentration levels of pollutants in air pollution analyzed by Bucy-Kalman
filter system. In the same framework, Loges [20] treated the case of the unobserv-
able rv’s are ruled by a Hilbert space valued autoregressive equation AR(1). we
also cite the recent works of [1], [14] and references therein very interesting papers
with regard to the functional time series process, especially autoregressive models.

We deal with the Local Asymptotic Normality (LAN) condition introduced by
LeCam which became a fundamental concept in parametric estimation. In a pre-
vious paper (Kara and Mourid [13]), we show the LAN condition for the class
of functional autoregressive processes when the correlation operator depends on
one-dimensional parameter. We then obtain Hajek minimax bound, consistency,
asymptotic normality and efficiency of the conditional maximum likelihood and
Bayes estimators. In this paper, we extend these results when the correlation oper-
ator depends on a multi-dimensional parameter namely § € © C R?, forp > 1.
From this point of view, the proofs of the LAN condition in multi-dimensional case
requires more technics and are not direct especially in the functional setting. An ex-
ample of operator depending on a multi-dimensional parameter is given by Loges
[20] where pp = Zle ipi, 0; €] — 1,1], and p; a bounded linear operator with
llpillz < 1. For a one-dimensional parameter, recall Ornstein-Uhlenbeck process
autoregressive representation (1) (see Bosq [4] Ex. 3.4 p. 76) where the operator py
is explicit and defined by pg(f)(t) = e % f(1), f € L%O’”, 8 >0, te|0,1].Re-
call that under LAN condition, local experiments converge weakly, in the LeCam
distance, to Gaussian shift experiment and lower bounds for the law of a class of
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regular estimators (Hajek convolution theorem) and their efficiency are derived.
(see Ibragimov and Hasminski [11], LeCam and Yang [18], Kutoyants [16] [17]).
Since LAN condition is satisfied by many statistical models under mild conditions.
It mainly relies on checking mean square differentiability property with respect to
the parameter of probability measures (P, 6 € ©). For ergodic Markov process,
this condition is investigated by Philippou and Roussas [25] and Roussas [27]. In
autoregressive time series framework, Swensen [29] and Kreiss [15] showed that
the LAN condition also holds (see also [22]) and Hwang and Basawa [10] dis-
cussed this condition for a R%-valued stationary Markov non-linear time series.

Our aim is to establish LAN and Uniform LAN conditions for functional au-
toregressive processes when § € © C RP, for p > 1. We show that the log-
likelihood ratio has the typical LAN decomposition with the same scale 1/4/n,
therefore the local experiments converge weakly, in the LeCam distance, to Gaus-
sian shift experiment. Then using general results by Ibragimov and Hasminski [11],
we derive asymptotic properties of the conditional maximum likelihood (MLE)
and Bayes estimators and hence set their optimality when § € © C RP only for
p = 1,2, 3. Nevertheless, the properties of conditional maximum likelihood esti-
mators MLE derived in Theorem 3 still remain difficult to extend in the full gener-
ality when p > 4. Our objective in the future will be to find suitable techniques to
overcome varied levels of difficulty.

This paper is organized as follows. Section 2 introduces notations and defini-
tions. Section 3 deals with main results. Section 4 is devoted to examples. Section 5
contains simulations results. Auxiliary lemmas are in Section 6 and technical proofs
are postponed to Appendix.

2. Notations and Definitions

Let (2,4, IP) be a complete probability space and (H,H) a real separable
Hilbert space equipped with the inner product < .,. >, the associate norm ||.|| and
its Borel o-field H. We denote by L (H) the space of bounded linear operators
defined on H into H, and by |.||2 the usual norm of bounded linear operators. A
strong H-Gaussian white noise (g,,,n € Z) on H, defined on (£2, A, IP), with zero
mean and covariance operator C., is a Gaussian sequence of H-valued i.i.d. rv’s. A
process X = (X,,,n € N) defined on (£, A, IP) with values in (H, ) is a Hilbert
space valued autoregressive process (ARH process) if

Xn:PG(Xn~1)+€n (1)

where pg € L (H) depending on a parameter 6 and (¢,,n € Z) is a strong H-
Gaussian white noise. We suppose that the parameter # € © where the param-
eter space is an open set of RP,p > 1. In Introduction we cited the example
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of the Ornstein-Uhlenbeck process that admits the representation (1) with an ex-
plicit operator py as well as the example given by Loges [20] both depending on
a parameter ¢. Our goal is to estimate the multi-dimensional parameter ¢ in the
LAN setting based on the observations of (1). We consider the family of proba-
bilities (P, 9,6 € ©) of the conditional probability law of (X3,...,X,,) given
the initial value Xy : P, 9 = P))(CF,...,XH' We denote by Z, g(h) := dPyn,/dPne
the derivative of the absolute continuous part of P, 9, with respect to P, y where
On = 0 + ©n(0)h, ©n(0) is a sequence of definite positive matrices and h € RP.
The basic tool in this study is the local asymptotic normality structure of the family
of the conditional likelihood ratio Z,, ¢(h) associated to (1), in the vicinity of 6. We
first recall the Local Asymptotic Normality condition.

Definition 1. The family of parametric probability measures (P, 9,0 € ©) is
said to be satisfy Local Asymptotic Normality condition (LAN condition) at a point
0 if there exists a sequence of definite positive matrices (pn(0)), ©n(0) — 0, a
sequence of rv’s (Sy(0)) such that for all h € RP the log-likelihood ratio In Z,, g(h)
satisfies the following representation under P, :

In Z, 0(h) = hSn(0) — 1/2||k||* + 0P, ,(1), as n — oo, )

where

85 (0) =g N[0T
where I is the identity matrix in RP.
The family of parametric probability measures (P 9,0 € ©) is said to be satisfy
Uniform Local Asymptotic Normality condition (ULAN condition) if we have LAN
condition (2) and moreover for all M > 0 under P, g :

sup |In Zp,p(h) — hSn(6) + 1/2|[R|1%| = op, 4(1). 3)
Ihl<M

Throughout the paper we need to use the following functional matters. Let
{ex,k > 1} be a complete orthonormal system in H consisting of eigenvectors
of the covariance operator C. of the 1v’s g and {07,k > 1} the corresponding
eigenvalues where 07 > 0. For x € H we denote by ay(z) :=< z,e; > the
Fourier coefficient of x with respect to the vector e;. The continuity and differen-
tiability are with respect to the parameter 6. If a function g(#) is differentiable we
denote by g(6) = Vg(8) the gradient vector of g and Jg(¢) the matrix defined by
Jg(8) = Vg(8)V7 g(6) where T designs the transpose of a vector.

3. Main Results

In general the study of LAN condition requires technical conditions and we
make the following assumptions which essentially carry on the operator py and the
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Fourier coefficient ay(z). The parameter space © is a convex open set of R”, p > 1.
Assumptions
A0.3C >0, suppeg || po llz=C < 1.

Al.Forall § € © and forall x € H,

oo
D 0i “aj(pe) < 00
k=1

A2.Forall k > 1and i > 1, Fourier coefficients aj(ppX;) are differentiable
and forall 1 < j < p, the function

Zak (aq(poXi-1) — 2ax(Xi)ar(peXi-1))
aej

is finite and continuous for all # € ©, Py-a.s..
A3.
a.Foralll1 <j3<p

S@Z%PWMJMKW
ue@k 1

b.The matrix

o0

TO) = Y op Ee[V(arpeX1)V" (arpeX1),
=

is positive definite.
Now we can state the LAN condition (2) of the family of probabilities (P, 4,0 €
©) satisfying (1).

Theorem 1. . Under A0, A, A2, A3, the family of probability measures (P, 9,6 €
©) of (1) satisfies the LAN condition (2) at each point § € © where the matrix
©n(0) = T1/2(6)/+/n, the random vector

Sn(6) = nITY2(9) ZZ V (poXi—1)r[ar(Xi) — ar(poXi-1)]]

g Jo— 1
and the matrix
o0
TO) = > 07 Eg[V(arpeX1)V" (arpeX1)],
=1

where T=1/2(0) is the inverse matrix of I''/2() (the square root matrix of T'(6))
and V is the operator gradient.
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To establish the ULAN condition (3), we need to add the following conditions.
A4. For all k£ > 1, Fourier coefficients ax(pg(X1)) are three times differen-
tiable functions on O a.s. and Yu € ©.

a Forall1<j<p supg,coEu Zi—:{ ng[aﬂ—jak(pg(Xl))]z 5
. = 2
b. Foralll <j,r <p supg,co By Bk 2 z[aﬁé?—aﬁ,rak(pg()(]))]z < 0.

1 e 3
c. Forall1 < j,r,5 <p, supgy,eq By ZL{X}) sz[mak(@()ﬁ))]z <
00.

AS. For all z € H and for all £ > 1, the Fourier coefficients ay.(pp(x)) are
differentiable in # € © and V1 < j < p,
8 “ ;5
. < Py, e >=< Péj)ﬂl,ek >=< 1, (péj))*ek >,
J

where p(gj) defined by péj)ac = %pga: and its adjoint (péj ))* are bounded and
linear operators.

A6.
B (o o]
Sgp;fffl(p?))*%lf < 0.
b,

(o.9)
sup Y o (pf”) el < oo.
0e0 | —,

The following result establish the ULAN condition (3) of the family of probabilities( P, o)
satisfying (1).

Theorem 2. Under AO...., A6(a), the family of probability measures (P, 9,0 €
©) of (1) satisfies the ULAN condition (3) where Sy,(0) and T'(8) are defined in
Theorem 1.

In particular for any bounded continuous loss function | such that the sets

{l(z) < a}, a > 0, are convex and symmetric and for all estimator 8,,, we have
Hajek bound

lim liminf sup Eg[[(\/ﬁf‘l’fg((?o)(gn —8))] 2 El((),

0—0 n—oo |9_90|<5

where ( = N(0,I) in RP.
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Remark 1. 1. A0 ensures a strictly stationary ergodic Markov process (Xp)
f (1) with transition Qg(x,dy) = P., 4,,(z)(dy) (see Bosq [4] Th. 3.1 p. 74 and
lourid [23] Chap. 1). Al ensures the equivalence of Gaussian measures via a
‘akutani Theorem. The rest of assumptions mainly ensure finiteness of series and
1oments, differentiability, interchanging between sum and integral signs, etc..

2. Recall that an estimator is said to be efficient in Hajek sense if we have
quality in the Hajek bound of Theorem 2.

In this part we consider the parameter space © an open set of R?, p = 1,2, 3.
Ve define the conditional maximum likelihood estimator MLE 6, by

dPpe
dPn e

O, = arg max In

there B is a fixed value in © € RP where p € {1, 2,3}.
In order to establish properties of the conditional maximum likelihood estima-
s (B, n > 1), we make the following assumptions.

A7. For all 8 € O, py is a Hilbert-Schmidt symmetric operator commuting with
the covariance operator C of g.

A8. The eigenvalues (Ax g,k > 1) of py are such that : & — Ay g are Cl-class
functions

and infgcg 19 > 0 where pug is the smallest eigenvalue of the matrix £ VAkoV Ao,

The properties of the conditional ML estimators are summarized in the follow-
1g theorem.

‘heorem 3. Under AOL. .., A5, A6(a), A7, A8, the conditional maximum likeli-
ood estimator (MLE) 0,, satisfies :

1. For all compact interval K C © and § > 0, we have

sup Py(|| 6, — 6 ||> 6) —nsoo 0.
feK

2. Under By y
VALY2(8) (8, — 8) =nooo

where ( < N(0,1) and the convergence is uniform on any compact set
K C ©. The matrix I'(0) is defined in Theorem 1.

3. The conditional maximum likelihood estimator MLE 8, is efficient in Hajek
sense.
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Remark 2. From the limit law of the maximum likelihood estimator, it is quite
possible to test hypotheses and determine confidence bands. For the prediction
of the process, from relation (1) we know that pg(Xy) is the best probabilistic
predictor of Xy+1. Hence we define a predictor of X,41 by péﬂ(Xﬂ) , Where

én is the conditional maximum likelihood estimators MLE. We can show the be-
havior of predictors and give the values of both errors RMAE and MSE knowing
that the quality of the predictor Pgn(Xn) calculated at points t;, i = 1;...;m, is
measured by relative mean absolute error RMAE and mean-squared error MSE
defined by: RMAE = 1/m Y ;% | Xny1(ti) — Xng1 )|/ | Xns1(8:)|, MSE =

1/m Y% (Xnt1(6) — Xnpa(t:)2."

For a particular form of the Hilbert-Schmidt operator py especially when only
the eigenvalues depend on the parameter, we have the following result.

Corollary 1. Let 6 € © C RP, p=1, 2, 3. The operator py of (1 ) is given by :
Poti= 2211 Ao < T,ex > eg. Suppose

1. 3c > 0 such that supgeg supy, |Agx| < ¢ < 1 and VE, the function § — X
has all partial derivatives of order 1, 2 and 3.

2 de = =103 suehithanior all P <t jinioi<tp|
- Poil® - 2By, 12
Pk>15UPgco o2 = €0, SUPg>1 SUPgeg T |agj akl“ < e,
-2 82 2 -2 a3 2
SUPk>1 SUPge@ T}, |Wj - Aok < c2, SUPL>1 SUPgeg O |3—3—3—9j oam Mokl” <
C3.

3 supge T2 sl < 0

4. infgce g > 0 where i is the smallest eigenvalue of the matrix ¥ pe V)\k,BVT)\kyg.

Then the conditional MLE 6, satisfy all the properties of Theorem 3.

4. Examples

We give two examples where the conditions A0, ..., A8 are satisfied and then
we deduce the LAN and ULAN conditions.
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Example 1. Let H be a real separable Hilbert space and X = (X,,,n € N) a
H-valued AR process defined by ( 1 ) where pg is given by [20]:

po = 01p") + 05p)

where § = (A1,63) € © = B(0,1) (the unit ball in R?) and p(!), p®) are two
symmetric Hilbert-Schmidt operators commuting with the covariance operator C-.
Let (a;%, er,k > 1) be the eigen-elements of the covariance operator C. where
ex(t) = v2sin((k — 1/2)nt) and 02 = 1/(k — 1/2)?n2. The three operators
p(l), p(g) and C'. share the same set of eigenvectors (e, k > 1). The eigenvalues of
p1) and p® are denoted by (A (p™), (Ak(p®)) respectively. We take A (p)) =
(k + 1/2)72, and A (p'®) = (k + 1)73.

Example 2. Let X = (X,,,n € N) be a H-valued AR process defined by (1) where
pe is given by ppz = ¥ po i Aok < T, ex > e and @ = (61,60) € © = B(0,1)
(the unit ball of R%) and Agj, = e~ ¥(O1+1) (k)=5 4 ¢=(2+1) (k) =4, The covariance
operator C; has the same eigen-elements as in Example 1.

In the two examples, the process (X,,n > 0) satisfies AO,..., A8. So by
Theorem 2 and 3, the corresponding family of probabilities (P, 6,0 € ©) satisfies
ULAN condition (3) and ML and Bayes estimators are consistent, asymptotically
Gaussian and efficient.

It is readily to check the assumptions A0...A6 a and A7. For the assumption A8
we have to find the smallest eigenvalue of the matrix Ezil V)\k,HVT/\k,g. Some

calculations give uy = 1/2[(2,621(/\%2,)2 + ZkZI(,\E’g)Q) —

\/(EkZI(AEcl,t)J)z + Ekz1()\§jf)3)2)2 = 4[2&21(/\5:,;)2 Zkzl()‘gg?)z (s Agcl,;)\.gft)?)z]]

For Example 1, AE:;) = /\k(p('i)), for i = 1,2. Hence py doesn’t depend on

0 and is strictly positive. So A8 is satisfied. For Example 2, we have Agg =
—eFO1+1) ()4 and )\f; = —e FO2+1)(k)=3, The function § — g is con-

tinuous and so infgee ptg = infy_g g = pz where g e B(0,1). We may easily
get 15 > 0. Hence the condition A8 is verified.

5. Numerical Simulations

In this section, we carry out numerical simulations to illustrate the behavior of
conditional maximum likelihood estimators MLE in two cases of Eq (1) where it
is given explicitly. 4 S i

The MLE estimator 6, = (65,1, 0y 2) is a random variable so it is more correct
to write 6, = gn(w) In order to simulate the behavior of the estimator around
the true value (intersection of the lines (x = 65) and (y = 0;)) we fixe w and we



50

increase n, for each n we have a realization so a couple so we get several pairs
since n varies. We consider five different realizations, so 5 different w, from which
the different couples represented obtained. Each realization is represented by a
particular type of point, for which reason we find on the figures figl and fig4 the
signs + and x, the triangles, the circles and the lozenges.

Example a. For this first case, we take again the preceding example example
1.

The true value is § = (61,62) = (0.3,0.9).

In this case the conditional ML estimators §n = (é\njl,é\mg) is explicit and

given by:
AR b7 i b ay,
On1 = oz — )/ (@s — o)
Bz = (2 — /(2 - 22)

a2 ay a1,2
where for 7 = 1, 2 we have:

aj =3 Ekzl UJ;QGE(P(j)Xi—l)
a1 = Y0 Yopsn 05 car(pW X 1)ak (0P X )

bj =3, Zkzl UIZQGk(P(j)Xifl)Gk(Xi)
The following graphic shows the behavior of the conditional ML estimators
around the true value when n increase.

aj

TETA1

00 05 10 15 20

10

_ The following graphic shows the behavior of the conditional ML estimators
0,1 around the true value when n increase.



51

e
= = h
L1
= . v
o
== L]
e
L
; T T T T T
100 200 200 400 500

fig2

__ The following graphic shows the behavior of the conditional ML estimators
6,2 around the true value when n increase.
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Comments The two figures fig2 and fig3 show good behavior of the estimators
§n,1 and é\n,z around true respective values ¢, and 5, when n increases.The figure
figl surely, does not allow conclusions to be drawn about the behavior of the es-
timator ﬁn when n increases, but we notice a strong accumulation of its different
realizations, for different n, around the real value 6 = (61, 62) = (0.3,0.9)

Example b. In this case py is given by :

(i) = 6_61[)(1) + 6*92p{2)

where the true value is 8 = (61,6;) = (2,3) and p(Vz = VD Yl
T,er > eg,, pB(z) = > k1 (k + 1)73 < z,e, > e. Let (02, ek, k > 1) be the

eigen-elements of the covariance operator C. where ey (t) = v/2sin((k — 1/2)xt)
and o7 = 1/(k — 1/2)*x2.
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In this case the conditional ML estimators e?n = (?nll, é‘ng) is explicitly given
by :

Oz =~ In((2 - B)/(2 - %2))
Bz = ~ In((Ra - boy/(n L s1ay)

where for j = 1,2, a;, b; and ay 5 are defined previously.
The following graphic shows the behavior of the estimator around the true
value when n increase.

21

TETA1
19 2
|
%{

B
=]
= el | E =
N T T T T
2.8 2.9 3.0 22 o
TETAZ
figd

Comments: we notice, in this case also a strong accumulation of different
realizations of #,, when n increas, near the real value 6 = (6;,62) = (2, 3)

6. Auxiliary Lemmas

In this section we present auxiliary lemmas needed in the proofs of the theo-
rems of Section 3. For commodity we recall some lemmas established in a previous
paper (Kara and Mourid [13]). With the help of notations of Section 2, we introduce
the following quantities. Fori = 1,...,n, let

g0(y/x) = dPy '3 ~" [dP,,(y),

$i(6*,0) = /9o (Xi/ Xi-1)/90(X:i/ Xi-1),
Yoy, x) = 1/205 *[aq(poy) — 2ax(z)ar(poy))]
where 6, * € ©. Define the set

Ung = vVnI'/2(0)(6 — 9)
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Forall 1 < j < p, we consider the following notations: forall f € H, k > 1,

a 3 !
%, < pof,ex >=ap(psf) and — 6‘8 = py,

2
C3= moms SUPZ% llggexl’, 04— e SUPZ% llgex-

We also denote, forall 1 < j < p,andi <1,

x
; d
5i=57000=Y o 56" ak(poXi-1)ax(ei),

k=1
e Aag(peX;
RO =0 =B oyt 2 ) o = ),
i=1 k=1
Q(n, i) ZEa[ ZST V2oi? < fopy Xn—irer > /Xo = zq),
=]

A( AJ nz ZEg[E Uk <p(;p9Xn g 1,Ek> /X@—E[ﬂ

00
B(n,i n 3 ZEB[ z Uk e PBP{; En ir €k i /XO = J"'30],
=1, =
; co n—i ) :
E(nai) = Eéj)(”ai) = ZEB[(Z ST)201:1 < /jBPZ;lEnmi:ek > 0'1:1 = i}BPiGXn—i—laek > /XD = -'50],
=1 r=1
EG[(E::l ST)Q/XU = -'E(J)a i 2 ]1
Llay=< 1, J=)

The expression of the likelihood ratio is given by the following lemma.

Lemma 1. Suppose A0, Al. Then

90(y/z) = Hexp 1/20;* 2ax(y)ax(po) - ai(poc))
=1

and the likelihood ratio is given by

P is n_ oo

a2 ovean) = [T T espl 207 @an(a)o o) - a1
atEn =1kt
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Lemma 2. Suppose A0,...,A3. For alli > 1 and M > 0, we have

lim sup A~2Ep[¢i(6 + Ah,0) — 1]2 < Eg[hT ¢;(6)]*

A=0|h<m
and
finy sup Ea([A716:(6+A0) - 1) = (0) =0
where

$i(0) = Z 1/207, %ay(ppXi—1) [0k (X:) — ar(peXiz1))).
=

The following lemmas give the tightness of the likelihood ratio process (Z, g(1))
in the space Co(RRP).

Lemma 3. Suppose A0, Al, A7, A8. Forall0 < a <1/2, u € Upgand € K, a
compact set of ©, we have for n > ny

EyZ;0(u) < exp(=gn(|ul))

inf,
where gn(”u“) i 2(& Iy 2a2)sup9;28||;‘9]ﬂ26(8)||2 ”u”2

Lemma 4. Suppose A0,A1,A2,A5,A6(b). For all 3 < § < 4 and compact set
K C ©, there exists B = B(K) and a = a(K) = 4 — 3, such that

5 1/4 1/4
sup  sup Ju— o[ PEylZy ) - ZY5 ()| < B(L+ RY),
0eK uwely g,Ju|<R,|v|<R
4 r
where B = "“2‘83)02 moce L }g,;sz -

infoe i [|T(
Co = max(ZC%w 2(Y 551 02)Co; 20?%(21»21 a7)+203 8C1(Xr>1 02); 16C3CF (X a?)
8031 /(Ty51 02);8C3; CoC3 + CLOH(T 1 02) + 26530 /(T 02) +
fcl

2
2 /Olcg(ZTzl 02)) and Cy = 2%’?&;’“ = 8%}, C' is given in AO

and Cs, Cy are given in the beginning of this section.

Remark 3. Under A0,A1,A2,A5,A6(a) and A7, we may have the same results

of Lemma 4 with Cy = max(2C5 /2(},51 02)C2; 203 (Y5, 07)+2C3, /8C1(Y,51 07);

8C3 (X1 02);8C%;C2C% + 0103(2@1 o7) + 2032\/0102(ng1 a?))-
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Lemma 5. Suppose A0, Al, A2. Then

$i(0) == %9;' (0,6%)gr=0 = Y _ 1/207 2air(po Xi—1)[ar(X:) —ar(peXi-1)] a.s.

k=1

Lemma 6. Fory € H, let {fi, n > 1} be a sequence of functions defined by

n

@) =) 1/20; 2ar(poy) (ar(2) — axlpoy)), = € H.

k=1
Under A0,..., A3, we have

i) {fa, n> 1} isa Cauchy sequence in L*(H, PX‘ bk
ity e fl = Y in I

(
9-3.

2(H, Png,]:y) where
1/20; %di(pay) (ax(x) — ax(poy)).

k=1
Moreover
Jm [(R@PPET@) = [(re)rrs )
= ) 1/40; *[ar(poy)]’.
k=1

Lemma 7. Let {X,(h,w),n > 1} be a sequence of real rv’s in L* continuous in
h € RP and X a RP-valued rv in L?. Suppose that for all h € RP

I Ko (h ) s hTX(w) Phais.,
2. forall M > 0, supjp <y |E(X2(h,w)) — B(hTX (w))?] =n00 0.

Then

gup Bl (hiw) —h X (0)) —asse Ol
Rl<M

Lemma 8. Suppose A0 and A4(b). Thenfor alll1<r,j<pandf >1/2,

1/4 g X, g
i ;; k 39 63 k(peXi-1)ar(ei)) 2nosco 0 Py — a.s..

Under A4(a), A5, A6, we have

—IZZ% [ 5, Ok (psXi-1)]* “nsoo E Zﬂk [35 k(poX1)]?) inPy—probability.

=il
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Lemma 9. Let (X,,) be a ARH process defined by (1) and suppose A0. Then
Eo(|| Xnl1*/Xo0) < 2C™||1 Xo|* + C1,

and
Ep(| Xx]1*/ Xo) < 8C™|| Xo||* + Cs,

2
where C = 2%‘}5—%& and Cy = S%Q.C is given in A0.

For the quantities S;, Q(n, 1), A(n,%), B(n,i), C(n,1), E(n,1), I; defined in
the beginning of Section we have the following results.

Lemma 10. We have foralln > 1
n—1 n—1
Eg(Sa() i)/ Xo = m0) = 0= Eg(Sa(D_ $:)°/ Xo = o).
i=1 i=1

Lemma 11. We have for alln > 1

n n—1 i
Fa(6) =) _ Bo(S}/Xo=0) +6 ) , Eo(S51() 8r)/ Xo = ).
=1 =1 r=1

Lemma 12. Under A0 A5 A6(a), we have
n o0 )
= EHReS
Y Bo(S{/Xo = 0) < 3n(D>_ 072 l1(pg ) er)I?)* (Bllo]l* + Co)
i=1 k=1

where C is defined in Lemma 9.
Lemma 13. Under A0 A5 A6(a), we have for all i > 1

sup 1;(0) < iC3(2|jao||* + C1),
6co

where (5 is in Lemma 4 and C4 in Lemma 9.
Lemma 14. Under A0 A5 A6(b), we have for all i > 1
1. A(n,i) < Q(n,i+ 1) + C'C2(8||zo||* + Ca).
2. B(n,i) < C™1C(2lmoll? + Co)[(Tyzy 0D n i+ 3)].

3. B(n,i) < 2(C"A(Tan1 0)?(C3CF Bllzoll*+C2) *+vn = T = TC (2o +
C1)"?(8llzol* + C2)2).
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4. Qp(n,i)4) Q (n,z’+ 1) 4+ CYn — i + 3)Co(1 + ||zol| + ||o]® +
||330|l3+||330|| ).

5. maxi<j<psupgeg Qo(n,)Y < K(X 1o CH =1 (n—i—r+3))(Tr_p llzol")-

where
CD = maX(QCé?\f 2(21"21 UE)CQ; 20% (ZT>1 02)+2C2\f 801(2791 ) 160304 (ZT‘Zl O'g)+
8031 /(T 151 02); 80 CoC3 + C1CHT 5 02) + 2050305 /(51 02) +

2031/ C10a(Y, 5, 02)), C i in AQ and C;, i=1..4 are given in the previous lem-
mas.

7. Appendix. Proofs

Proof of Theorem 1. Under A0, (X,) defined by (1) is a stationary ergodic
Markov chain. From relation limy_,q sup|h|<M Ea([(A ‘lqbi(ﬂ + hA,0) — 1) —
1T $i(6)]* = 0 where 6;(60) = Y52, 1/207 (o Xi-1)[ar(X:) —ar(pe Xiz1))]-
(see Lemma 2), we deduce for all ¢ > 1 that the root of the ratlo of transition
densities ¢; is differentiable with respect to # in quadratic mean. From a Roussas
Theorem (see [10]), we have that the family of probability measures (7, 4,6 € ©)
of ( 1) satisfies the LAN condition (2). W

Poof of Theorem 2. Let A,, = InZ, 4(h) where we can take a change of
variable ,, = 6 + n~/2h (see LAN condition [11]). Under A1, A2 A3 we have
the LAN condition from Theorem 1. For ULAN condition it suffices to verify that
under Py and for all M > 0

sup |An — hIT(8)/25,(8) + 1/2hT(8)h| = 0y(1).
|hj<M

To do we use a Taylor series expansion gives Fj-a.s.

For more details see the appendix (proof of Theorem 2bis) W

Proof of Theorem 3. Let p € {1,2,3}.

We follow the general theory in Ibragimov and Hasminski [11] and apply The-
orem 1.1 p. 174. By Theorem 2, we have the convergence of the finite dimensional
laws of the likelihood process. For all 0 < a < 1/2,u € Upg and 0 € K,
a compact set of ©, we have for n > ng EgZ 4(u) < exp(—gn(|u)) where

ol o’ f
anllul) = 2(a — 20%) —oce e

and For all 3 < f < 4 and compact set K C ©, there exists B = B(K') and
1/4
a = a(K) = 4—f, such that supye g SUpy, yep, , lul<R,Jol<R |u—v|~ ﬁEg\Z / (u)—

2 W)t < B(L+ RY),
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Previous relations, all together (see Lemma 4 and Lemma 3) give that the se-
quence of the laws of the likelihood process is tight in the space Co(R). We then
deduce all the properties of the conditional ML estimators listed in the theorem. H
The proofs of Lemmas 1, 5, 6 and 8 are given in [13]. Note that Lemma 7 is
well known and is a generalized version of a Levy Lemma.
Proof of Lemma 2. We have Ey[¢;(0+Ah, 8)—1]* = Eg[v/go4an(Xi/Xi-1)/90(Xi/ Xi—1)-
1] So

1
Eg[(v/ o42(Xi/ Xi-1)/90(Xi/ Xi—1) —1)*/ Xi_1 = y] << )‘2]0 1(6+ Ath)dt,
4)

where (6 + Ath) = [ (2R Vo rin(2/4) 9y on(@/4)|2Px, (de).
On the other hand

2

(W Vgoirtn(@/y))? oran @/ Y 0> Vag(ppamy) ok (posany) — ar(@))]

k=1
P
= Gon@/Wlhs Y Fioran(a/y)l,
j=1
where
o
fioran(z/y) = Z (=01 )= ar(Pos+ xeny) (ak(posaeny) — ak(@)).
k=1
The previous notations, the inequality ( o 0 12] 1aJ,, and Lemma 6
yield
1372 . (")
0+ Xth) <€ 2°°M sup Y 1/407? poy (5)
(6+ \th) ;9662/ lggantoo)]”
Let us show that

lim E(B + Ath) = 1(6).
Set Fylw/i) = 4g9+;\m(m/y)[h Z] W o-+xh(2/y)]?. We have
(6 4+ Ath) = E(F\(e1/y)). (6)

Notice that
Fx(e1/y) =x=0 Foler/y) P —a.s., (7)
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Fyler/y)50:Guler1/y)s

where

p
Grer/y) =27 L S Llfsonvn(e/9) gosan1/y)

J=1

It is clear that
G)\(El/’y) = Go(El/y) P —a.s.

By Lemma 6, we may write

P o0
E(Gx(e1/y)) = 2771 Z h?- Z 1/40;2[%ak(p9+,\thy)]2.

j=1 k=1

Under condition A2 we conclude that

}%E(Gx(sl/y)) = E(Go(e1/y))-

8)

(€))

(10)

We have E(G)(g1/y)) and E(Gg(e1/y)) are bounded by quantities independent

of A.
Then (9), (10) and Bresis Lieb’s Theorem imply

lim E(|Gx(e1/y) — Go(e1/y)]) = 0.
A—0

The results (11),(8), (7) and the dominated convergence theorem yield
;E%)EUFA(EI/U) — Fo(e1/y)]) = 0.

Hence

lim E(Fx(e1/y)) = E(Fo(e1/y))

p
- E(igg(el/y)[hj Z fj,e(al/y)]g)

= Ep([R (O / Xi-1 = ).

From equation (6) we have

lim U6 + Mh) = Eo([h" 6:(6)]*/ Xi—1 = y).

(1)

(12)



60

The results (5), (12) and the dominated convergence theorem give

1

lim [ U6 + Mh)dt = Ep([h" $:(0)*/ Xi-1 = ). (13)
—VJo

From (13) and (4), we have

lim A™*Ey[(¢3(0 + Ah, 0) — 1)*/ X1 = y] < Eo([W 6:(0)*/Xim1 = y).
Hence
Ep[lim X Ep[(¢:(6+Ah, 0)=1)*/Xiy = y]] < Eg(Eo([WT $:i(9))*/ Xi1 = 9))-

Condition A3, inequalities (4), (5) and the dominated convergence theorem again
yield :
lim A™*Ey[(¢i(0 + Ak, 0) — 1)*] < Ey([n" 4:(0)]")- (14)

On the other hand, we have for any real vector h :
A" (i(0 4 AR, 8) — 1) =0 hTdi(8) Py — as. (15)

This limit is also uniform over compact sets because / is a continuous function.
Hence by Fatou Lemma

E[(h" $:(6))?] < liminf EpA=*(61(60 + Ah, 0) — 1)°. (16)
_)
From this and (14), we deduce

lim Ep)~2(¢s(0 + AR, 0) — 1)% = Ey[(h" $:(6))?].

Similarly as above, we show that the function |EgA~2(¢;(6 + Ah,8) — 1) —
Eg[(hT $;(0))? is continuous.
Hence

lim sup |EpA~2(¢i(8 + Ah,0) —1)% — Eg[(h" ¢:(8))]| = 0.
A—)Olh‘EM

From this, result (15) and Lemma 7, we conclude

sup Eg(A~1(s(0 + M, 8) — 1) — hT$;(6))2 ——0 0.
[h|l<M
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Proof of Lemma 3. From the proof of Lemma 9 of [13], we have for all 0 <
a<l1/2

;:18

Eg(22 o(w)) < []I1 +2(a - 20%) Mgz — Mg)] ™

=l

where 6% = 0 + (n['~1/2(0))u.
By Taylor series expansion, there exists §,6=¢—_ \/- -I—B 0 <t < 1 such that

Pigs = Mgl = n 7 (T72(60)u) TV )2,

Hence for n large enough, we get

Ey(Zp g(u)) H[1+2a 20,)1((r—lﬂ(e)u)Tv,\k,é):z]—(n—nm

IA

6—2{0. =202 Y58, (I ”2(9)1-'»)TV%,§)2

IA

Set

(0.0}
A@®,8) =T720)(Y VAV T T2(0).
=il

Let {va,(0, B) < p} be the eigenvalues of A(6, 6). We have

(T ) V)‘k,e) =n~1 < A(6,0)u,u>> ”u”2mf(ﬂ,é)ereminléiSp vai(6,0)

and

inf  min v4;(0,8) = inf  min [y 9,6) !
(0.A)ekx0 1<i<p 4:6:9) (ea)exxel<z<p[ 4-1,i(0,0)]

: -1
[(Gié?l;}}?xe lnslfécp VA‘lﬂ(B'n 9)]

[ suwp  (A@6,6)71]7

(0.0)eK %0

Il

= [ s IP20)/() VAV N ) T2

(6.0)eK x0 k>1

[SuP”FU?( ||25upHZV)‘k9VT/\k3 1”]41
0€0  E>1

[sup |T2(6 ||2 ey

0K 959#9

vV

(A4
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where 14 is the smallest eigenvalue of EkZI VAk|()VTAk’9.
Therefore, for all 0 < a < 1/2, we have

—9(g—2q2 12()2 i
B0 e e e I o W

< eonllul)

inf,
where g (|[ul|) = 2(a — 20* ﬁ%”u”z
Proof of Lemma 4. Let § = (6, 65,...,6,) and set 8) = 6 +
00 = 0+ L0 ang = g0 - 6,
We have

Ep| Zyp(u)/* = Z,, 0(0) 4" = Ep(Ep(| Znp(w)/* - Zyp(v)M*!/ Xo)-

Set g9 = Xy = z¢. With the previous notations, Taylor series expansion with inte-
gral remainder, Cauchy-Schwarz inequality and with the convexity of ©, all yield :

uT(T(6) "'/
e

Eg(1Zn6(w)/* = Zng(0) 1"/ Xo = 20)
=F ([(HL] 99(2?+h(5z‘/ Ei—l))l” - (Hzil 99(2)(5&/ Ei—l))llf 4]4)
fo Vlexp(-1/4Y 0, Y, Vo) + (1-0)02) & (Ei- 1,€))(0W — 0@)gg)t

< 278009 [ Eppryy g0 ([T 1(3; it Lict Yuo04 (1o 4 (X1, X0) 1/ Xo =
mg)dt

< 2785200V - 0| maxi<j<p Supreg A (7).

The rv’s ¢; are independent of X, Vi > s+1and i, {ax(e;),k > 1} is a sequence
of independent Gaussian r.v’s N(0, ag), with lemmas 11; 12, 14 relation (17), and
monotone convergence theorem, all these imply

Eo(|Znp(w)* = Zy g(v) 44/ X0 = o)

<2t - g iy prco Ty B ((S9(r))4/ Xo = 20) +
6 Y0 Er (S (r)ATE L (8P ()Xo = z0)

< 27892 |9~ maxy << suprea 3n(37e, o llag- (oen) I2) (Bllwol*+
8Elesll*(1 - €)~)
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+GE Zk>1 Er 1Sr ( ))) kz(ag ay(prX, )/Xo—fﬂ)}

<278?pV-p mll" maX1<j<p Supree[3n(E}“§i; oy 2llg‘3—j(pifik)I[Q)Q(SlimuH‘1+
8Eenf*(1- €)™ +6 05 @90 +1,1)]

< Yoro ool IT@O)22Kp*) (1 - €)Y ju - v|[%.
Hence

Eg(|Zn0(w)"/*~Zng(0) ") < (8Kp")(1~ SupZEeIIan (inf [T(6)I)~"E"

[ |

Pmﬂf of Lemma 9. From X, = pg(Xy—1) + &, we have X, = pp(Xp) +
Ez o Phen—i. Since {&;,i > 1} isa strong Gaussian noise independent of X,
using Holder inequality and (a + b)? < 2a® + 2b%, we have

n—1
Ey(|Xal/X0) < 8llap(Xo)l+8 Y, CMHETUE(len s |llen-iyllen—islllen—sll)
11,19,13,14=0
< 8C™|Xoll* + 8E(llea)(L - O)*,

We deduce a similar result for the first inequality from E([|ey[|*) = )., 7. W
Proof of Lemmal0. We have

n-1 n—1
o(S30) S/ X0) = Eo(()_ Si)Ea(S3/0(Xo, - Xnot,€1, s Enc1))/ Xo),
i=1 1=l

But

i}
Eg(Sg/(XO :.’,C[],..,Xn_l =Tp—1,E1 = €ly-3En—1 — En— 1 Eg Zak gak( PoLn— 1)ak(€n)) —U,
k=1

because the exponent is odd (=3) and

0 =y, 0
Yn > 1, Zok 6‘9 (potn—1)ag(en) = N(0, Z A (aTak( Pozn-1))?),;
=1l

k=1
(17)
(which is the a.s. limit of a sequence of Gaussian rv’s). We proceed similarly for
the 2nd equality. W
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Proof of Lemma 11. By the definition of F5(f) and using Lemma 10, we have

Fy(0) = Ep(St+ S5+ 65252 + 4538, + 48,53 /Xy = xp)
= Fp(S{ + 53 + 68357/ Xo = z0).

Again using Lemmal0 and a recurrence on n, we obtain

Far1() = Fa(6)+ Eg(Sppr 65041 Si)*/Xo = 20)
=1

n+l 1
ZEH 5'4/X[)—IU +6ZE3 SI-H ZST)Q/X():M)).
i=1 i=1 =1

| |
Proof of Lemma 12. We have
= 0
Ey(S}/Xo) = Bg(Bol() 0;?2gak(PeXz‘—l)ﬂk(Ei))il/XoaXi—l]/Xo)A
k=1 J

From the relation (17) and the fact thatif Y < N (0, %) then E(Y*™) = _gﬂggm,
we imply

<
3
=l

B3 o X )0 Xe) = ) = Ao
k=1

Hence from Cauchy-Schwarz inequality and Lemma 9

Eo(St/Xo=20) < 3() oi2l(es ) er)|28C™ woll* + 8Eea*(1 - €) .
=il

As C < 1 we have the result. B
Proof of Lemma 13. As in the proof of Lemma 9, we may obtain

Li(6) < Lia(6) + Cs(2]lzo])* + Cv).

Hence
I(8) < Ii1(6) + Cs(2]lzol® + C1).

We have the result by recurrence on i. B
Proof of Lemma 14.
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1. Similarly as in in the proof of Lemma 9, we may have

n—i
ZEH[ZST Jk a'k PBPH n— z—l)/XU—$O]
k=1 r=]

n—i—1

ZEs[ Z 81207202 (paph Xn-i-1)/ Xo = o] + Eol(Sn—i)?0; *a2 (pophXn—ic1)/ Xo = o

A(n,i)

11

n—i-1
+ 2Bl Y Sv)Sn-i0; 0k (PophXn-i-1)/Xo = z0]
r=]
oo oC {
= Qi+ 1)+ ) BB} 03 (oo Xn-i-1)aulEni))’0; a3 (oph Xn-i1)/Xo = 20, ..
k=3 u=1
n—i—1 :
s Xn—i-1 = En—i—1,€1, - En—i-1){ X0 = 20| + 2Eg|Fa|( Z Sr)oy 2ap (popoXn-i-1)
r=1]
(0.9}
(z 05 “0u(P8Xni-1)0u(En—1)) /Ko = B0y Xnoict = it 61, i6neica] [ Xo = o).
u=i

Asforalln > 1, the random variable Yo ; 07 2 (pazn—1)au(en) < N(0, Y o0, 0 %d% (pezn—1))
(a.s. limit of Gaussian rv’s), Cauchy-Schwartz inequality, Lemme 9 and assump-
tion A0, all this imply

(o9} o.9]
Qi+ 1)+ Bol(Y 03 (oo Xn-i-1))o5” < o Xn-ic1,ex > [Xo =30 +0
k=1 u=1
oo

Qi+ 1) +C'()_ i liperl Bleol + Co)
k=1

A(n,i)

IA

Hence the result.
2. With the same arguments as in 1, Fatou inequality, Lemmas 13 and 9, we may
deduce

00 n—i

N El(Y S0 < popy enciver > [ Xo = m)
=l =l

CIE ) oDl + C)(n—i+3).
k=1

B(n,i)

I

3. With the same arguments as in 1, Lebesgue Theorem, A6(b), Cauchy-Schwartz
inequality, Cee,, = a2e,, Holder inequality, Lemma 9 and Lemma 13, we may



66

have
n= ’L
Bl = ZEQ[ZS O’k <pgp9 Lo en >0, <p9p3Xn Li el > o Xo =)
k=] r=1
< V3l IR a2 Ianex DO oD 20 o lsseull 2Bl Xni-1lP/ Xo = o]
k>1 k>1 u>1
+ 205 1P Fnescn O)M2CY  Nsseull) o 25k B (Boll Xnmical*/ Xo = 2o]) /2
u>1
< ACTC) | ob) 28]zt + Co)* +
k>1
ACTNAVu=i=1C3()  ap) A (2lzol® + C1) 2 (Bllzol* + Co) /2.
k>1

4. The inequality of 4 follows from the relation Q7 (n,i) = AP (n,i) +
Béj )(n, i)+ Eéj )(n, i) and the previous inequalities.
5. From a recurrence in the inequality of 4 we obtain

n—i—2

Q{ )(n z)<Q9 (n i+(n—i—1))+Co( Z CH Y n—i—r+3))( ZH&:OH
r=0 r=0
(18)

But

Q((;j)(nan_ 1)
2A(n,n — 1) + 2B(n,n - 1).

QP (n i+ (n—-i-1))

IA

Similarly as previously we may have

24(n,n—1) < 203(C™)?|ao|*
< CoC™ (ol
and
2B(n,n—-1) < 2'\/§C§(Cn_2)2(20§)‘|$0||2
k>1
< CoC™2(||oll?).
Hence

QP(n,n - 1) < C* K anon
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Plugging the last result in equality (18) and since Cy and C are not depending of 6
and j, we have the desired result. H

Poof of Theorem 2bis. Let A, = InZ, y(h) where we can take a change of
variable 6, = 6 +n~1/2h (see LAN condition [11]). Under A1, A2 A3 we have
the LAN condition from Theorem 1. For ULAN condition it suffices to verify that
under Py and for all M > 0

sup |A, — RTT(0)/28,(6) + 1/2hTT(0)h| = 0,(1).
|hl<M

A Taylor series expansion gives Py-a.s.: Vi, k > 1, EIG;),C, EIH;‘:‘k between 6 and
By, =08 +n"Y2h
A = hTT(0)Y/28,(8) + (2n) "'hT Rgy gs+h,

where

T Ry goh = Y0y S ) —0 (R Jar(pog kXio1) b ap(peg e Xic1) +
(W Var(pes k Xi-1)]2 — b Jay(pgse x Xi-1) h ar(X3)}.

05 = {0p ok > 1} and 03* = {0, k > 1} are given by

O =70+ (1= 7)0 =0+ n"/2rph and 0 < ||| < 1,

Or. = skl + (1 — s)0 = 6 + n~Y2s:h and 0 < ||sg|| < 1.
Notice that, for all k& the matrix 7 and s;, are diagonal.

We have

An — hSp(6) + 1/2h T(0)h = (20)"'hT Rgs geeh + 1/20TT(O)h.  (19)
Therefore to obtain the result it remains to show that under F :

sup |(2n)_1hTR9;“g;*h +1/2hTT()h] = 0,(1).
h, |h|<M

We get
|(20) """ Ryy gaeh + 1/2RTT(6)R] < |(2n)"A" Ry geeh — (2n)~'h" Ry gh|
+ |(2n)*hT Ry gh + 1/2hTT(0)h| (20)

and
n oo
|(2n) 'R  Rogh +1/28"T(0)h] < 1/2M°|ln ) > 0 {Jap(peXio1)ax (e

=1 k=1

+ I Y0 -0 Va(peXi-1) V7 ak(peXi1)]

I=1k—1]
0
+ )0 EglVar(poXim1)VVar(poXi-1 )]

k=1
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From the equality 2ab = (a+b)2—a®—b?, we obtain under A5, forall 1 < r, 5 < p

_lzzgk [89 (pﬂXi 1)33 (ng, 1)] = (217,)“1220-

1=10k=1 1=1 k=1

9, 0
< Xn 1,(3&.09) (6_&’)6)

3
2n IZZ <X¢1 20 pg) ek>2
T

f=ER=

*ek >2

3 :
- (2n) 1220‘ < Pl % —pg) e >2.
=ikl d

By Lemma 8 we deduce

" o)
lzzok [ag (ng_ )39 (Pe-Xm l)] _>n—)oo T,8)
=] k=1

with

o)
rs—EkZUk [89 ag(poXi- 1)68 ag(peXi-1)]-
1

Hence
n ™ 00

™)) -0k Var(poXi-1)Var(poXi-1) 1+ 0 Eo[Var(poXi-1)Var(ppXic1) lll Znoseo 0

i=1 k=1 k=1
By Lemma 8 and under A0 and Ad(b), we have forall 1 < r,s < p, under £y

PRI )
n- 0y (PBXa l)ﬂk(sz —n—00 *
= 89 89

Therefore, under Py

sup |(2n)'AT Ry gh + 1/2hTT(B)h] —nsoo 0. @1)
i <pe

On the other part,

|(2n) AT Rys gs+h — (2n)""hT Ry gh| 1/2M3| I, 1 (h) + L a(h) + I;!Q(h)

£
i In,S(h) 5= In,fi(h) & In,5(h)‘: (22)
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where
n 0o 92
Ial=0 "% % —ngwak(Pe;,kXi—l)[ak(PB;,an;-l)—ak(PaXi—l)],
i=1 k=1 e

9] )
_122_% 39 k(Poy e X 1)[39 ag(pex 1k Xi-1)— 6, ag(peXi-1)],
i=1 k=1

f

43 8 b
=

2

- 0
Ins(h) =n IZZ 2[89 20" k(Poxs ke Xi-1) — 50.90 ———ap(0eXi-1)|ar(:),
i—=1E=] i
L5033 oot i )
Ina(h)=n~ —o, *ak(poXi-1 ak(pox kXi-1)— 77— ak(pe Xi-1)],
o 56,00, 56,00

2 2

Ins(h) = Tfl;:;ak ar(peXi- )[89839 (Pa;*,:ch'1)-&%(99)&-1)]-
By the same technics used in the proof of Theorem 2 in ([13]), we may obtain

that for all j = 1,..,5, I, j(h) converges to 0 in Py probability uniformly in 0 <

h< M.
From the last result and inequalities (22),(22) and (20 ), we conclude that under

Py and for all M >0

sup |An — RTT(8)Y28,(8) + 1/2hTT(0)h] = 0,(1).
|h|<M

This ends the proof. W
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