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Abstract

We regularize a modification of the Poisson process and get an
exponential bound for sequences of the smoothed process. It is also
possible to consider various exponential bounds in the context of den-
sity estimation and apply them to the smoothed empirical distribution
function. For these smoothed processes, results for the space C [0,1]
may be derived as well as for some other Banach spaces.

Keywords: Smooth Poisson process, regular density estimation, exponen-
tial rate, Banach spaces, Spline smoothing, Régression.
MSC 2010: 62G07, 62G08, 60G55, 60F10

1 Introduction

Our aim is to regularize the Poisson process and the empirical distribution
function. Various exponential rates are envisaged. Also, consistency appears
in the context of Banach spaces.

Here 0 = To T\ <3 ... <3 Tn <3 ... is the arrivai time, where À 0 is the
intensity of Poisson process with Nt~ V{\t). Now we modify the Poisson
process by setting

Nt(5) = S.Nt, 6 > 0

and, by interpolation with Lt(ô), one obtains

swp \Lt(ô) - Nt(ô)\ < ^
t>0 2
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(see Section 2).
In Section 3, we study the empirical distribution fonction and dérivé ex-

ponential bounds from results on \\fn — fW^- Note that existing exponential
rates are rather intricate, then, we obtain a simple resuit, not necessarily at
a higher level but that can be directly derived from Bosq [1998], see Lemma
3.1 and Proposition 3.3.

In Section 4, other classical smoothing techniques, namely based on

splines and existence of dérivatives, are presented in the context of régression
estimation. For recent references concerning dérivatives estimation, one may
refer to Prakasa Rao [2017], Giné and Sang [2013] with smooth dérivative
and Chaubey and Shirazi [2015] in the case of wavelets estimation. Con-
cerning Mas and Pumo [2009], they compute the dérivatives of the curve
data in a functional framework.

In Section 5, in this context of smoothness, we examine the case of C [0,1]
which yields immédiate results. Results for some general Banach spaces are
also possible.

Appendix is postponed until Section 6 for results about density estima-
tion.

For a global bibliographie study, note that smoothing techniques appear
in a large number of fields which resuit in a very large number of publi-
cations which cannot be listed exhaustively Thus, we only give here some
references. In Smaga [1978]and Efromovich [2001]continuons m-th conver-
gence in dérivative is considered. In Reiss [1981], the empirical distribu-
tion fonction and the smooth distribution fonction are studied. Concerning
Sarda [1993], a cross-validation procedure is introduced in order to select the
smoothing parameter of the kernel distribution estimate. Also, the polyg-
onal smoothing is a simple and natural method in order to regularize the
empirical distribution fonction (cf. Blanke and Bosq, 2018).

In Servien [2009], various estimation of the distribution fonction are re-
viewed. In Cavalier and Hengartner [2009] and Wang et al. [2010], var-
ious results are obtained for smooth distribution fonctions. In Leblanc

[2012], jumps discontinuity are smoothed with Berstein polynomials. Fi-
nally, in Xue and Wang [2010] sophisticated spline régression is considered.
In Chacon et al. [2014] smooth distribution holds in the context of Fourier
process.

Concerning exponential bounds, we may consider, for example, results
of Roussas [1996a] based on Bennett and Hoeffding inequality; Henriques
and Oliveira [2005] with exponential rate for kernel density. In Giné and
Nickl [2009] exponential rates are also given with application to adaptive
estimation. Of course, the main exponential bound cornes from Massart
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[1990] and Talagrand [1994].
Finally, a mixing concerning smoothness, density function and Poisson

process appears in Chaubey et al. [2011].

2 Smooth Poisson process

Here 0 = Tq < T\ < ... < Tn < ... is the arrivai time, where A > 0 is the
intensity of Poisson process with Nt rsj V(Xt).

Now, we modify the Poisson process, by setting ô > 0 with

Nt(S) = S.Nt (2.1)
then we may define the smoothed Poisson process in the following propos-
tion.

Proposition 2.1. We put

JL.
2Ti ■1{0-t-Tl} + ^ V (Tk+1 ~ Tk) + 2 J ‘ {Tfc<t-Tfc+l}

and

sup |Lt(ô) - Nt(S)| < ^
t>o ^

Proof. See Figure 1. □

Example 2.2. A refraction with light is envisaged in the context of vertical
plan (see Bass, 1978, p.120-121).
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Figure 1: Smooth Poisson process

Lemma 2.3. We get

ENt(S) = XtS
and

VNt(ô) = X tô2
Also

P(Nt(ô) 1 kS) = exp(-Ake N

Proof. Clear from Nt(ô) — S.Nt.

Another lemma may be useful.

Lemma 2.4. We hâve

□

P{Tk <t< Tk+1) = P{Tk <t) - P{Tk+i <t), t> 0, k e N
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and also

Y/P(Nt(.6) = kS) = Y/P{Tk<t<Tk+1)<œ, t> 0, <S>0
k k

Proof. First, note that

P(Tk < t) = P (TJ, < t), t > 0, k € N (2.
since Tk follows the r(k, À) distribution. Then

thus

{£ < Tk+1} = ({Tfc < t} n {t < Tfc+i}) U ({Tk > 7} n {t < Tk+1})

{t < Tk+1} = {Tk < t < Tk+i} U {t <Tk < Tk+1}
and since Tk < Tk+i is trivial one obtains the desired resuit, cf (2.2).

On the other hand, we get

P(Nt(6) = kS) = P(Nt = k) = P{Tk < t < Tk+1) = exp(-At)

and by using Stirling formula, one obtains

h = Æ(^*(i + ïF + o(^))

Ml
k\

then

P{Tk <t< Tk+1) exp(—At) f Xte
\Z2nk V k J 1 + + (9(p)

and

E^£«<r„,SÇSgi(f)*r4< oo.



78

Then, Lemma 2.4 gives

P (rï^! Uk>n {Tk <t < Tk+1)) = 0.

Now, to dérivé an exponential bound, we consider of i.i.d. modified
Poisson processes and put Nij(S) = Ô.Ni(t), 1 < i < n.

Proposition 2.5. There exists c > 0 such that

P(iü g {NiAÔ) ~ MS) 1 ~ v) ~ 2eXP +
with t > 0, ï] > 0, ô > 0.

Proof. First we consider <5 = 1, then

OO 'fc

E(expaNt) — exp(qfc). exp(—À)— = exp(—À), expexp(-a)A < oo
k=o

Now, Cramer’s condition (see Remark 2.6) is équivalent to existence of
E(exp'yNt), 7 > 0 (See 1.17 p.24 and p.27 in Bosq, 1998).

Then, from Bernstein’s inequality (Bosq, 1998, p.24) one obtain

P(\~ g W.t(D - At) I > V) < 2exp ) ■
Next by using N^t(ô) — Ô.N^ft) 1 < i < n and Lemma 2.3 we get the

desired resuit. □

Remark 2.6. Here c satisfies

E\Nt - Xt\k < ck~2k\Xt < 00, k > 3
which is the Cramer’s condition.

Next, we may dérivé the following exponential bound for sequences of
i.i.d. smoothed Poisson processes L^t(ôn), 1 < i < n, ôn > 0, based on the
Ni,t(Sn).
Proposition 2.7. There exists c > 0 such that for 77 > | > 0 and t > 0:

1
P{|- V - Xtô) I > 77) < 2 exp

n ■1
1=1

ô\2
-n-

(rit 2)
4Xtô2 + 2c(t7 — | )S
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Proof. Straightforward from propositions 2.1 and 2.5. □

Proposition 2.8. For sequences of i.i.d. smoothed Poisson processes with
ô — Sn —>• 0, we obtain that almost surely for n large enough

nôr
1=1

~ 2’ <>a

Proof. In Proposition 2.7, we hâve g — | for n large enough so, for
g = goSn with go > b:

1 n /
-P(| X] LiASn) ~ At| > 770) < 2 exp ( -

n i=l '

-n

9
?7o

16A7 + 4c?7o

and the resuit follows with Borel-Cantelli lemma. □

Remark 2.9. Smoothness can also be considered in the context of continuons

dérivative (see Section 4).
Also, the smooth Poisson process allows to get the space C [0,1] and

Section 5 may give direct results in this case.

3 Smooth empirical distribution function and den-
sity estimation

For Xp,..., Xn i.i.d. on [0,1] with density /, we may set

1 ,n X — T

i=1

where, for example, K(u) = -^== exp(—^), hn > 0.
Next, the smooth estimation of the distribution function F(t) = f(s)ds,

for 0 < t < 1 follows with

Fn(t) = [ fn{s)ds, 0 < t < 1.J 0

Lemma 3.1. It holds

sup |Fn(t) - F(t)| < sup | fn(x) - f(x)|
0<t<l 0<x<l
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Proof. We easily get

sup |Fn(t) - F(t)| < sup
0<t<l 0<t<l

(/n(s) - f(s))ds

and

sup \Fn(t) - F(t)\ < [ sup \fn(x) - f{x)\ dx
0<t<l J 0 0<æ<l

and the resuit is clear. □

Lemma 3.1 allows to dérivé exponential bounds from results on density
estimation. We may refer to Henriques and Oliveira [2005] and Giné and
Nickl [2009], however the exponential rate is rather intricate. Then, in the
context of Lemma 3.2 and Proposition 3.3, derived from results in Bosq
[1998], we obtain more simple results, not necessarily at a higher level, but
sufficient to dérivé immédiate results for Fn.

Lemma 3.2. If f is of class C2, then

p(\fn(x)~f(x)\ > t?) < 2exp( wmumi+AWKw^ri
nhn), 0<x<l

with ï] > ah^ and hn small enough with nhn —»■ 00.

Proof. See Appendix 1. □

Now, we use the following condition satisfied for a gaussian density K:
Al- \K(v)-K(u)\ <l\v-u\u,ve [0,1], £>0.
Then

Proposition 3.3. From Al and if f is of class C2, one obtains

P( sup I fn(x) - f(x)I > 77) < 2(kn + 1) exp(
0<x<l

r]2nhn
64 jl/lloo \\K\\l + 8 ll-finioo??

with ï] > max(^3A, ah^), hn —> 0,7n —>■ 0,7n(kn + 1) = 1, for n large
enough.

Proof. See Appendix 2. □
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Example 3.4. If hn = (lnn)an a, 0 < a < 1 and 7n = n b, 2a < b then,
we obtain

P(\\fn~ f\\oo >V) < 2nb exP(- n1~“(lnn)“),
MII/ILM + spriL.?

77 > max(an 2a(lnn)2a, 6+2a(lnn) 2a). So with a = ^ and 77 —

70(7771 ) ^ = 70(^7)^, 70 > 0 large enough, we get by Borel-Cantelli lemma
Tl 2

limsup(——)s ||/n - /< 00 a.s.
n—>00 rn n

Also by Lemma 3.1, the same resuit holds for ||Fn — F

4 Smoothing Splines
Various smoothing variants can be envisaged with in particular smoothing
splines. We give here a small review in the context of functional estimation.

For example, one may consider the model:

Yi = f(Xi) + £i, 1 < i < n (4.1)
where are independent and identically distributed with Eei = 0,Var(£^) =
cr2 > 0, 1 < i < n.

The smoothing spline estimation of / consists in minimizing

1 n r

~'£(Yl~f(Xi))2 + ^ / lf®(x)l2dx
<=! 0

with jll > 0 and pE N (See Efromovich, 1999 p. 347-348).
Another possible model, cf Besse and Cardot [1996], get the following

form:

fn = arg mm

Vj = f(tj) + Vj, 1 <j<Q-
Now, we suppose that t -» f(t) belongs to a Sobolev space, say

W2 [0,11 = | / : [0,1] R; /, /'a.c, J\f"(t)\2dt -< oo
equipped with the scalar product

0
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(/,£> = [ {f(t)g(t) + f"(t)g"(t))dtf,geW‘J o

Then the spline approximation is the solution of

mm -Vif +£ / l/"W2^
ô=i o

where ^ is a smoothing parameter
Remark 4.1. In the context of (4.1), one may dérivé results for spline dis-
tribution function. We may write for the empirical distribution function
Fn{x) — ~ Yli=l ^-{Xi<x} as

Fn(Xi) = F (Xi) +£i, i = l <i <n

and

Fn = arg min
FeCP [o,i]

n p

- F(Xi)Ÿ + n / \F^(x)\2dx
i= 1 n

, p e N

with fi strictly positive. Now results holding for splines may be applied,
see for example Rice and Rosenblatt [1983] and Xue and Wang [2010] for
monotonie distribution function estimation.

Remark 4.2. Generalizations with various splines smoothing may be found
in Berlinet and Thomas-Agnan [2004], see chapter 3, and also in Wahba
[1990].

5 Banach Space
Since M = (Lt(S),0 < t < 1) is a smooth Poisson process, one may con-
sider that M takes its values in C[0,1] and various results appear for i.i.d.
sequences of such processes.

Now we put

1 A
Mn(t, 5) — — (Lî(t, ô) — Xtô), 0 < t < 1

i=1

Then, some simple results appear by considering (7[0,1] :

r
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Proposition 5.1. We get

• n1/4(logn)_/?Mn(t, 8) -» 0 a.s., 0<t<l,/3>^
. nE(M%(t,5)) -+ Ek=-oOE(X0(5,t)Xk(5,t))whereXk(S,t)) = (Lk(t,S)

\tô), 0 < t < 1, k €E N.
• Also Mn{t, 5) => IVwhere A" is standard gaussian.

Proof. See Bosq [2000] cf p.168, Theorem 6.11, Theorem 6.12, Theorem 6.15
(see p.169-175). □

Remark 5.2. It is also possible to obtain results in Banach space of type 2 as
well as the law of the iterated logarithm (see Ledoux and Talagrand, 1991).

6 Appendix
6.1 Proof of Lemma 3.2

Consider Bernstein inequality, see for example (1.18) in Bosq, 1998, that is:

P{\fn(x) ~ Efn(x)\ >rj)< 2exp(
l^!l2 + 2||^!lco>7

nhn) (6.1)

Now we want to replace Efn(x) with f(x). By using Bosq, 1998 in (2.22)
p.48, one obtains a classical décomposition of the bias:

\Efn{x) ~ f{x)\ < ahl (6.2)
where a does not dépend on n and / is of class C2.
Then, we hâve

I fn(x) - f(x) I < I fn{x) - Efn(x) | + |Efn(x) - f(x) \
and

I fn(x) - f(x) | < | fn(x) - Efn(x) | + ah2n
Next, we get

P{\fn(x) - f(x)I > ri) < P{\fn(x) - f(x)\ > T] - a^)
and since hn —> 0, (6.1) gives the resuit with 77 > ah^ and 77 — > 2

for n large enough.
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6.2 Proof of Proposition 3.3

Now, we consider discretization by setting jjn, 0 < j < knwhere (kn+l)yn =
1 and kn is an integer. Then

X ^ cc

fn(Xj) = —r~Y^K( < Ü + l)7n, 0 < j < knTln^n . -, ^n1=1

and

1 ^ "V"

fnijln) =-7r-y>( irJ7"). 0 < i < *nh
i=1

h7

Then, by using Al, we easily get

and

|/n(Zj)-/nÜ7n)| <

|Ê/„(x3) - E/„(jy„)| <

(6.3)

(6.4)

Now we put

fn0)-Efn0) = [/n (z) '~ fn (j7n)] + [/n C?7n )~Efn (.?7n)] + [£/n (jln)~Efn (x)]

where jjn <x< (j + l)jn.
Then, from (6.3) and (6.4), one obtains

|(/nW - Efn(x)) - (fn(j'Yn) ~ Efn(jjn))\ < 2 (6.5)
""n

Now, let us put

A = max I fn (j-in)- Efn (j7n ) I
0<j<fcn

and

5= sup |/n(x) - £/n(x)|
0<x<l

Then, from (6.5), for jjn < x < (j + l)7n
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\fn{x) - Efn(x) | < |/nÜ7n) ~ Efn(jjn)\ + 2 jE
thus

and

B <A + 2 £7,

pn = P(B>£)<P(A>£-2^)h'n

where e — 2 ^ > 0 and Tf- —» 0.«4 hn
Now we hâve

Æn /?

Vn < ]>^-P(|/nÜ7n) - #/nÜ7n)| > £ “ 2 -j^)
3=0 n

and from (6.1) and n large enough with e — 2 ^ > 0:llrn

Vn < 2(kn + l)exp(—
16|l/ll00ml + 4||A-||00e:

The proof for the bias is then similar to Lemma 3.2.

nhn).
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