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Averaged Reynolds Equation for Flows between
Rough Surfaces in Sliding Motion

M. PRAT, F. PLOURABOUÉ, and N. LETALLEUR
Institut de Mécanique des Fluides, UMR CNRS no 5502, Allée du Pr C. Soula 31400 Toulouse,
France

Abstract. The flow between rough surfaces in sliding motion with contacts between these surfaces,
is analyzed through the volume averaging method. Assuming a Reynolds (lubrication) approximation
at the roughness scale, an average flow model is obtained combining spatial and time average. Time
average, which is often omitted in previous works, is specially discussed. It is shown that the effective
transport coefficients, traditionally termed ‘flow factors’ in the lubrication literature, that appear in
the average equations can be obtained from the solution to two closure problems. This allows for the
numerical determination of flow factors on firmer bases and sheds light on some arguments to the
literature. Moreover, fluid flows through fractures form an important subset of problems embodied
in the present analysis, for which macroscopisation is given.

Key words: volume averaging, Reynolds equations, lubrication, rough surfaces, fracture flows.

Nomenclature

a local distance between surfaces.
Asf is the boundary of the contact zones within Sf .
Asf is the vertical projection of Asf in the Euclidean plane Oxy.
b, ci , c closure vectors fields for the pressure with i = 1, 2.
C macroscopic transport tensor.
hi height of solid surface number i = 1, 2.
h0i mean height of solid surface number i = 1, 2.
hm h02 − h01− mean distance between surfaces.
h local aperture between surfaces.
K local permeability field.
K∗ macroscopic permeability tensor.
nsf normal vector pointing out of a subscript sf domain.
� is the mean surface defined by h+(x) = (h1 + h2)/2.
�f is the region of � where the local aperture is non zero.
�sf is the boundary of the contact zones within �.
p pressure field.
φx, φfp are the Poiseuille flow factor.
φs, φf , φf s are the Couette flow factor.
q the volumetric flow rate per unit width.
S is an elementary representative region of �.
Sf is the region of S where the local aperture is non zero.



σi is the root mean square roughness of surface i = 1, 2.

σ =
√
σ 2

1 + σ 2
2 is the composite roughness.

τ shear vector which is the shear stress tensor projected parallel to the surfaces mean
planes.

1. Introduction

1.1. CONTEXT AND AIM OF THE STUDY

Studying the effect of surface roughness on lubrication is a very complex tribolo-
gical problem. Firstly it involves a time dependent fluid domain resulting from the
motion and deformation of the moving solid surfaces. This geometrical complexity
is in itself more or less difficult to analyze, depending on the surface roughness
patterns. Additional physical effects, such as cavitation, piezoviscosity or com-
pressibility, among others, may contribute to complexity of the problem. Such
effects could moreover be investigated at the various scales for which they occur,
that is for a few asperities, for the statistically representative region, or for the
system scale. In this paper we have nevertheless concentrated on the geometrical
complexity of the problem, in the aim of finding an average influence of the surface
roughness. Noting that the typical roughness length is much smaller than the sur-
face size, it is not surprising that many authors have been interested by an average
flow description. This can be done by using an up-scaling procedure which derives
macroscopic equations which are then used to predict the average flow. It is well
known (Whitaker, 1999) that such up-scaling depends on the relevant microscopic
equations.

Here, the micro-scale is the surface roughness scale. In most applications the
roughness local slope is small. It is therefore usually assumed that the flow equa-
tions at the roughness scale are well described by the Reynolds (lubrication) ap-
proximation. We will use this approximation in this study and will discuss it in
more detail in Section 1.2. Deriving the average flow model under this assumption
can be done by using various techniques.

In the context of surface lubrication, the first developments were made by
Christensen (1970) and Chow and Cheng (1976) within the framework of the
stochastic process theory. These works were limited to two-dimensional trans-
verse and longitudinal roughness. Patir and Cheng (1978, 1979), were the first
to propose a model for general roughness patterns. Their derivation was essen-
tially heuristic, and it fails to properly model the situations where the roughness
anisotropy directions are not identical to the Cartesian axis. This was pointed out
for the first time by Elrod (1979) and subsequently by various authors, including
Tripp (1983) who derived the correct tensorial form of the average flow model
using a stochastic approach. When the off-diagonal terms of the tensor are neg-
ligible, Tripp model is, however, essentially identical to that of Patir and Cheng.
It may be noted that Tripp did not consider the possibility of contact between



surfaces. Under the no-contact assumption, the lubrication problem was addressed
by Bayada and Chambat (1988) and Bayada and Faure (1989) within the frame-
work of the homogenization theory for spatially periodic structures. The Patir
and Cheng model was again recovered when the off-diagonal terms of tensors
could be neglected. In addition to establishing the average flow model on a much
firmer base, one interesting feature of homogenization is to propose local problems,
called auxiliary problems, that have to be solved over a unit cell of the periodic
micro-structure in order to compute the average tensors (see for instance Mei and
Auriault, 1989).

Defining such auxiliary problems is a key technical step, very similar to finding
closure problems for the volume averaging technique used in the present paper.
Moreover very similar technical steps and conclusions can also be found from an
other work using a very similar volume averaging technique in periodic flows, in
the context of suspension shear flow (Adler and Brenner, 1985; Adler et al., 1985).

However, in contrast to assumptions made in Bayada et al. or Tripp (1983), the
present work considers cases where solid contact areas (between lubricated sur-
faces) do not involve any fluid. There is also an additional feature that distinguishes
the present work from the previous ones. We consider situations where the sliding
motion of surfaces may lead to combining time and spatial averaging in order to
obtain the macroscopic behavior. An example of such a situation is considered in a
companion paper (Letalleur et al., 2000).

Similarly with mostly all previous literature, additional complications due to
contact, surface deformation (see, however, Knoll et al., 1998) or physical ef-
fects previously listed (cavitation, piezoviscosity,..) are ignored. The fluid is then
assumed incompressible, isothermal and the viscosity is constant.

Although the present work was motivated by lubrication oriented problems, it
is also of interest for the modeling of flow in a single fracture induced by average
pressure gradients, see Adler and Thovert (1999).

This case is also to be observed when the velocities of the surfaces are set to
zero. It also presents some formal analogy (again when the surfaces are assumed to
be motionless) with the modeling of single phase flow in heterogeneous porous me-
dia as in Quintard and Whitaker (1987). The method we used, which was initially
developed by Whitaker and co-workers, has been extensively used for studying
transport phenomena in porous media, see Whitaker (1999) and references therein.
It is of interest to apply it to a somewhat new domain (such as lubrication). The
possible time-dependence of the spatial averaged variables is an interesting feature
of the present application. Although time-dependence can be rather simply dealt
with in our context, this is an example of situations involving space and time
averages (two phase flows in porous media or rough fractures are obvious examples
of such situations).

In this respect, our approach presents striking similarities with works done in
the area of suspensions (Adler and Brenner 1985; Adler et al. 1985). In particular,



there are considerations on time averaging and ergodicity which may be translated
in the present case, and will be discussed in Section 3.

Finally, the paper is organized as follows. The main assumptions are listed in
Section 1.2 where the equations governing the flow at the roughness scale are also
presented. The volume averaging is performed in Section 2 so as to deduce the
closure problems derived in Section 2.1. The average flow model is obtained in
Section 2.2 and compared with the classical Patir and Cheng results. Section 3 is
devoted to the discussion results. The expression of flow factors turns out to be a
particular case (see Section 4, the case of simple unidirectional striated surfaces)
which can be derived from our model.

1.2. PROBLEM FORMULATION AND HYPOTHESIS

The situation under study is sketched in Figure 1. This paper considers random
rough surfaces, for which the scale of the ‘macroscopic’ geometry and the ‘micro-
scopic’ roughness are greatly distinct both being spatially variable. The physical
situation considered in this paper is when the two surfaces are sliding with different
parallel velocities and simultaneously an overall pressure drop is applied on the
fluid. Hence the aim of this study is to obtain some macroscopic description for
hydrodynamical quantities at the macroscopic level, for which the spatial variations
of the aperture field are very slow compared to the microscopic ones. It is assumed
that the mean planes of the two surfaces are parallel. The velocity of the top surface
(surface 2) is U2. That of the bottom surface (surface 1) is U1. Note that U2 and
U1 are not necessarily collinear. A reference plane z= 0 is introduced and each
surface is described by

hi = h0i + h̃i, i = 1, 2,

Figure 1. System of two rough surfaces in sliding motion.



where h0i is the mean plane of surface i. h̃i is the height variation of surface i

around its mean plane. The mean distance between the two surfaces is then given
by

hm = h02 − h01,

and the local distance between both surfaces by

a = h02 + h̃2 − (h01 + h̃1).

When hm decreases, the two surfaces are in contact. Usually, in order to determine
the new shapes of the two surfaces one has to take their deformation into account.
This phenomenon is, however, not considered in the present paper. In accordance
with previous works (see the work of Adler and Thovert (1999) and the references
therein), the local aperture field h is simply defined by

h = a, if a � 0,

h = 0, if a < 0.

The zones where a < 0 are the contact zones. The fluid is assumed to be
Newtonian and incompressible. The viscosity is constant. Temperature variations
and cavitation phenomena, if any, are not considered. As mentioned before, the
local slopes are assumed to be small and the flow at the roughness scale is then gov-
erned by the Reynolds (lubrication) equation. This can be rigorously established
when there is no contact between the two solid surfaces (Adler and Thovert, 1999).
The relevance of the Reynolds equation, when surfaces moving at different speeds
touch one another, is not obvious. At contact points, a candid geometrical point of
view should attribute two possible velocities to the fluid namely U1 and U2 ! On
the other hand, it seems very sensible to admit the validity of Reynolds equation up
to some phenomenological distance to the solid contacts. Such distance might be
small, and its exact value should hardly influence the macroscopic behavior, except
for those related to the shear stress undergone by surfaces. Nevertheless, to the best
of our knowledge, the literature does not provide any estimate for such continuum
mechanics cut-off. Consequently, we postulate the validity of the Reynolds equa-
tion as it has almost always been done in previous works (Patir and Cheng, 1979;
Peeken et al., 1997).

Owing to the relative motion of surface, the problem is unsteady. Using the
Reynolds equation implies that the characteristic time td of momentum diffusion
over a distance of the order of roughness heights is small in comparison to the
characteristic time ts associated with the relative motion of surfaces. These times
can be estimated respectively as,

td = σ 2

ν
, ts = lc

(U2 − U1)
,



where σ is a roughness scale (for instance the composite standard deviation of h̃1

and h̃2, see Equation (36)) and ν is the kinematic viscosity of the fluid. lc may be
regarded as the correlation length of the aperture field. This yields the following
result

td

ts
= σ (U2 − U1)

ν

σ

lc
,

which shows that a sufficient condition for the quasi-steadiness approximation to be
valid is related to a regime of small reduced Reynolds number that is Re= σ 2(U2−
U1)/νlc � 1. This constraint is not difficult to satisfy since σ is usually very small
(of the order of 10 µm or less).

Under the previously mentioned assumptions, the governing equations and
boundary conditions at the scale roughness of the roughness height are given by
the classical lubrication approximation

q = − h3

12µ∇p + (U2 + U1)
h
2 , in �f

∂h
∂t

+ ∇ · q = 0, in �f

q · nsf = 0, at �sf

(1)

in which q is the volumetric flow rate per unit width, � is the mean surface defined
by h+(x) = (h1 + h2)/2, �f denotes the region of � occupied by the fluid, (i.e.,
the region where h> 0), �sf denotes the boundary of the contact zones within �,
∂�f denotes the region of the boundary of � where h> 0 and nsf represents the
unit normal vector pointing from the solid-phase toward the fluid-phase at �sf.

Because the deformation of surfaces is ignored, there is a simple relation be-
tween the time and space derivatives of hi ,

Dhi

Dt
= ∂hi

∂t
+ Ui · ∇hi = 0,

with i = 1, 2 which give

∂h

∂t
= ∂h2

∂t
− ∂h1

∂t
= −U2 · ∇h2 + U1 · ∇h1.

This leads to the simplified roughness scale equations

q = − K

12µ
∇p + (U1 + U2)

2
h, in �f (2)

∇ · q = U2 · ∇h2 − U1 · ∇h1, in �f (3)

q · nsf = 0, at �sf (4)

in which K =h3.



2. Volume Averaging

The method of volume averaging (see Whitaker, 1999 and references therein) be-
gins by associating with every point in space (in both the fluid-phase and the
solid-phase) an averaging volume (although this is an averaging surface in the case
we are studying, we will call it an averaging ‘volume’) denoted by S (so as to
recall that we are dealing with surfaces). The surface S is part of the total domain
�. Such a ‘volume’ is illustrated in Figure 2 where we have located the centroid of
the averaging volume by the position vector x, the radius of the averaging volume
by r0. Two averages are used in this method. The first is the superficial volume
average which can be expressed as

〈ψf〉 = 1

S

∫
Sf

ψf dS,

in which ψf is any function associated with the fluid-phase. Sf is the surface of the
fluid-phase contained within the averaging surface S. The second is the intrinsic
volume average which is defined by

〈ψf〉f = 1

Sf

∫
Sf

ψf dS.

A basic tool of the volume averaging method is the spatial averaging theorem
Howes and Whitaker (1985) which allows one to interchange differentiation and
integration on Euclidean geometrical domains

〈∇ψf〉 = ∇〈ψf〉 + 1

S

∫
Asf

ψfnsf dAsf, (5)

where Asf denotes the boundary of the contact zones within the Euclidean plane
associated with Cartesian Oxy coordinates and S the corresponding surface in

Figure 2. Averaging ‘volume’.



the Euclidean plane. This result can be generalysed on non-Euclidean geomet-
rical domains (Gray, 1993) such as � and �fs. Nevertheless, such complications
are unnecessary in the context we are dealing with, since in the case of a small
slope it can be shown, that differentiation and integration on � and �f can be
approximated self-consistently using Euclidean rules. More precisely, Appendix A
shows how this can be rigorously deduced from a small slope ε expansion, with
the same approximation as the one used to obtain Reynolds equations. For now, as
was previously done when discarding O(ε2) terms in using the Reynolds approx-
imation, we will use the standard volume average integro-differential machinery,
without explicit mentioning of its O(ε2) character. Hence, the Equation (5) can be
rewritten as

〈∇ψf〉 = ∇〈ψf〉 + 1

S

∫
Asf

ψfnsf dA, (6)

Where, Asf now denotes the boundary of the contact zones within �f of �. Hence,
the vectorial version of (6) on Sf is simply

〈∇ ·ψψψ f〉 = ∇ · 〈ψψψ f〉 + 1

S

∫
Asf

ψψψ f · nsf dA.

Volume averaging begins by forming the superficial average of Equation (3)

〈∇ · q〉 = 〈U2 · ∇h2 − U1 · ∇h1〉,
which leads to

〈∇ · q〉 = U2 · 〈∇h2〉 − U1 · 〈∇h1〉. (7)

Interchanging differentiation and integration in Equation (7) is accomplished by
means of the spatial averaging theorem. Using this result and taking into account
the boundary condition (4) lead to

∇ · 〈q〉 = U2 · 〈∇h2〉 − U1 · 〈∇h1〉. (8)

At this point, it is worth noting that K, h, ∇h2, ∇h1 in Equation (3), depend not
only on the space coordinates but also on time. However, these equations are free
of time derivatives. Although here Sf is time dependent (in the case where contact
zones are to be found), this does not introduce any particular difficulty in the spatial
averaging process (the problem is in fact quasi-steady). Averaging Equation (2–4)
leads to

〈q〉 = − 1

12µ
〈K∇p〉 + U2 + U1

2
〈h〉. (9)

At this point, it is useful to introduce the following decomposition (Gray, 1975) for
the pressure, p=〈p〉f + p̃, in which p̃ is referred to as the spatial deviation pres-
sure. Using this decomposition, into the term 〈K∇p〉 from Equation (9) enables us
to write

〈K∇p〉 = 〈
K∇〈p〉f 〉 + 〈K∇p̃〉.



It becomes, following (Whitaker, 1999):

〈K∇p〉 = 〈K〉∇〈p〉f + 〈K∇p̃〉 (10)

when constraint r0/Lp � 1 is satisfied with Lp representing the characteristic
length associated with the average pressure. Substituting Equation (9) for (10) leads
to

〈q〉 = − 1

12µ
(〈K〉∇〈p〉f + 〈K∇p̃〉) + U2 + U1

2
〈h〉 (11)

2.1. CLOSURE PROBLEMS

In order to obtain a closed form of Equation (11), we develop a representation for
the spatial pressure deviation p̃. To this end we subtract Reynolds Equation (2)
from its average (11)

q̃ = q − 〈q〉
= − 1

12µ
(K̃∇〈p〉f + K∇p̃ − 〈K∇p̃〉) + U2 + U1

2
h̃, in �f (12)

in which q̃ represents spatial deviation of the volumetric flow rate per unit width,
K̃ =K − 〈K〉, h̃ = h − 〈h〉. Similarly, for the mass conservation from (3) and (8)

∇ · q̃ = ∇ · q − ∇ · 〈q〉
= U2 · (∇h2 − 〈∇h2〉) − U1 · (∇h1 − 〈∇h1〉) in �f (13)

It may be observed that the boundary condition given by Equation (4) is in fact
necessarily verified since h= 0 at �sf. Therefore, at this stage, it is not necessary
to deduce a boundary condition for the spatial deviation.

The next step consists in considering that it is sufficient to determine the spa-
tial deviations p̃ and q̃ over a local representative region of the heterogeneous
system. This classically leads to treat the representative region as a unit cell in a
spatially periodic system (Whitaker, 1999) and therefore to impose the following
conditions

p̃(r + li ) = p̃(r), q̃(r + li ) = q̃(r), i = x, y

in which li represents the two non-unique lattice vectors required to describe a
spatially periodic system in two-dimensions. r is the vector of the position enabling
to locate any point in the fluid-phase. For the spatial deviations p̃ and q̃ to be locally
periodic from a spatial point of view, it is also necessary that the source terms U1,
U2 and ∇〈p〉f in Equations (12) and (13) should be considered as constants over
the representative region. This is clear for U1, U2 since the surface velocities are
assumed to be constant in the whole system. Appendix B shows that ∇〈p〉f can



also be regarded as a constant, provided that r0/Lp � 1. When this constraint is
satisfied, the closure problem can therefore be expressed as

q̃ = − 1

12µ
(K̃∇〈p〉f + K∇p̃ − 〈K∇p̃〉) + U2 + U1

2
h̃, in Sf

∇ · q̃ = ∇ · q − ∇ · 〈q〉
= U2 · (∇h2 − 〈∇h2〉) − U1 · (∇h1 − 〈∇h1〉), in Sf (14)

or

− 1

12µ
(∇ · (K∇p̃) − ∇ · 〈K∇p̃〉) = 1

12µ
∇ · (K̃∇〈p〉f ) + U2 + U1

2
· ∇h̃

+ U2(∇h2 − 〈∇h2〉) − U1 · (∇h1 − 〈∇h1〉), in Sf

(15)

In addition, as is usually done in the volume averaging method (Whitaker, 1999),
we assume that 〈p̃〉f = 0. The form of the boundary value problem for p̃ suggests
a representation for p̃ given by

p̃ = b · ∇〈p〉f + µ c2 · U2 + µ c1 · U1 + ϕ (16)

where ϕ is an arbitrary function. b c1, c2 are the closure variables. As ϕ is an
arbitrary function, we are free to specify b, c1, c2 by means of the following three
boundary value problems that are suggested by substituting the closure Equation
(16) into the pressure deviation Equation (15)

Problem 1

∇ · (K̃I + K∇b − 〈K∇b〉) = 0, in Sf,

b(r + li) = b(r), i = x, y,

〈b〉f = 0.
(17)

Problem 2 and 3
1
12∇ · (K∇cj − 〈K∇cj 〉) = θj (〈∇hj 〉 − ∇hj) + 1

2∇h̃, in Sf

cj (r + li) = cj (r), i = x, y, j = 1, 2
〈cj 〉f = 0

(18)

Where θ1 = −1 and θ2 = 1. This leads to the following problem for ϕ

∇ · (K∇ϕ) = 0, in Sf

ϕ(r + li ) = ϕ(r), i = x, y

〈ϕ〉f = 0.

from which it is easy to show that ϕ = 0, (Whitaker, 1999). The closure problems
can be simplified further by using the periodicity of the gradient of the average of
h, ∇〈h〉= 0 at the scale of the averaging volume. Then using the averaging theorem
for ∇h

〈∇h〉 = 1

S

∫
Asf

hnsf dA = 〈∇h2〉 − 〈∇h1〉 = 0.



Because, by definition h= 0 on Asf. Then using 〈∇h2〉= 〈∇h1〉 and h̃ = h̃2−h̃1 it is
easy to see that problem 2 and problem 3 (18) can be expressed anti-symmetrically

1

12
∇ · (K∇cj − 〈K∇cj 〉) = θj (〈∇h+〉 − ∇h+), in Sf, j = 1, 2 (19)

Where θ1 =− 1, θ2 = 1 and h+(x) = (h1 + h2)/2. From (19) it is now clear that
problem 2 and problem 3 are left unchanged by the substitution c1 =− c2. Then,
their solution fulfills c1 =− c2. We define the solution c = c1/6 =− c2/6 and only
need to solve a closure problem for c. Moreover a further simplification can be
found from the periodicity of ∇h+, ∇〈h+〉 = 0 using the averaging theorem

〈∇h+〉 = 1

S

∫
Asf

h+nsf dA + O(ε2) = h+
S

∫
Asf

nsf dA + O(ε2) = O(ε2) (20)

because, Asf ⊂ � then by definition on Asf, h+ is constant (zero). As mentioned
previously we are using the volume averaging method on the Riemannian surface
�. Nevertheless, we have shown that a small slope ε of this surface provides a
simple Euclidean version of the averaging theorem up to ε2 terms. It would have
been difficult to quantify such approximation from the direct formulation of the
volume averaging theorem on the Euclidean Oxy plane for which

〈∇h+〉 =
∫

Asf

h+nsf dA �= 0.

From Equation (20) and because 〈K∇b〉 and 〈K∇c〉 can be treated as constants,
one needs to solve the two following simplified closure problems

∇ · (K̃I + K∇b
) = 0, in Sf

b(r + li) = b(r), i = x, y

〈b〉f = 0.
(21)

and

∇ · (K∇c) = 2∇h+, in Sf,

c(r + li) = c(r), i = x, y

〈c〉f = 0.
(22)

in which c = c1/6 =− c2/6 and h+ = (h1 + h2)/2. It is interesting to note that
solving (21) only is sufficiant to obtain the macroscopisation of a pressure driven
flow through a fracture (14). As a matter of facts, the next section will show how the
macroscopic permeability tensor is related to the closure field b, while the Couette
macroscopic flow is related to c.

2.2. AVERAGE FLOW MODEL

2.2.1. Spatially Averaged Flow Model

The closed form of Equation (14) is obtained by substituting the closure relation
(16) for the averaged flux Equation (11). This yields



〈q〉 = − 1

12µ
K∗.∇〈p〉f + C.

(
U2 − U1

2

)
+ U2 + U1

2
〈h〉, (23)

in which,

K∗ = 〈K〉I + 〈K∇b〉, C = 〈K∇c〉. (24)

At this stage it is worth noting that, as previously observed in Quintard and
Whitaker (1987), the effective permeability tensor of a fracture is easily deduced
from the closure field b and is a symmetric tensor. Because fracture walls, are
generaly static, the temporal averaging is not necessary in this context, and relation
(24) gives the effective permeability tensor, from the closure problem (21) which
has to be solved.

Moreover, combining Equation (23) with Equation (8) leads to the closed form
of the average Reynolds equation,

∇ ·
(

1

12µ
K∗.∇〈p〉f

)
= (∇ · C) .

(
U2 − U1

2

)
+

+
(

U2 + U1

2

)
.∇〈h〉 − U2 · 〈∇h2〉 + U1 · 〈∇h1〉 (25)

It is worth noting that the obtained macroscopic Reynolds equation decouples
the kinematic Couette contribution of the macroscopic velocities U1 and U2 from
the microscopic contributions embodied in the closure fields C which is indepen-
dant of the specified macroscopic kinematic conditions. Moreover, the microscopic
contribution display an ‘intrinsic’ form, involving the surface velocity difference
U2 − U1 in a relative cinematic frame, while the Couette contribution coming from
the macroscopic spatial variations of the aperture field ∇〈h〉 involves a kinematic
contribution in the laboratory frame proportional to U2 + U1.

2.2.2. Spatially Averaged Shear
After the flux and the pressure we now wish to form the averaged shear equation

〈τ 〉 =
〈
±h

2
∇p + µ

U2 − U1

h

〉
, (26)

where the + sign is associated with the shear stress at surface 2 and − sign for
surface 1. 〈τ 〉 stands for the average shear stress in the domain due to the fluid
flow.

〈τ 〉 = ±
〈
h

2
∇p

〉
+ µ

〈
1

h

〉
(U2 − U1) . (27)



By using the deviation decomposition p=〈p〉f + p̃ and the closure form (16) we
get to the expression

〈τ 〉 = µ

[〈
1

h

〉
I ± 3〈−h∇c〉

]
. (U2 − U1) ± 1

2
[〈h〉I + 〈h∇b〉] .∇〈p〉f . (28)

The shear macroscopic stress vector displays a Couette and a Poiseuille contri-
bution, for which pressure and kinematic conditions imposed at the macroscopic
level are again decoupled from the microscopic contributions. As expected, the
Couette shear stress displays an intrinsic form, involving the surface velocity dif-
ference U2−U1, while the Poiseuille contribution involves an effective conductivity
very similar to the effective permeability obtained in (24), using a permeability K

proportional to the local aperture h.

2.3. TIME AVERAGE

The spatially averaged Equations (23), (25) and (28) generally depend on time
since h, K, c, b, K∗, C, h1, h2 are all time dependent (one obvious exception is the
case where one surface is a moving plane, while the other rough surface remains
fixed). In principle, it is therefore necessary to perform a time average to obtain
the average behaviors. In a companion paper (Letalleur et al., 2000) we consider
an example in which such a time average is necessary. As discussed in Letalleur
et al. (2000), the time average is in fact needed when the two surfaces are strongly
correlated to one another. In such a case, we define the time average as

{ψ} = 1

T

∫
T

ψ dt,

where T is the time over which the above equations are to be time averaged (T ≈
2r0/ |U2 − U1|). The time averaged of the above equation is straightforward. It
yields

{〈q〉} = − 1

12µ

{
K∗} .∇〈p〉f + {C} .

(
U2 − U1

2

)
+ U2 + U1

2
{〈h〉} , (29)

∇ ·
(

1

12µ
{K∗}∇〈p〉f

)
= {(∇ · C)} ·

(
U2 − U1

2

)
+

(
U2 + U1

2

)
· {∇〈h〉}

−U2 · {〈∇h2〉} + U1 · {〈∇h1〉}, (30)

{〈τ 〉} = µ

[{〈
1

h

〉}
I ± 3{〈−h∇c〉}

]
· (U2 − U1) ± 1

2
[{〈h〉}I +

+{〈h∇b〉}] · ∇〈p〉f . (31)

Here we have assumed that the characteristic times of variation of ∇〈p〉f , U2,
U1, if any, were much larger that T . It might be interesting to consider situations



where these characteristic times are still significantly larger than td (for the Reyn-
olds equation to be valid and the space average feasible before the time average)
but of the order of, smaller than, T . This would introduce additional terms in the
above time-space averaged equations.

3. Discussion

Time average has almost never been considered in previous works on average flow
models based on the Reynolds equation. One exception is Elrod’s work (1979),
where the time averaging is clearly identified. As correctly noted by Elrod, the
time average is necessary when the surface roughness and the surface motion are
such that the time average cross covariance of the surfaces is not equal to zero.
In all the previous works, that is Patir and Cheng (1979), Peeken et al. (1997)
and references therein, the surfaces were not considered as intercorrelated. This
explains why the time average was not considered. Time average is sometimes
hidden in the ensemble average procedure, with an implicit ergodic assumption,
see for instance Peeken et al. (1997). The need for a time averaging has already
been noticed in a different context related to suspensions macroscopisation (Adler
et al., 1985). In this work, even if the pressure gradient is replaced by the ex-
ternal forces applied on the particules, Adler and Brenner grasp that time averaging
cannot be cast in a spatial average procedure but even more that a time aver-
aging procedure could cure some theoretical singularity arrising from a single
spatial averaging in the macroscopic stress. The influence of a spatio-temporal
averaging procedure on flow factors for a very simple sinusoidal geometry carried
out in Letalleur et al. (2000) shows similarly a clear impact on the singular stress
behavior.

In order to compare with previous models, we assume, in the rest of the present
paper, that the time average is not necessary. Under these circumstances, the aver-
age Equations, (23), (25) and (28), can be viewed as generalizations of the empir-
ical average model proposed by Patir and Cheng. First, the directions of motion of
the surfaces are not necessarily the same. Second, as pointed out in the introduction,
the influence of roughness must be taken into account through tensors (K∗,C, . . . ,

in our model) and not scalar coefficients, as in Patir and Cheng’s model. This allows
one to deal with situations where the influence of roughness results in an average
flow which does not follow the direction of the average pressure gradient. It is also
interesting to note that our model becomes identical to the one derived by Bayada
and Chambat (1988) if one considers the special case where surface 2 is smooth
and moving whereas surface 1 is rough and fixed in the case where contacts are
forbidden.

Patir and Cheng’s model has been very popular in the field of lubrication. In
addition to proposing average equations, they have introduced the concept of ‘flow
factors’ that has also become popular. The ‘flow factors’, or more correctly the
‘flow tensors’, are simply a dimensionless expression of the tensors that appear in



the average equations. In order to compare our model with the one of Patir and
Cheng, we consider the special case where the off-diagonal terms are negligible
(i.e. isotropic systems or anisotropic systems for which the main directions of
anisotropy are parallel to the coordinate axis) and U2 and U1 are parallel to the
x axis. In this case, our average flow model takes this form

〈qx〉 = −
(

K∗
xx

12µ

∂〈p〉f
∂x

)
+ Cxx

(
U2x − U1x

2

)
+ U2x + U1x

2
〈h〉,

〈qy〉 = −
(

K∗
yy

12µ

∂〈p〉f
∂y

)
, (32)

∂

∂x

(
K∗

xx

12µ

∂〈p〉f
∂x

)
+ ∂

∂y

(
K∗

yy

12µ

∂〈p〉f
∂y

)
= ∂Cxx

∂x

(
U2x − U1x

2

)
+

+
(

U2x + U1x

2

)
∂〈h〉
∂x

− U2x

〈
∂h2

∂x

〉
+ U1x

〈
∂h1

∂x

〉
. (33)

and the x component of the average shear stress reads

〈τx〉 = µ

[〈
1

h

〉
± 3

〈
−h

∂cx
∂x

〉]
(U2x − U1x) ± 1

2

[
〈h〉 +

〈
h
∂bx

∂x

〉]
∂〈p〉f
∂x

. (34)

In order to compare with Patir and Cheng model, we must note that hT , qT , τT in
Patir and Cheng notations correspond to 〈h〉, 〈q〉, 〈τ 〉 respectively. Comparing with
Patir and Cheng model finally leads to express the flow factors as

φx = K∗
xx

h3
m

, φy = K∗
yy

h3
m

, σφs = −Cxx φf = hm

〈
1

h

〉
φf s = 3hm

〈
−h

∂cx
∂x

〉
, φfp = 1

hm

[
〈h〉 +

〈
h
∂bx

∂x

〉]
. (35)

where hm is the distance between the mean planes of the two surfaces and σ is the
composite rms roughness, which is related to the the standard deviations of each
surface by

σ =
√
σ 2

1 + σ 2
2 , (36)

with σi =
√
(hi − 〈hi〉)2 with i = 1, 2.

4. Flow Factors for Two-Dimensional Roughness

In general, flow factors are obtained from the numerical solution of closure prob-
lems. Here we consider the simple case of striated unidirectional roughness for
which flow factors expression can be analytically derived. As illustrated in Fig-
ure 3, the strias are assumed to be parallel to the y axis while the sliding motion is
the x direction. In this problem, the aperture h depends only on x.



Figure 3. System of two striated surfaces in sliding motion. The striation are parallel to the
y-axis.

The average flow model and the average shear read here,

∂

∂x

(
φx

h3
m

12µ

∂〈p〉
∂x

)
+ ∂

∂y

(
φy

h3
m

12µ

∂〈p〉
∂y

)
= U2x + U1x

2

∂〈h〉
∂x

+

+ U1x − U2x

2
σ
∂φsx

∂x
,

〈τx〉 = µ
U2x − U1x

2
(φf x ± φf sx) ± φfpx

hm

2

∂〈p〉
∂x

,

〈τy〉 = µ
U2y − U1y

2
(φfy ± φf sy) ± φfpy

hm

2

∂〈p〉
∂y

,

Because h depends only on x, flow factors φy , φfx , φfy and φfpy are straight-
forwardly given by

φy = 〈h3〉
h3
m

, φfy = 〈h−1〉f hm, φfpy = 〈h〉
hm

(37)

The closure problems must be solved to determine the remaining flow factors. The
closure problem is

∂

∂x

(
K
∂bx

∂x

)
= −∂K

∂x
, in Sf

bx(r + li) = bx(r), i = x, y (38)

With 〈bx〉f = 0 and,

∂

∂x

(
K
∂cx

∂x

)
= ∂(h1 + h2)

∂x
, in Sf

cx(r + li) = cx(r), i = x, y (39)

With 〈cx〉f = 0.



At this stage, it is useful to distinguish the no contact case from the case where
contacts do exist.

4.1. NO CONTACT

Integration of Equation (38) gives

∂bx

∂x
= −1 + A

K
,

Constant A is obtained by taking the average, of this equation to get

−1 + A

〈
1

K

〉
= 0,

This leads to express 〈K∂xbx〉 as〈
K
∂bx

∂x

〉
= −〈K〉 + 1〈

1
K

〉 ,
and 〈h∂xbx〉 as〈

h
∂bx

∂x

〉
= −〈h〉 +

〈
1
h2

〉〈
1
K

〉 ,
Integration of Equation (39) gives

∂cx

∂x
= (h1 + h2)

K
+ B

K
,

while taking the average of this equation leads to express the constant B as

B = − 〈
h1+h2
K

〉〈
1
K

〉 ,

which leads to〈
K
∂cx

∂x

〉
=

[
〈h1 + h2〉 −

〈
h1+h2
K

〉〈
1
K

〉 ]
,

Using spatial decomposition hi =〈hi〉 + h̃i with i = 1, 2 finally leads to express〈
K ∂cx

∂x

〉
as

〈
K
∂cx

∂x

〉
= −

〈
h̃1+h̃2
K

〉
〈

1
K

〉 ,

and 〈h∂xcx〉 as〈
h
∂cx

∂x

〉
=

[〈
h̃1 + h̃2

h2

〉
−

〈
h̃1 + h̃2

K

〉 〈
1
h2

〉〈
1
K

〉 ] ,



Flow factors are finally given by:

φx = 1

h3
m〈h−3〉 ,

φy = 〈h3〉
h3
m

, φsx = 1

σ 〈h−3〉
〈
h̃1 + h̃2

h3

〉
, φf x = 〈h−1〉hm,

φfpx = 〈h−2〉
hm〈h−3〉 ,

φf sx = 3hm

[〈
h̃1 + h̃2

h3

〉 〈
h−2

〉
〈h−3〉 −

〈
h̃1 + h̃2

h2

〉]
. (40)

which is in complete agreement with the previously proposed expressions in the lit-
erature (see for example Elrod (1979), Tripp (1983), Bayada and Chambat (1988),
Bayada and Faure (1989) among others).

4.2. WITH CONTACTS

Here, the closure problem for bx is not to be considered since a macroscopic pres-
sure gradient along x cannot exist in the presence of a contact line. We are only
interested in the closure problem for cx . Integration of Equation (39) gives

K
∂cx

∂x
= (h1 + h2) + B.

As h= 0 at Asf, the constant B can be expressed as

B = − (h1 + h2) = −12h0, on Asf

in which h0 is the average position of the contact lines in Vf. This leads to

Cxx =
〈
K
∂cx

∂x

〉
= [〈h1 + h2〉 − 2h0],

and 〈
h
∂cx

∂x

〉
=

[〈
h1 + h2

h2

〉
− 12h0

〈
1

h2

〉]
,

which leads to express the flow factors as

φsx = [2h0 − 〈h1 + h2〉]
σ

φfx = 〈h−1〉hm

φf sx = 3hm

[
2h0

〈
1

h2

〉
−

〈
h1 + h2

h2

〉]
. (41)

In the presence of contact, it should be noted that the integrals of the form 〈h−n〉
with n� 1 may diverge in the vicinity of the contact zones. In fact convergence or



divergence can be obtained depending on the behavior of h (as a function of the
space coordinates) near contact. Again, this point raises the question of the validity
of the Reynolds equation mentioned in Section 1.2. In fact, it may be observed
that even in the context of the Stokes formulation that a continuum mechanics
description is questionable when the aperture becomes on the order of molecular
lengths. One reasonable solution is to consider that the Reynolds equation may be
used to describe the flow and the shear due to the flow up to a lower bound in terms
of aperture. The friction in contact zones is to be described by solid mechanics
concept (including the possible presence of fluid molecules) while new models are
needed to describe the flow and shear in regions where the aperture is between the
aforementioned lower bound and zero. While this is a troublesome problem when
there is friction between surfaces, it may be observed that the average flow model
can be used with some confidence for determining the flow rate induced by the
surface motion since the contribution of the regions when the latter are very close
to contact is necessarily very small.

5. Conclusions

An average model for flow between rough surfaces in sliding motion has been
derived by means of the method of volume averaging. Solid contact zones receive
specific treatment. The analysis indicates that, under certain circumstances, the
spatial average should be completed with a time average so that the average beha-
viors may be obtained. As illustrated in Letalleur et al. (2000), this solely depends
on statistical inter-correlation of surfaces height. One interesting feature of the
present work is to propose an effective formulation so that to compute transport
coefficients by solving two closure problems defined over a representative region of
the aperture field. The representative region is viewed as the unit cell of a spatially
periodic system. This leads to impose periodicity boundary conditions. From the
numerous works performed within the framework of the volume averaging method,
see Whitaker (1999), and references therein, it is known that the influence of those
boundary conditions on the effective properties is very weak. In this way, the cum-
bersome questions about the boundary conditions to be imposed for the numerical
determination of flow factors, see for instance Teale and Lebeck (1980), Lunde and
Tonder (1997), are avoided and moreover enlightened.

Our average flow model rests upon the assumption that the Reynolds equation is
valid at the roughness scale. Although this assumption has been considered without
discussion in many previous works dealing with rough surfaces in sliding motion
with contacts, its validity would deserve to be explored in more detail. Moreover,
surfaces deformation is essentially ignored in the present work. This is a serious
limitation. In fact, taking deformation into account could affect not only the flow
factors determination, see Knoll et al. (1998), but eventually the average equations
form. It may be surmised that the time dependence could not be treated as trivially
as here when dealing with time dependent local deformation.
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Appendix A

Let us consider the surface � defined on a Cartesian parametrisation that we will
note here Ox1x2x3 such that x3 = h+(x1, x2) define �. Any point u on surface �

can be parametrized simply u = (x1, x2, h+(x1, x2)). Hence two tangential vectors
can be defined at any point u with

ui = ∂u
∂xi

, i = 1, 2

Explicitly u1 = (1, 0, ∂x1h+(x1, x2)), and u2 = (0, 1, ∂x2h+(x1, x2)). One can eas-
ily compute the metric tensor gij associated with � (see for example Frankel
(1997)

gij = ui · uj = 13
α=1

∂uα

∂xi

∂uα

∂xj
,

that is

gij ≡
(

1 + (∂x1h+)2 ∂x1h+∂x2h+
∂x1h+∂x2h+ 1 + (∂x2h+)2

)
.

Now, the surface �, has small slopes, that is slow variations in the direction x1 and
x2. Thus we can write that x3 =h+(X1, X2)=h+(εx1, εx2) and then expand the
metric in power of ε

gij = δij + ε2g
(2)
ij ,

with δij the identity tensor and

g
(2)
ij ≡

(
(∂x1h+)2 ∂x1h+∂x2h+

∂x1h+∂x2h+ (∂x2h+)2

)
.

The generalization of differentiation on non-Euclidean spaces is the covariant de-
rivative. Such differential operator can be computed using Christofell symbols 6i

jλ.
For any covariant vector a, with component ai , the covariant derivative along the λ

component is given by

Dλai = ∂λai + 6i
jλaj ,



Where 6i
jλ = 1/2giσ (∂λg

jσ + ∂jg
σλ − ∂σg

λj ) using the repeated index convention.
Christoffel symbols can similarly be expanded in ε,

6i
jλ = ε26

i(2)
jλ + ε46

i(4)
jλ ,

where, for example

6
i(2)
jλ = 1

2
δiσ (∂λg

jσ(2) + ∂jg
σλ(1) − ∂σg

λj (2))

= 1

2
(∂λg

ji(2) + ∂jg
iλ(2) − ∂ig

λj (2)),

Then it is easy to deduce that, from our ε expansion

Dλai = ∂λai + O(ε2).

the covariant derivative and the Euclidean one differs by an ε2 correction. This is
obviously the same for integral operators. Then, integro-differential operators can
be applied on � with their standard Euclidean formulation up to ε2 corrections.

Appendix B

In this appendix, it is shown that

〈K∇p〉 = 〈K〉∇〈p〉f + 〈K∇p̃〉, (42)

that is
〈
K∇〈p〉f 〉 = 〈K〉∇〈p〉f

The procedure (Whitaker, 1999) consists in using the following Taylor series
expansion about the centroid of the averaging volume,

∇〈p〉f = ∇〈p〉f |x + yf .∇∇〈p〉f |x + 1

2
yf yf : ∇∇∇〈p〉f |x . . . , (43)

in which yf is a relative position vector locating a point in the fluid-phase relative
to the centroid x of the averaging volume.

Substitution of this result into
〈
K∇〈p〉f 〉

leads to〈
K∇〈p〉f 〉 = 〈K〉∇〈p〉f |x +

+〈Kyf 〉.∇∇〈p〉f |x + 1

2
〈K yf yf 〉 : ∇∇∇〈p〉f |x. (44)

The next step is based on the following order of magnitude estimates

∇∇〈p〉f |x = O

[
8(∇〈p〉f )

Lp

]
,

∇∇∇〈p〉f |x = O

[
8(∇〈p〉f )

L2
p

]
,



in which Lp represents a characteristic length associated with ∇〈p〉f . The spatial
moments 〈y〉, 〈yy〉, . . . have been studied by Quintard and Whitaker (1994). On the
basis of their study, one finally obtains the following order of magnitude estimates

〈Kyf 〉.∇∇〈p〉f |x = O

[
〈K〉 r0

Lp

∇〈p〉f
]
, (45)

1

2
〈Kyf yf 〉 : ∇∇∇〈p〉f |x = O

[
〈K〉

(
r0

Lp

)2

∇〈p〉f
]
, (46)

and similar estimates for higher order terms. These estimates show that the other
terms in the r.h.s. of Equation (44) are negligible compared to the leading term
provide that the following length-scale constraint is satisfied

r0

Lp

� 1.

We now show that ∇〈p〉f can also be considered as a constant over the aver-
aging volume provide that r0/Lp � 1.

The developments are classical in the context of the volume averaging method
(Whitaker, 1999). One starts from Equation (43)

∇〈p〉f = ∇〈p〉f |x + yf .∇∇〈p〉f |x + 1

2
yf yf : ∇∇∇〈p〉f |x . . . . (47)

The following estimates

yf .∇∇〈p〉f |x = O

[
r0

Lp

∇〈p〉f
]

(48)

1

2
yf yf : ∇∇∇〈p〉f |x = O

[(
r0

Lp

)2

∇〈p〉f
]

(49)

show that under the length-scale constraint r0/Lp � 1, the source term ∇〈p〉f can
be considered as a constant over S.
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