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Abstract: In this paper, we study the kernel estimate of the density function of linear
processes with quasi-associated innovations. We prove the asymptotic normality of the
kernel density estimator under mild regularity conditions and some conditions on the
coefficients of linear processes and on the decay of the covariances.

1. Introduction

Let Xi, X2, ■ ■ ■ be an identically distributed sequence of random variables defined by
Xi = Z?=0 arZi-r, i > 1, where {Zt}tez is a strictly stationary sequence of quasi-
associated random variables with mean zéro and finite variance, and {ar}rG]N is a sequence
of real numbers. The concept of quasi-association was introduced by [2] and provides a
unified approach to studying both families of positively or negatively associated and Gaus-
sian random variables. A sequence (Zi)iez of real-random variables is said to be quasi-
associated if for any finite and disjoint subsets I, J CZ and ail bounded Lipschitz functions
g : RlJl 1RJJI -» R, one has

(1.1) Cov(g(Zi,i G /), h(Zj,j G J)) < Up(g)Up(h)^2Y^ |Cov(Zi,Zj)|,
iei jeJ

where |/| dénotés the cardinality of I and

Lip (h) — sup
x^y

\h{x)-h(y)\
\\x~y\\i

the Lipschitz modulus of a function h.

Assume that Ai has a probability density / and, for any 1 < i,j < n, (X^Xj) has a
probability density fig. Further, let {hn}n>0 be a sequence of positive constants such that,
as n -A 00, hn -A 0 and nhn —> 00. The classical kernel estimator of / is defined as

/»(*)- fx-xA
\ K )' x G R,
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where the kernel K is a bounded function such that

K{u) du — 1
E

The asymptotic normality of the kernel density estimators was studied by [3], [6] and
[12] for linear processes with independent innovations under some conditions on {ar} and
{hn}. [12] improved Hallin and Tran’s results by imposing \aA < 00 and only the
natural conditions on {hn}. For linear processes with a:-mixing innovations, [9] showed that
the kernel density estimators are asymptotically normal under general and mild conditions.
In this paper, we establish the asymptotic normality of the kernel density estimate for lin-
ear processes with quasi-associated innovations. We note that quasi-association and mixing
define two distinct but not disjoint classes of processes. We mention also that an important
property of quasi-associated random variables is that non-correlation implies independence
and the dependence in this case is evaluated only through the covariance structure which
is much easier to compute than a mixing coefficient. Our resuit is obtained under the same

general conditions on the density function / and the kernel K, and the coefficients {an} as
in [6] and [9], Some additional conditions on the bandwidth and the decay of the covari-
ances are assumed.

For other works on density estimation for linear processes, we can refer to [7], [8], [10] and
[13].

2. Notation, assumptions and main resuit

Divide the set {1,..., n} into k large p-blocks, Ij, and small ç-blocks, Jj, j = 1,..., k, as
follows

Ij = iÜ ~ 1)iP + <ï) + Ü ~ l)(P + 9) +P]
Jj = {Ü ~ l)(p + ç) +P+ +

where p and q are positive integers tending to oo as n —> oo and k is defined by k =

[n/(p + q)], where [x] stands for the intégral part of x. We suppose that

qk , pk
> 0 and > 1 as n —y oo.

n n

Define

5

r=0

where s < q is a positive integer tending to oo as n —y oo.

Consider the kernel estimator gn{x) defined by
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For each x € IR, set

Zni(x)
\fnK, l

K
x - Xi

EI<
x - Xi

and
n

Sn .— \Jnhn (jjn{x') Egn(xŸj y ' Zni(x).
i— 1

For j = 1,..., k, let i]j, and (k be defined as follows

so that

Vj Zni(x),
ieij

n

^ Ck • ^ ] Zni{x),
iGJj i=fc(p+ç)+l

fc k

Sn = yÿ2vj + & + =: + Tn + Tn .
j=l j=l

In order to formulate our main resuit, we now list some assumptions. Dénoté by C (differ-
ent) constants whose values are allowed to change. Trough this paper we consider that ail
limits are taken as n —>• oo.

Assumptions

(Al) For ail x,y G IR,
sup |h,j{x,y) - f(x)f{y) \ < C.

(A2) The kernel K satisfies a Lipschitz condition of order 1, that is, for ail x, y G R,

|K(x) -K(y)| < C\x-y\.
(A3) The sequence {ar}rG]N satisfies the condition \ar\ = 0(r~a), for some a > 4.

(A4) 4 := \Cov(ZuZt+i)\ = 0(k~b),k> Oandt > 2+^ (g§ + f + 3(a- 1)).
(A5) nhn+2^Sa~^ (log n)~ô -» oo, for some ô > 0.

(A6) (logn)<5(a-3)/4n/ii2(6_2)/(a“2)_3](a_1)_3/2 -» 0.

Notice that if £ is a Lebesgue point of / and (x, x) is a Lebesgue point of ail functions fi>v,
v > 2, by applying Theorem 3 in Chapter 2 of [4], the condition (Al) can be replaced by
the condition supu>2 \fi,v{x,x) \ <C. The condition (A2) is a mild condition on the kernel
K. The conditions (A5) is necessary to ensure s < p, for a suitable choice of s and p, and
allows, together with the condition (A6), to get Lemma 3.

I
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Theorem 1. Assume thaï assumptions (Al)-(A6) hold. Then, for ail Lebesgue points x of f
such that f(x) > 0,

sfâhn (fn{x) - Efn(x)) 4 Jf(0,o2(x)),
where

cr2(x) — f(x) / K2(u)du.
JR

” A ” dénotés convergence in distribution.
We introduce the following lemmas which we need in the proof of the theorem. The first
lemma shows that, for ail a: G R, fn(x) and gn(x) hâve the same asymptotic distribution.
Lemma 1. Assume that assumptions (A2) and (A3) hold. Then, for any e > 0 andfor ail
æ G R,

VnK\fn{x) -9n(x) | > e

Proof. Using (A2), we get

y/nhïi\fn{x) ~9n(x)\ < (nhn) 1/2
î—1

K

->0.

X Xi
K

x - Xi

< Cn-^hp/^lXi-X,
i—1

Then

VÜhn\fn{x) ~ 9n(x)\ > £ < P

<

£ F' - v
4=1

>

i=1

c

u3/2
X — Y "> n g

* 1 Cn1/2

X, - Xi< Cnhf3£~2J2E
i—1

n /oc

< Cnh~3e-2Y,E £ o.rZ,
i= 1 \r=s+l

/oc N

< Cn2h~h-2EZÎ\ \ar\

Choose s — [(logn/(a_3)/2 n2hf3] 1//2^ l\ Thus, by (A3),

^r=s+l

y/nfhi\fn(x) -gn{x)\ > e < Cn2h~3£-2s~2(a"1) - O((log n)-5(a_3)/2).
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Lemma 2. Assume thaïassumptions (A1)-(A2) hold. Then,forall v > 2 andfor ail iéR,

Proof. For ail v > 2, by (Al),

<C h"+r_ Ë
r=s+l

1

hï CovI K( ——-),K
hn ) ^ h*

K(u)K(w) ~ hnii,x — hnw) — f(x - hnu)f(x — hnw) dudw
I R2

<C.

By (A2), for ail v > 2,

Covl
K

< 2||Jf||<

<
hn.

E

K I — ) - K

+ E

E

Xl-Ax

x — Xj
hn.

x — Xv
hn

+ E ^ l £ _ k I x xv

xv-xv

n uu

< - EK
\ar .

r=s+l

Then

Covl KI^-X).k(X Xi <ck+- y,
r=s+l

Lemma 3. Assume thaï assumptions (A1)-(A6) hold. Then, for ail x G R,

(2.2)
1 OO

fEun ov—2

Cov\k[^X),k'x-x° 0.

Proof. For 2 < v < 2s, define

b/2]
:= £ arZ„_r.

r=0
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Observe that

x — Xi\ fx — XvCov K

= E

hr

K
x-Xi

hr

-EK
x-X1

hri
K

X — Xv,
K

x-Xt

x-X-\\ fx-X,
K(2.3) +Cov K

Using (A2) and the boundedness of K, we obtain

E K
x-X1

h ri

EI<
x-Xi

K
x — Xv

-K
x-x:

4e xv - x;

(2.4)
n oo

4 E ar .

r=[v/2]+l

For n large enough such that hn < 1, by (1.1) we get

(2.5) Cov K x-Xi\ /x-Xl
hr hr

By using again (1.1) we obtain, for v > 2s,

(2.6) Cov K
- Xv

hn '

< C ^v-[v/2)-l-

5: C 9v-s-\.

Let m = m(n) — [hün with 6 is an arbitrary number such that 0 < 9 < 1 and ^2 <
1 — 9 < + fBy (A5), we hâve, for n large enough, m < s. Then

E
v=2

m

=E
v=2

Cov K x-Xi\ K(x-Xv
2s

+ E
v=m+1

Cov K
x — Xi\ T^(x — X.

hr
K

hr

+ E
v=2s+l

Cov K x-Xi\ K(x-Xv



27

Using (A3) and (A4), by (2.1), (2.3), (2.4), (2.5) and (2.6), we get, for n large enough,

1 oo

rE
v=2

covmî^i\k'x~x'

<c

00

+ X] Kl + Ch~2
2s oo 2s

X> X! |ûr|+s/ln X ^^-[v/2]-l
■4 II Co + ,î)=m+l r=[v/2]+l v=m+l

+ Ch~3s2 Ÿ, 1
ü=2s+1

<c(hen + /i~3+0s_(a-1) + h-2m-(a-2î + /in-3sm-H2 + h~3s~b+3)
<C + +/i-2+(l-9)(«-2)

+ ((logn)i<«-3>/4nh!(1-e>(l'-2)-3l(“-1>-3/2
Then, by (A5) and (A6)

l/(a-l)

1 OO

hE
v=2

Cov\k[x-^1],k(x-x' -4 0.

This complétés the proof of (2.2).

Lemma 4. Assume that assumptions (Al)-(A6) hold. Then, for ail Lebesgue points x of f,

nhnVar gn(x) -4 a2(x).

Proof. We will show that

(2.7) E (Tn)2 —» ct2(x)

and

(2.8)

First, consider (2.7). By using the strict stationarity of the sequence {Ztjtez, we hâve

E (Tnf = k Var (r/i) + 2 E COV {Tji^Tjj) •

EltŸ + e(t")2 -4 0.

Let us establish that

(2.9) /e Var (771) -4 <t2(x)
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and

(2.10) Y Cov (rjiiTjj) -» 0.
i<î<j<fc

By the strict stationarity of the sequence {Ztjtez, we get

fcVar(?]i) =
pk
nhn

Var Z
hn '

+
2k

nhn E Cov
l<i<j<p

x -Xj\
hn /

By Theorem 3 in Chapter 2 of [4], for ail Lebesgue points x of /,

(2.11)
1

h.
-Var K

x-Xi
hn.

—» f(x) / K2(u)du.
ir

By stationarity and (2.2), we obtain

_k_
nhT Y Cov | K

i V

x — Xi \ rjx — X
K

(2.12)
, oc

<—Enhr
v=2

Now, by (A2) and (A5),

Var A
x-Xi

hrl
-Var K

Cov K

x-Xi
hn

x-Xi\
-4 0.

<
hn

* iE
K x-Xi\ ( x-Xi

<

(2.13)

C_
h2

C

X!-Xi

/ oo

E | Yj arZ1-
\r=s+1

1/2

- Y larH0,
r=s+l

which, when combined with (2.11) and (2.12) complétés the proof of (2.9).
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Now, we will establish (2.10). Using stationarity and (2.6), we get

k-i

Y |Cov (r)i,rjj) | < kY\Cav(rlbrh+i)\
1 <i<j<k 1=1

<
pk
nh„

< îL ynK r=q+l

< £nhn11 r=q+1

fc-1 /(p+g)+p-l

E E
|=1

Cov ( X [ ( ±-2k

(2.14)

Cov K ,* izE

Then, by (A4) and (A6), and by choosing q = 2s, we obtain

(2.15) Y \Coy(VhVj) I ^°-
l<i<j<k

Next, we turn to (2.8). Observe that

,\2

E^) <fcVar(6) + 2 ]T |Cov(&,Ç,-) |.
l<ï<J<fc

Once again, by stationarity,

J:Var(Çi) = £Variï(^Liri)+£. E.
X~Xj\ /£ — Xi

l<i<j<ç

By ( 2.2), (2.11) and (2.13), it follows that

k Var(^i) -» 0.

Then, by the same arguments in (2.14) and (2.15), we obtain, for n large enough,

qksA
E |c°v(6.6)| <

l<i<j<k
Tlh^.IL

p—p

,2 00

r—q

e[tL)2 ->o.

Therefore
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Now, by stationnarity,

E[Tn )2 <^-VarKTltïri

x-Xi
hn.

+
nhr E

l<i<j<p+q

Cov K
X - Xi

,K
X — Xn

By ( 2.2), (2.11) and (2.13), we get E ( Tn ) —> 0, which complétés the proof of (2.8).

Proof of Theorem 1. By Lemma 1, it suffices to establish the asymptotic normality of
gn(x). For this aim, by (2.8), we will show that

(2.16) r„4v(0,<72(z)).
The proof of convergence in (2.16) consists in using Theorem 7.2 of [1], (2.9) and showing
the following two results

(2.17)

and

3=1

—> 0, Vf G

(2-18) Vî>0'

Let us begin by establishing (2.18). Since \rji\ < Cp/y/nhn, it follows that

- CStP(Vl>£'/kVà'r{m))
<
~ e2 nhn

Choosep — [(log n)~ô(a~3^4:('a~1') (n hn)1/2]. Then, we get

Now, let us establish (2.17).

E (eü ^i=iM - JjE(e^)
j=1

k-1

< E (eü^i=i^) - E Vj) E (eür,k)\ / \ /

+ E (eîtES^) - TT E {eitr}j)
3=1

Cov (eü ^, eitr,k ) +

fc—1

E E (e^')
i=i

(2.19)
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By a répétition of this argument, inequality (2.19) becomes

k

e(V*eU11A -f[E(eitr)i) < Cov ,eitm)
i=i

+ ••• + Cov (eitm, eitT]1 )

Thus, by the same arguments as in (2.14) and (2.15), we obtain

k

E(>^) - JjE(e^)
i=1

3. Conclusion

In this paper, we established the asymptotic normality of the kernel density estimator for
linear processes with quasi-associated innovations. The almost sure convergence will be
studied in the further works under both arithmetic and exponential decay of the covariances.
Another interesting perspective of this work would be the investigation of asymptotic prop-
erties of the kernel estimate of the régression function for linear processes generated by a
large class of weakly dépendent innovations. We note that the linear processes with weakly
dépendent errors are of great importance in econometrics and discussed in [11] and [5].
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