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A resuit about efficient predictors is presented. It is proved that the existence of an efficient predictor, i.e. which risk attains the Cramér-Rao bound for predictors, implies that the family of distributions is of a spécial form which can be seen as an extension of the notion of exponential family. The resuit is proved under L2-differentiability conditions.

Unbiased statistical prédiction

. In full generality, the problem of statistical prédiction is to estimate a quantity f(X,Y,6), we shall say predict f(X, Y, 0), where X is an observed random variable representing the observations, Y an unobserved random variable and 6 the parameter of the model {P# | 6 G 0} which the distribution of (X, F) is supposed to belong to. The random variables X and Y may be of finite or infinité dimensions. For example in the finite dimensional case, X could be the value of a vector gaussian process U = (Ut, t G N) at time T with Ut G Rfc for ail t, i.e. X := Ut G Rfc. The random variable Y could be the value of the random process U at time T + 1, Y := Ut+i G Rfc. For example in the infinité dimensional case, X could be the path of a continuons time random process (Ut, t G [0, oo)) until time T G [0, oo), with [/(Gl for ail t G [0, oo), i.e. X := (Ut, t G [0, T]). The random variable Y could be the path of the random process U between times T and T + h, Y := (Ut, T < t ^T + h).

We shall assume that g takes its values in Rfc and 0 C Rd. That framework encompasses a wide variety of statistical problems ranging from stochastic processes prédiction and time sériés forecasting ([5], [1], [3], [16]) to latent variable models and random effects inference ([10], [12]). If p(X) is used to predict f(X,Y,9) we shall call it a predictor and measure its performance with its mean squared error of prédiction which breaks down in the following sum EMX) -f(X, Y, 6)Y2 = EMX) -g(x, 0))x2 + Ee(g(X, 0) -f(X, Y, $))'*2, AMS 2000 subject classifications: 62M20, 62J02

with g(X,9) -Eg[f(X,Y,9)\X] and where we use the notation Ax2 -AA' the product of a matrix with its transpose. The second term of the right hand side is incompressible, it does not dépend on the choice of the predictor. Hence in what follows we are interested in the first term which we call quadratic error of prédiction (QEP) and dénoté by R [START_REF] Müller-Funk | On the attainment of the Cramér-Rao bound in Lr-difîerentiable families of distributions[END_REF]. R(0) = Ee(p(X)-g(X,9)r2.

A lower bound of Crarnér-Rao type has been proved for the QEP with conditions of point differentiability of the family of the densities of the distributions of the model with respect to the parameter and conditions of differentiability under the intégral sign ( [START_REF] Yatracos | On prédiction and mean squared error[END_REF], [START_REF] Nayak | Rao-Cramer type inequalities for mean squared error of prédiction[END_REF], [2]). The bound has also been proved for conditions of L2- differentiability of the family of distributions of the model ( [START_REF] Miyata | The lower bound for MSE in statistical prédiction theory[END_REF], [START_REF] Onzon | Prédiction efficace et asymptotiquement efficace[END_REF]). In the onedimensional case (k = d = 1) and for unbiased predictors it reads, Ee(p(X) -g(X,9))2 > (Esdeg(X,e))2 m where 1(9) is the Fisher information. At the end of this section, we recall the State- ment of this inequality in the case of a multidimensional parameter and under con- ditions of L2-differentiability of the family of distributions.

When the mean squared error of an estimator attains the Cramér-Rao bound, we say that it is efficient. By analogy, an efficient predictor is a predictor which QEP attains the Cramér-Rao bound. In the case of estimation, it is proved that there exists an efficient estimator Ô(X) of ip(9) G Rd if and only if the family of distributions of the model is exponential, i.e. of the form (rr) = exp{A(0)'5(x) -B(9)}, for sonie 9q G 0, and différentiable functions A : 0 -y Rfc and B : 0 -> R, with (JqA(9))' -I(9)(Je,ip(9))~l and XqB(9) = (JoA(9))'i/j [START_REF] Müller-Funk | On the attainment of the Cramér-Rao bound in Lr-difîerentiable families of distributions[END_REF]. The resuit has been proved under different conditions ([17], [START_REF] Fabian | On the Cramér-Rao inequality[END_REF], [START_REF] Müller-Funk | On the attainment of the Cramér-Rao bound in Lr-difîerentiable families of distributions[END_REF]).

An analogous resuit for prédiction appears in [START_REF] Bosq | Inference and prédiction in large dimensions[END_REF] in the one-dimensional case and in [START_REF] Onzon | Multivariate Cramér-Rao inequality for prédiction and efficient predictors[END_REF] in the multidimensional case. In both cases, the resuit is proved under conditions of point differentiability of the family of the densities of the distributions of the model and differentiability under the intégral sign. For this resuit, the family is not necessarily exponential but has a form which may be seen as an extension of the notion of exponential family. There exists an efficient predictor p(X) to predict g(X, 9) G Rfc, in the spécial case k -d, if and only if ^(x) = exp{A(0)'p(ae) -B{x,0)}, for some 9q G 0, and différentiable functions A : 0 -» Rfc and B : 0 x E -> R, with (JoA( 9))' = I(9)(EeJeg(Xffi))-1 and XeB(x,9) = (JeA( 9))'g(x,9). Section 2 présents a proof of this resuit under L2-differentiability conditions. The proof is based on the proof of the resuit for estimation that appears in [START_REF] Müller-Funk | On the attainment of the Cramér-Rao bound in Lr-difîerentiable families of distributions[END_REF].

For convenience, the appendix gathers définitions and results on L2-differentiability that are used in this paper. We now give a set of assumptions under which the Cramér-Rao bound for predictors holds. We use the following notations, let X be Rd (the space where the random variable X takes its values) and B its Borel aalgebra.

Assumption 1.1. Consider a model (A,B,P#,# G 0), 9q G 0, a neighbourhood U (do) of 6o and a function g : X x 0 -* Rfc; with g(-,9) measurable for ail 9 G 0, such that the following conditions hold.

1. The family (Pg,9 G 0) is L2-différentiable at 9q, with dérivative Lq0.

2. Fisher matrix information I(6q) is invertible.

3. For ail 9, 9' G U(9q), g(X, •) is Pq-almost surely différentiable at 9' and sup E0\\Jeg(X,9')\\llkd < 00■ (0,0')et/(0o)2 4-suP(0,0')e£/(0o)2

< oo

Moreover consider a predictor p(X) taking values in Rfc. There is U(9q), a neighbourhood of 9q, such that 5-sup0eC/(0o)Ee|[p(X)||2lfe <oo.

We state below the inequality for unbiased predictors. A proof can be found in [START_REF] Onzon | Prédiction efficace et asymptotiquement efficace[END_REF]. Here we say that p(X) a predictor of g(X, 9) is an unbiased predictor if Eg(p(X)) = Eg(g(X,9)) for ail 9 G 0 (for other concepts of risk unbiasedness pertaining to prédiction problems see [START_REF] Nayak | The concept of risk unbiasedness in statistical prédiction[END_REF]).

Theorem 1.1. Let (X,B,Pg,9 G 0) be a model, 9q G 0, and p(X) an unbiased predictor of g(X,9) taking values in Rfc, that satisfies Assumption 1.1.

Then the QEP of p(X) at 9o satisfies the following inequality.

(1.1) E(,"(p(X) -g(X,e0)r2 Z G(fl0)/(eo)-1G(«o)'.

with G(9) -E^Jgg(X,9). The equality holds in (1.1) iff p(X) = g(X, 9o) + G(9o)I(9o)~1Lg0, PoQ-a.s.

Efficient prédiction

A predictor p(X) is said efficient when its QEP attains the Cramér-Rao bound.

Theorem 2.1. Suppose k -d. Let 0 be a connected open set of Rd. Let (X, B,Pg,9 G 0) be a model, g : X x 0 -> Rfc and p(X) an unbiased predictor of g(X,9), that satisfy Assumption 1.1 for ail 9 G 0.

Suppose the following conditions hold.

(z) = exp (A(9)'p(x) -B(x, 9)),

and XeB(x, 9) = (JeA( 9))'g(x, 9).

Proof. Let 9 G 0. The predictor p{X) is efficient hence Pgi-a.s.

p(X) = g(X, 0) + (E9J"<,(X, 0)) I(0)~lLe = g(X,0) + G(0)I(0)-1Ll).

Hence Le = I(0)G(0)-1(p(X)-g(X,0)). We prove that for ail event B G H, the following equality holds

(2-1)

/ f(X)dPeo = Pe(B).

JB Since B is cr-compact, one may assume that H is a compact set. For P^-almost ail x G X, s i-4-g(x,9s) is différentiable over [0,1] (we remove from B the points x for which differentiability does not hold). We set O^i^n, yERUi

We prove by contradiction that Pe0(Bi^u) > 0 iff Pe(BijU) > 0. Without loss of generality, suppose that Pes{Bi,u) > 0 for s G [0,1) and Pe{Bi:U) -0. We set H (s) = logP0s(5i;U). From Proposition A.l, s ^P es{Bi^u) is différentiable over

[0,1], hence it is continuons over [0,1]. Hence lim Poa{Bi,u) = 0- S-> 1
And therefore

(2.3) lim H (s) = -00.

S->• 1"

Besides H is différentiable over [0,1). Its dérivative is h{s)

Ô'SVeBes(Bj,u)

P es{Bi:U) P J's [ Lesd~Pes = m{s\BijU) -(t>{s\B^u), ros{R>i ,u) 
JB^U where m(s|Bi,") = Pe,(B,,")-1 f è'sI(»,)G(e,)-1p(X)dPe"

(2.4)

(p{s\BijU) = P0s(Bi;U)_1 f (f>(s,X)dP0s.

Bî^u

We prove that h(s) is bounded. The function s 0'SI{6S)G{6S) 1 is continuons over Hence (f)(s\BijU) ^c(cru + M/n). We deduce that h is bounded over [0,1), which contradicts (2.3). Hence Pe0{Bi^u) > 0 iff Pe{Bi.u) > 0, which implies that the distributions P# and Pgi0 are absolutely continuons with respect to each other. We now prove (2.1) when Pq(B) > 0. One may write f(X)dP9o

' Bi'U exp / 9'sI(9a)G{9a) 1p(X) -m(s\BijU) + h(s) + (j){s\Bi,u) -cj)(s,xŸ)dsj dPe0 f exp( /( ' Ri,u \ exp ^J (9' SI(9S)G{9S) 1p(X) -m(s\BijU)j ds + Ç (0(s|Sj,") -4,(S, X)) ds) dPe" i (Bi)U)

For ail x G Bj^u, 9'sI(9s)G(9s)~1p(x) lies in the image of Ri by the map v. y ^9'sI{9s)G(9s)~1y.

The quantity m(s\Bi:U) also lies in the image of Ri by the map n, since it is the mean of 9'sI(9s)G(9s)~1p(x) over Bi,u. Hence è'sI(eê)G(6s)-lp(X) -m(s\Bi>u) < sup II6'aI(9a)G(9s) x|| diam(Ri) ^ce. Ros{Bi,u) JBi>u (.9(X, 0a)-g(x,9a)) dP6s. for ail e > 0. And therefore fB f{X) dPe0 = Pg(B). Hence, for P^-almost ail x e X, with From condition 3 and the gradient theorem, A(0) does not dépend on (0s,s G [0,1]), the chosen path. Yet

does not dépend on it either, hence B(x,6) does not dépend on it. Therefore VeB(x,e) = mG(e)~lg(x,B) = (J0A(B))'g(x,B). □ Remark 2.1. In Theorem 2.1 we did not assumed continuons L2-differentiability as [9] did for their analogous resuit in the case of estimation. If we add a condition of continuons L2-differentiability in Theorem 2.1, this makes possible to save some assmnptions. More precisely, the resuit of Theorem 2.1 also holds under the following conditions.

1. The family (Pq,9 G 0) is continuously L2-differentiable and 0 is a connected open set of IRd.

  continuously différentiable path from 9q to 9 with s G [0,1]. This path exists because 0 is open and connected. We set f(x) = exp (J 9' sLes(x)dsSj = exp (^J (Ô' sI(9s)G(9s)~1p(x) -(f>(s,x))ds^, with (f>(s,x) = 9'sI(9s)G(9s)~1g(xffis).

  »S)se[0,l]} The first supremum of the right hand side is finite because (9s,s G [0,1]) is continuously différentiable. The second one is finite from condition 5. Hence M < oo. Let e > 0 and (Ri)i<z^be a partition of Rk in rectangles of diameters at most e, and let [Ml n = £ For ail u G Nn+1 we let Su = {x G X | Vz G {0,...,n}, g(x, 9i/n) e RUi} . We then define Let x G Bi^u and s G [0,1] then, ||t/0Ms)|| ^^[snj/n) Il 3" @\_sn\/n) p(^5^s)|| ^sup \\y\\ + M \[sn\/n -

[0, 1 ]

 1 , from condition 6, hence c= sup ||0(J(6'S)G'(0S)_1|| < 00. sG[0,l] Let x G Bi,u, then p(x) G Ri U {0} hence \è'sI{ds)G{es)~1p{x)\ ^c sup ||y|| = cpi. y£Ri Hence \m(s\BitU)\ ^cpi. Prom the continuity argument above and the bound (2ae)| ^c\\g(x,6a)\\ ^c(au + M/n).

  (s\Bi)U) -<t>(s,x) (9'sI{0a)G(0a) 1p{x) -m(s\BitU)) ds é'si(es)G(es)-1 lBi.u < ce.
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Conditions to hâve G(9) = E$jQg(X, 9) are not fuffilled anymore, hence we only get the expression G(9) -JoEgg(X,9) -Egg(X,9)L'd. In the list of conditions above one saves conditions 3, 4 and 5 of Assumption 1.1 and condition 6 of Theorem 2.1.

Remark 2.2. The essential idea in the proof of Theorem 2.1 is to eut the set B with the family of subsets with the following form BhU = B nP~1(Rl)n Su, while for the resuit in the case of estimation, Müller-Funk et al. [START_REF] Müller-Funk | On the attainment of the Cramér-Rao bound in Lr-difîerentiable families of distributions[END_REF] took the family of subsets with the simpler form Bi -BC\p~1(Ri). More specifically, we can see why our more précisé partition of B is useful, in the case of prédiction, in two instances.

First when we prove that h is bounded, and then when we prove (2.1) in the case Pé/0 (B) > 0. In the first instance, for proving that h is bounded, we need to prove that <!>(s\Bi,u) (2.4) is bounded, which is done in (2.5) thanks to the bound on ||^(a?, ^)|| established in (2.2). The dérivation of the bound (2.2) crucially takes advantage of the set Su. Contrast this with the spécial case of estimation, in which g does not dépend on x but only on 9. A conséquence, in that spécial case, is that 0(x, 9) also only dépends on 9 and therefore cj)(s\BiM) reduces to 0(s) = 9'sI(9s)G(9s)~1g(s), which can be shown to be bounded on [0,1), without using the set Su, by continuity arguments. In the second instance, for proving (2.1) in the case Pe0(B) > 0, we need to prove the bounds (2.6) and (2.7). For the bound (2.6) we do not use the property of the set Su and the dérivation of the bound is identical as in the case of estimation. For proving the bound (2.7) we rely crucially on the property of the set Su. We remark that this bound becomes trivial in the spécial case of estimation since (f)(s\B^u) -(f>(s,x) -0(s). Remark 2.3. In the particular case where g does not dépend on X, g(X,9) -g(9), Theorem 2.1 gives the well-known resuit that the existence of an efficient unbiased estimator implies the family is exponential.

A. L2-differentiable families

We remind some définitions and results about L2-differentiable families of distribntions, we refer to [7] p. 58 and next. For 9, 9q in 0, any random variable Lg0y taking values in [0, +oo] is called likelihood ratio of P# with respect to if, for ail A £ A, ^o(A) = j Lg0,gdPg0 + Pq (A n {Lq0$ = +oo}). JA Lg0)g is a probability density of P# with respect to Pgi0 if and only if P# <C P0O-P u is a measure over A that dominâtes {P(9,P<90} with {fg,fg0} the corresponding densities then fe Le0,e = j^l{fdQ>o} + ool{fdo=OJe>0}, {P0,P0o}-a.s.

For ail 0 6 0, for ail u £ Rd such that u + 9 £ 0, we set Lq{u) = Lqj+u.

Définition A.l. The family (Pg,9 £ 0) is said L2-différentiable at 9q £ 0, if there is U(00) a neighbourhood of 9o, such that for ail 6 £ U(6q), Pg <C Pé»0, and if there is Lq0 £ Lpff (Rd), called the L2-derivative of the model at #o, such that as u -a 0, E«o (lI{2(u) ~1 -\u'lA = o(||u||Rj).

The matrix I{9q) = Eg0Lg0L'eQ is called the Fisher information matrix of the model at 9q.

The following resuit is a recasting of Propositions 1.110 and 1.111 of Liese and Miescke (2008) [7].

Proposition A.l. Let (Pg, 9 £ O) be a L2-différentiable family at 9q £ 0 with Lg0 the L2-dérivative and let ô a r.v. taking values in Rfc such that there is a neighbourhood U(9o) of 9o with sup < oo. 0GJ10o) Then f) : 9 i->-is différentiable at 9q, and the jacobian matrix of if is = Eeo (««")•

In particular, 9 £ Q, EgLg = 0.

We give the définition of continuons L2-differentiability. Définition A.2. Let (Pg, 9 £ 0) be an L2-differentiable family over 0, with Lg as L2-derivative. We say that (P#, 9 £ 0) is a continuously L2-differentiable family over