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Abstract: Simulating the full dynamic response of a rolling sculpted tire requires not only taking
into account various non-linearities but also considering the multi-scale nature of the dynamic
response itself. On one hand, there is the macroscopic rolling dynamic behavior that operates
around the rotating frequency with relatively high amplitudes. On the other hand, the vibratory
response operates in a larger frequency window with relatively low amplitudes. In contrast to a
straightforward strategy that consists of using an energy-conserving stable time integrator to predict
the multi-scale dynamic response, the proposed strategy is based on a two-steps approach to separate
the dynamics operating at different scales. This methodology is applied to simulate the nonlinear
vibrations of a hyperelastic solid undergoing large deformations in contact with a rigid plane. In
order to illustrate the potential of the proposed numerical method, the nonlinear vibrations response
of a grooved cylinder rolling on a rigid plane is investigated.

Keywords: non-linear dynamics; contact mechanics; multi-scale modeling; grooved cylinder; tire

1. Introduction

Tire/road noise is becoming a major source of vehicle noise as the transition towards
electrical vehicles is underway. This has resulted in tire manufacturers refining their tire
design to help reduce traffic noise. The basic physical principles of tire/pavement noise
are well understood and documented [1]. For the interested reader, a literature review of
design considerations on parameters influencing tire/pavement interaction noise can be
found in [2] and a complete review of models on tire-pavement interaction noise is also
provided in [3]. The tire/pavement noise generation mechanisms can be divided into two
categories. The first one is an air-flow mechanism that generates noise at high frequencies
(above 1000 Hz) and is commonly referred to as air-pumping. The second one is the tire
vibrations mechanism that generates noise at low and medium frequencies (below 1000 Hz).
These noise generation mechanisms are well described in [4]. This paper focuses on the
latter mechanism.

The tire solid vibrations are generated by two excitation sources. The first one is
the road roughness for which the resulting vibrations could be well predicted for axi-
symmetric tires using an ALE-formulation [5,6]. This approach consists of using a fixed
mesh through which the tire material particles flow. This approach gives a stationary state
of the loaded rotating tire. Afterward, the small vibrations due to the road excitation could
be computed using a modal superposition technique [7,8]. Most industrial models found in
the literature are based on this approach. The second excitation source is the tire’s groove
resonance. The small scale tread deformation has an impact on the noise emitted by the
tire [9]. The main goal of the grooves is to ensure sufficient grip in wet conditions in order
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to avoid hydroplaning; however, the tire groove geometry parameters (length, width, angle,
depth...) and the material proprieties change the vibratory behavior of the tire [10,11].
The prediction of the vibrations induced by this second mechanism can be more complex
to achieve and requires the implementation of a specific methodology. Indeed, obtaining
a stationary state is no longer possible and full Lagrangian vision should be adopted to
treat the tire’s large deformations. Hence, a time integration process seems unavoidable.
The vibrations small scale requires using energy conserving schemes [12,13] but remains
costly from a CPU time perspective.

The main contribution of the proposed study is to promote a numerical methodology
based on a two-step approach for solving such problem [14]. Firstly, a non-linear quasi-
static simulation is performed to avoid using a high-order stable numerical scheme capable
of handling the considered non-linearities. Afterward, the non-stationary equations of
motion are linearized using the quasi-static response as a reference point. The method
was originally proposed by Valyaev [15] for linear elastic materials. The effectiveness of
the proposed approach is illustrated by predicting the non-linear vibrations of a grooved
cylinder rolling on a rigid plane with frictionless contact in the first case and with frictional
contact in the second case. Even if special attention is given to the mechanical contact,
since the tire vibration noise is mainly caused by the impact between the tire and the
pavement [4], the main objective is not to propose a reality of the physical phenomena
and the interaction between the vibratory response of the tire and the road, but only to
demonstrate the capacity of the numerical methodology put forward to correctly predict
the vibratory response of solid undergoing large deformation with frictional contact.

This paper is organized as follows. Section 2 presents the mathematical framework
used to describe the mechanical behavior of a hyperelastic solid undergoing large defor-
mations in contact with a rigid plane. Afterward, the linearization process is detailed
and several hypotheses are made and justified. The efficiency of the proposed strategy
is demonstrated by applying it to simulate the non-linear vibrations of a grooved cylin-
der. The prototype structure and the numerical results are presented in Section 3. Finally,
the concluding remarks are given in Section 4.

2. Problem Setting

This section sets the mathematical framework used to develop the proposed method-
ology. Firstly, the mechanical quantities needed to use the large deformation theory are
introduced. Afterward, the mathematical formulation of the frictional contact is presented.
Then, the equations of motion are given with the corresponding weak formulations. Finally,
the perturbation of the quasi-static simulation that gives the vibration response is detailed.

2.1. Notations

An open set ) C R3 represents the reference state of a continuum body with material
points X € Q, x = ¢(X, t) € R? is the deformation field of the body relative to its reference
state at time t € [0, +co[ and u(X, t) = x — X is the displacement field. The boundary of the
material domain d() is composed of I';, where the displacement is imposed, I'y where the
external force is imposed and I'c the potential contact zone.

The gradient of a quantity in the reference configuration is noted V. To describe the
deformation, several mechanical quantities are introduced. The identity matrix is denoted
by I and the deformation gradient is represented by F = I + Vu. The Jacobian of ¢ is
denoted by | = det(F). C = FTF represents the Cauchy-Green tensor and E = }(C —1I)
is the Green—Lagrange strain tensor. o is the Cauchy stress tensor, P = JoF~T is the first
Piola—Kirchhoff stress tensor and S = JF~1¢F T is the second Piola-Kirchhoff stress tensor.
To treat rubber-like materials, a general hyperelastic constitutive law is considered. This
law is derived from the strain energy function W that depends on the deformation through
E [16]. The second Piola-Kirchhoff stress tensor is given by:

W

S=%E

(E) 1)
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with corresponding fourth-order elasticity tensor
S _ PW )
- 0E  OEJE

The fourth-order material elasticity tensor C is necessary within typical finite element
procedures and is used in the linearization procedure later on.

2.2. Contact Mechanics

A unilateral contact with rigid plane is considered, as illustrated in Figure 1. I'c is a
restricted part of d() and represents the surface where contact/friction phenomena may
occur. N (resp. n) is the unit outward normal in the reference (resp. current) configuration.
The motion of the body is restricted to the upper half-space z > 0 from the rigid plane
z=0.

Reference configuration

Deformed configuration

t
L'y
n
; dart
Nl I‘t I‘t
y/ X b “

Figure 1. The reference and the deformed configuration of a deformable body in contact with a rigid
plane.

To treat the geometrical non linearity, the equilibrium equations are written in the refer-
ence configuration. Thus, the second definition of the force will be privileged. The traction
vector is decomposed in the deformed configuration as follows:

PN =II;n 4+ I1; (3)

where I'1,n is the normal stress vector and II; is the tangential stress vector at the interface.
I1; is calculated as follows:
II; =(I-n®n)-PN 4)

The contact constraint’s mathematical formulation requires also the displacement field
decomposition in the contact patch

u=uun-+u 6)
where u;, (resp. u;) is the normal (resp. tangential) displacement.

2.2.1. Signorini Conditions

The non-penetration condition in the contact surface is mathematically formulated
using the normal gap function g, defined as:

gn=-xn>0 (6)
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The gap function could be written using the displacement u

gn(u) = —=(X+u)-n

= 80— Un

(7)

where gy > 0 is the initial gap. To prevent the body from penetrating the plane, a non-
positive contact pressure arises in the contact zone.

I, <0 8)

Finally, if a point is not in contact, then I, = 0, meanwhile I'l, < 0 if not. This leads
to the non-penetration non-adhesion condition:

11,8, =0 )
The force acting on an element of area in the deformed configuration is defined via
df = ondI" = PNdT' (10)

The set of the presented conditions are called Hertz—Signorini-Morea or Karush-Kuhn-
Tucker conditions [17]:

gn >0, I, <0, g1, =0 on T, (11)

These conditions provide the basis to treat frictionless contact problems in the context
of constraint optimization.

2.2.2. Coulomb Friction Law

Friction on the contact interface can be introduced in the general form [18]:
II; = I1,(11,,, I1,, 0, ¢, .. ) (12)

The simplest friction law states that the tangential resistance of the contact interface
depends on the contact pressure and that the direction of the tangential stress vector is
given by the sliding direction s.

Wi ]| > 0

I, = I, (11, h = Tul 13
+=M{Iys)  where s {o if [[t]| = 0 (19

where 1, is the sliding velocity. The relative motion of the point along the rigid plane is
confined by the frictional shear force in the way that the point remains at the initial contact
location if the shear stress vector is smaller than the critical frictional stress I1f, which in
Coulomb’s friction law is proportional to the contact pressure, so the point does not move if

[T || < TT§ = p|TT,e| (14)

where the coefficient of proportionality y is the coefficient of friction. The maximal per-
mitted tangential stress in equilibrium straight motion is limited by u|I1,|. The contact
condition in the slip regime is

I, — p[IL,Js = 0 (15)

The former condition could be generalized to the stick regime by multiplying it by the
norm of the sliding velocity |||

o | XX — pe[ Tt = O (16)
A complementary condition is added to distinguish stick and slip states

(I8l — [Ty [s]| =0 (17)
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Union of all fore mentioned conditions forms the set of conditions for Coulomb’s
friction law

[T < [T, [0 || 1T — p[ T [0y = 0, Is]HITL: — p|TTu[s]} =0 on T (18)

The Coulomb’s friction law is sufficient to describe the macroscopic dry friction treated
in this paper. For the interested reader, more complex friction laws based on tribological
considerations at contact interfaces could be found in [19].

2.3. Equations of Motion

The contact conditions together with the relevant boundary conditions complement
the local balance of momentum and angular momentum (¢ = ¢T). The inertia effects
are neglected and a quasi-static process will be considered to deal with Coulomb friction.
Hence, the equations of motion are written as follows:

V:-P+£f=0 in Q
PN =Fy on Iy
u=uy on T, (19
>0 I, <0, gll,=0 on I,

T[] < pTLal,  [Jo [T — g = 0, [|s][|TL: — p[TTafs]| =0 on T¢

f defines the volume external forces, Fy is a prescribed traction (Neumann boundary
conditions) and u, is a prescribed displacement (Dirichlet boundary conditions).

In order to obtain the weak formulation, which is the starting point of the finite element
method, the first equation of (19) is multiplied by a test function v and integration by parts
is then performed. The weak formulation is stated as follows:

Findue U = {ue H'(Q)|u=u, on I',}

/P:Vde—/f-de— PN-vd[ =0 VYveV (20)
Q O 200

where V = {u € H!(Q))| u = 0 on T, }. The integral defined on the boundary are sepa-
rated as follows:

/ PN-vdF:/ Fo-vdl"+/ PN.vdl @1)
20 ey Ic

The first term takes into account the Neumann boundary condition. The second one is
related to the contact constraint and could be written as follows

PN-vdF:/ (ILyn + ;) - (vyn + vg) dT
FC c

Findu e U

ngZO/

(22)
:/r (TTy0p + T0; - v¢) dT
The weak formulation could now be written as follows:
fQP:Vdefof-deffrfFo-vdF:frcﬂnvn+ﬂt-vtdr Yvey
23
I, <0, gully =0 on T, @3)
I < plTL| [l — plTLafi =0 [s|]{ITL, — [T, s]| = 0 on I,

Several formulations can be applied to incorporate the contact constraints into the
variational formulation. Most standard finite element codes that are able to handle contact
problems use either the penalty or the Lagrange multiplier method. Each of the methods
has its own advantages and disadvantages. The methods are designed to fulfill the con-
straint equations in the normal direction in the contact interface. For the tangential part,
a constitutive relation is needed when stick/slip motion occurs [19].



Appl. Sci. 2022, 12, 1447

6 of 21

The penalty method is used to treat the normal contact condition. An active set strategy
is employed to obtain the active contact zone. The normal contact condition contribution to
the weak formulation is approximated as follows [20].

o, dT = / eng;y ()0, dT (24)
JT. JT.

where ¢, is the normal penalty parameter and g, = min(gy,, 0) is the penetration function.
As g, — oo, the gap function g, — 0 on I';, the constraint is increasingly well-satisfied.
However, large values of ¢, will lead to an ill-conditioned numerical problem.

The Coulomb friction law is regularized using a linear approximation in the stick
regime. The tangential contact contribution to the weak formulation is written as in [21]:

. Er
/ Ht-vtdl“:/ | TT, | (25)
JT¢ T

Taae - vedl if [[ae] > e

Lo Welygvedr i [fad| <e

where ¢, is the regularization coefficient. It determines the boundary between the stick
and the slip regime. If &, — 0, we obtain the classical Coulomb law. Since the problem is
written in a quasi-static framework, the sliding velocity 1 is approximated using a finite
difference method. The analytical contribution of each integral term to the tangent matrix
and to the nonlinear residual could be found in [21].

2.4. Dynamic Response

The weak formulation is solved using finite element method. Afterward, the quasi-
static response is used to linearize the dynamic response. Several hypotheses are made and
explained and the linearization process is detailed.

2.4.1. Main Hypothesis

The quasi-static problem, as formulated in the former section, is given by:

[ P1:vvdn- [ fvd0- [ Fpevdl =Re(w) WeV (26)
Q Q .l“f

where R, is the virtual work of the contact forces. The virtual work due to the inertial forces
is added to the weak formulation. The dynamic problem is given by:

/pi.iz.de-l—/ Pz:Vde—/ fvdO— | Fo-vdl =Re(n, ) WeEV (27)
Q Q Q Ty

where p is the density. The dynamic response u; is supposedly the sum of the quasi-
static response u; and the vibrations field w. In other words, the inertia effects are only
considered for the vibrations problem.

uz(X, t) =uq (X, t) + W(X, t) + O(W) (28)

An homogeneous Dirichlet boundary condition is applied on I, since the prescribed
displacement is the same for both problems.

w=0 on I, (29)

The active contact zone I'. and the virtual work of the contact forces are supposedly
the same for the dynamic and quasi-static problem.

Rc(u21 112) ~ Rc(ul) (30)

The active contact zone is not exactly the same since the inertia terms will change
the contact stiffness and thus alter the contact patch [22]. Another difference between the
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virtual works is the friction law formulation. The sliding velocity is approximated in the
quasi-steady regime whereas it is equal to the tangent velocity in the dynamic regime.
Given the hypothesis that the inertia effect does not change the contact patch, the nor-
mal displacement in the quasi-steady regime does not change in the dynamic regime since
it is determined by the rigid plane position. Therefore, the normal vibrations field is null
on the contact active zone.
wen=0 on FZ (31)

This boundary condition is an interpretation of the contact constraint as a Dirichlet-like
boundary condition. The active contact zone I'. is not related to a material domain, which
is problematic from a mathematical point view; however, it is easily implemented after a
finite element discretization.

2.4.2. Linearization

The linearization process starts with expressing the mechanical quantities of the
dynamic problem as function of the mechanical quantities of the quasi-static problem with
neglecting high order terms

F, =F+Vw
B2 = i+ 5 (FTVw + Viwky  YTwVw)
~0 (32)
~ E; + %(Vw +Viw+ ViyuVw + ViwVuy)
~ E1 + Ewy
The constitutive material law is linearized as follows

oW oW

Sz - E(Ez) = E(El +Ew,u1)
oW 0°W (33)
~ ﬁml) + m(El)  Ewuy

~ S+ Cl : Ew,u1
The deformation integral term is linearized as follows

P, :Vv=S,:(F]Vv)
=(S1+C1:Ewyy) : (FIVV+VTWwVy) (34)
=P1:Vv+S1: VIWVv+ (C1 : Ewy,) : (F]VV)

The weak formulation governing the vibrations response is given by

/pr-vd()—i—/oslszwVv—i-(Cl:Ew,ul) L (F]Vv) dQ = —/Qpiil.v 0 Wwev (35)

The deformation integral term depends on the gradient of the quasi-static displace-
ment. The quasi-steady acceleration ii; appears as the excitation force. It is approximated
using a finite difference scheme. The second derivative numerical approximation generates
high frequency noise. It could be handled by using low-pass filter or by choosing an
adequate discretization. Equation (35) is linear with respect to w and could be solved using
a time integration scheme.

3. Numerical Results

In this section, a numerical example intended to demonstrate the utility and perfor-
mance of the proposed method is presented. The quasi-static problem is solved using a
finite element code called MEF++, which is developed by the GIREF of Laval University
(Groupe Interdisciplinaire de Recherche en Eléments Finis). The studied prototype is pre-
sented and the simulation numerical parameters are given. Afterward, the quasi-static
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simulation results are analyzed. Finally, the vibrations field is extracted using the presented
method. The coefficient of friction impact on the quasi-static problem and on the vibrations
is investigated.

3.1. Prototype

The method presented in the former section is applied to predict the dynamic response
of the grooved cylinder shown in Figure 2. The cylinder is composed of 10 blocks. The cho-
sen mesh is a result of a convergence study with respect to the quasi-static displacement
and the contact forces. The mesh is composed of 35,640 nodes and 29,440 linear elements.

Figure 2. The prototype mesh.

The material domain is composed of the potential contact surface (in red) I'c and the
rim zone I';, (in blue) where the following Dirichlet boundary condition is applied:

uX,t)= [Vt 0 —d|"+R(wt)X—X in T, (36)

The structure is loaded kinematically by applying a vertical displacement d in the rim
zone. The load could be thus calculated by summing the vertical reactions in the contact
patch. V is the translation velocity, and R is the rotation matrix associated with the angular
velocity w. The translation velocity depends on the angular velocity via the effective radius
(also known as the rolling radius) 7, = V/w. A first order approximation of r,, is given as
a function of the geometrical radius R, (see [23] for more details) as follows

Tw & R, — = (37)

The tire rubber is commonly modeled by using an hyperelastic material constitutive
law. The simplest hyperelastic material model is the Saint Venant-Kirchhoff model, which
is just an extension of the geometrically linear elastic material model to the geometrically
nonlinear regime.

S = Atr(E)I + 2uE (38)

where A and y are the Lamé constants. The numerical results presented in the next section
are obtained using the geometrical and the material constitutive law properties given in
Table 1. The rolling conditions and the simulation numerical parameters are also given
in Table 2. The chosen parameters are the result of a preliminary convergence study that
is not presented. In fact, the resulting quasi-static displacement is practically invariant
with respect to higher values of ¢, and lower values of ¢, using the chosen mesh and the
mechanical properties given in Table 1.
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Table 1. Prototype mechanical properties.

External radius R, =01m
Internal radius R; =0.02m
Width w=01m
Young Modulus E=2x10%Pa
Poisson coefficient rv=03
Density o = 900 kg/m3
Table 2. Simulation parameters.
Deflection d=0.01m
Rotation speed w = 150rad/s
Normal penalization e, = 1012
Regularization coefficient e =10"°
Time step At=10"*s

3.2. Quasi-Static Rolling

The quasi-static rolling results are now presented. In order to study the deformation of
the structure, the displacement field is extracted for different points as shown in Figure 3.

Figure 3. Nodes selection: (left) r = R, (¢), 7 = (Re + R;)/2 (e), r = R; (¢). (right) y = width/2 (e),
y =width/4 (e),y =0 (o).

The first selection provides insight into the displacement variation in the radial direc-
tion while the second one provides an insight into the displacement variation in the lateral
direction.

3.2.1. Preample-Frictionless Contact

The analysis of the quasi-static rolling is initiated by considering a frictionless contact.
Although this first case studied, based on frictionless contact, does not make sense for
the reality of tire-road interaction, as it does not correspond to the real phenomena of tire
contact, this preliminary study is carried out only to illustrate the feasibility and validity of
the proposed two-steps approach on the grooved cylinder under study. In addition, this first
application with frictionless contact will serve as a reference for a qualitative comparison
with the following case, which considers the impact of friction. So the main objective of this
section is to study the kinematics and the contact pressure of the grooved cylinder in order
to validate both the mechanical modeling and the associated numerical methodology.

Figure 4 shows the time evolution of the quasi-static displacement components.
The displacement field is, as expected, periodic. The longitudinal displacement Uy slows
down at the entry of the contact patch (¢ ~ 0.05 s) and speeds up at the exit of the contact
patch (t /= 0.055 s) to reach the rim longitudinal position. The longitudinal deformation
decreases as we move away from the contact zone. The same kinematical behavior is
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observed for tires in [23]. In fact, the radial distance between the tread pattern and the
rotation axis is minimal at the contact patch and reach its maximum at the opposite of
the contact patch. The vertical displacement U, shows that the non-penetration condition
is well respected (0.05s < t < 0.055 s) on the contact patch. The lateral displacement
amplitude Uy decreased as we move away from the contact patch due to the Poisson
effect. The lateral deformation is obviously greater in the contact active zone and is null
at the opposite of the contact patch (t ~ 0.07 s). Furthermore, the lateral displacement
has a symmetric distribution; the deformation at the entry of the contact zone is the same
at the exit of the contact patch and the maximum is reached at the contact patch center
(t = 0.052 s). The displacement of the node occupying the rim zone shows that the Dirichlet
boundary conditions are well respected.

3
25 0.5 X190 0.1 -
[\
o e N [
SN < [
’ = \ f’/ A\ 0.05 | ™\ ‘u‘
/ o5 1 | | a \
15 '// - Il [ “ . “‘w | “‘\
£ = E 4t (‘ ” E | NN
x g > | N / \
= // = ]H Y = N DY/ \ / |
7 15 || I | | \
0.5 - | I -0.05
I S 21 ‘w ‘
7 | | \J \/ W
0= 25 -0.1
0 0.05 0.1 0.15 0 0.05 0.1 0.15 0 0.05 0.1 0.15
Time (s) Time (s) Time (s)
Figure 4. Time evolution of the quasi-static displacement for r = R, (—), r = (R, + R;) /2 (—) and
r = R; (—) with y = width/2.

Figure 5 shows that the lateral position does not impact the longitudinal and vertical
displacement. The lateral displacement amplitude decreases toward 0 as we move to the
contact patch center. This result was expected since the plane (y = 0) is a symmetry plane
of the structure.

3
2 — 05 10 0.1
ob e e e
15 RN 0.5
) 05 | || || | s
- - ¥ ] || ¥ -
E E 4 I Il I E
X S ‘“‘ ‘V \ | ‘ N
= = I | || I =
1.5 | ‘ ‘ | | | ‘
0.5 | I | \“ -0.05
a0
‘u I | |
0= : : 25 : : -0.1 : :
0 0.05 0.1 0.15 0 0.05 0.1 0.15 0 0.05 0.1 0.15
Time (s) Time (s) Time (s)

Figure 5. Time evolution of the quasi-static displacement for y = width/2 (—), y = width/4 (—) and
y=0(—)withr =R,.

Equation (35) shows that the quasi-steady acceleration appears as the excitation force
of the vibrations response. The acceleration evolution in the circumferential direction and
in the frequency domain is displayed in order to have an idea on how the vibrations will
be excited.

Figure 6 shows the time evolution of the acceleration in the rotating frame. The angle
6 = 0 deg denotes the contact patch center and 6 < 0 deg designates the contact patch
exit. From a time perspective, the acceleration’s maximum is reached when the block edge
enters (t ~ 0.052 s) and leaves (t ~ 0.0563 s) the contact patch. From a circumferential
point of view, the maximum of the vertical and lateral acceleration is located at the contact
patch boundaries and have a similar distribution at the entry (6 ~ 20 deg) and at the
exit (0 ~ —17 deg) of the contact active zone. The vertical acceleration is null in the
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contact zone since the vertical displacement is constant in the contact patch. The lateral
acceleration decreases towards 0 as we move away from the contact patch. The longitudinal
acceleration has a shear distribution in the contact patch. An acceleration at the entry of the
contact patch and a deceleration at the exit patch are observed. The balance between the
acceleration and the deceleration varies with respect to the contact patch form.

%103 %10 4
8
250 250 250 25
6
200 l ’ 200 — 200 —_
4 NA ~ 2 o~
150 o 150 2 150 2
2 E E 15 E
2100 0 © 100 . 2100 o
S i i 1
<= 50 ' ‘ ‘ ' ' -2 > 50 < 50
4 0.5
0 e I 1Y [ | 0 0
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Figure 6. Time evolution of the quasi-steady acceleration in the circumferential direction (y = width /2
and r = R,).

Figure 7 shows the associated quasi-steady acceleration spectrum plotted with respect
to the order. The order is defined as the frequency over the rotation speed and it is used to
analyze the spectrum distribution independently of the rotation frequency. The fundamen-
tal frequency is equal to the rotation frequency (Order = 1). Two families of harmonics
appear since various non-linearities are taken into account in the model. The first family of
harmonics operates around the multiples of the rotation frequency nw, n € N. The second
family of harmonics operates around 10 kw, k € N, with a modulation effect. It concerns
the contact forces frequency since the structure is composed of 10 blocks. This modulation
phenomena is due to the rotation effect [24,25]. In fact, the kinematical quantities are calcu-
lated with respect to the fixed frame while the contact forces are connected to the rotating
frame. This phenomena is not observed in the lateral direction since it represents the
rotation axis direction. The vertical and longitudinal accelerations have the same order of
magnitude, which is greater than the one of the lateral acceleration. Finally, the acceleration
amplitude decreases as we move away from the contact patch.
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Figure 7. Frequency spectrum of the quasi-steady acceleration for r = R, (—), r = (Re + R;) /2 (—)
and r = R; (—) with y = width/2.

Figure 8 shows the contact pressure distribution with respect to the position of the
groove (leading and trailing edge). When a block enters the contact zone, the contact
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pressure is concentrated at the entry. As the block advances, the contact pressure moves to
the block center and becomes similar to the distribution of the cylindrical contact pressure
described in Hertz theory [26]. As the block exits the contact patch, the pressure becomes
concentrated in the trailing edge with the same distribution as the one observed for the
leading edge. A small variation of the total contact force is observed. Since the deflection
d is constant and the contact patch form is changing, the load supported by the structure
varies. The last figure shows the spectrum of the total force variation 6F,, which represents
the difference between the total contact force and its mean value. It shows that the variation
spectrum is composed of harmonics located around the multiples of the blocks frequency. In
the following, the Coulomb friction law is now considered and its impact on the quasi-static
rolling is investigated.
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Figure 8. Time evolution of the normal contact pressure (top), the total contact force (middle) and the
frequency spectrum of the contact force variation (bottom). Node selection for the contact pressure
analysis: block entry 6,(—), block center 6.(—), block exit 0s(—).

3.2.2. Extension by Considering the Impact of the Friction Coefficient

The Coulomb friction is now taken into account using the regularization method pre-
sented in Section 2. The friction coefficient impact on the quasi-static rolling is investigated.

Figure 9 shows the displacement evolution in the contact zone for various values of
u. We observe that increasing p favors the stick regime. The longitudinal displacement
remains constant for ¢ > 0.3 and the lateral displacement variation decreases as the
coefficient of friction increases. Indeed, the tangential pressure needed to switch to the slip
regime increases knowing that the structure is subjected to the same deflection. The lateral
displacement maximum has moved towards the exit of the contact patch when the friction
is added. Furthermore, the lateral displacement at the entry of the contact patch is no
longer similar to the one at the exit of the contact patch. The vertical displacement is more
or less the same since the friction is mainly acting on the tangential components.

Figure 10 shows the normal contact pressure distribution at different stages of the
contact. Similar to the frictionless contact, the contact pressure maximum is located at the
entrance (resp. exit) for the the nodes located at the entry (resp. exit) of the block. Unlike
the frictionless case, the distribution at the exit is different than the distribution at the entry
since the friction law is characterized by a time-dependent path and the mechanical system
is no longer conservative. Increasing y leads also to the saturation of the normal contact
pressure.
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Figure 9. Time evolution of the quasi-static displacement in the contact patch (y = width/2 and

r = R,) for frictionless contact (—), 4 =0.1(—), u =03 (—), u =05(—)and y = 1.0 (—).
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Figure 10. Time evolution of the normal contact pressure in the contact patch (y = width/2, r = R,)
for frictionless contact (—), y = 0.1 (—), y =03 (—), y = 0.5 (—) and y = 1.0 (—) (6 = 6, (left);
6 = 0. (middle); 6 = 6; (right)).

Figure 11 shows the tangential contact pressure is increasing with respect to y unlike
the normal contact pressure where a saturation effect is noticed. The tangential contact
pressure has the same evolution as the normal pressure for the nodes located at the middle
of the block 8§ = 6, and at the exit of the block 8 = 6s; however, an increase in the
norm of the tangential pressure of the leading edge at the exit of the contact patch is
observed. The differences observed between the tangential pressure for various values of y
is explained by the change of the slope in the stick regime and the change of the tangential
pressure value in the slip regime.
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Figure 11. Time evolution of the tangential contact pressure norm in the contact patch (y = width/2
and r = R,) for frictionless contact (—), y = 0.1 (—), y =03 (—), y = 05(—)and p = 1.0 (—)
(0 = 0. (left); 0 = 6. (middle); 6 = 65 (right)).

Figure 12 shows the total contact force variation. As for the frictionless case, the total
lateral force F, is null since the plane (y = 0) is a symmetry plane of the structure. The vari-
ation of the vertical load is a little bit greater as the coefficient of friction u increases until
reaching an invariant evolution. In fact, F; remains the same for y = (0.3 — 0.5 — 1.0).



Appl. Sci. 2022, 12, 1447

14 of 21

This is coherent with the saturation phenomena observed for the normal contact pressure.
The total longitudinal contact force amplitude decreases as we increase y. High frequency
oscillations appear for larger values of y. These oscillations represent a consequence of the
tangent pressure variation described in Figure 11.
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Figure 12. Time evolution of the total contact force (y = width/2 and r = R,) for frictionless contact
(—),up=01(—),u=03(),u=05(—)and yp =1.0(—).

3.3. Vibration Response

The linearization method is used to calculate the vibrations field. The vibrations
problem is solved using a time integration technique via an implicit Euler scheme. Since
the prototype has a relatively simple geometry and constitutive material law, the dynamic
problem could also be solved using the same integration scheme. The validity of the
linearization process is then verified. Afterward, the coefficient of friction influence on the
vibratory response is investigated.

3.3.1. Preample-Frictionless Contact

As for the quasi-static rolling, a frictionless contact is considered first. As a reminder,
this first preliminary study based on the prediction of the nonlinear vibration response with
frictionless contact only aims to illustrate the feasibility of the proposed two-steps approach.
A comparison between the linearization method solution and the reference solution, which
represents the difference between the dynamic and the quasi-static response is presented.
Then, the vibrations velocity spectrum is analyzed. Finally, the vibrations spatial evolution
is visualized to assess the global vibration behavior of the grooved cylinder.

Figure 13 illustrates the comparison between the linearized solution and the reference
solution. Both solutions are, as expected, periodic. Both solutions have the same vibration
frequency with a small difference with respect to the phase. The vertical vibrations are null
in the contact patch for both methods; therefore, treating the normal contact constraint as a
Dirichlet-like boundary condition seems to be the right choice. The longitudinal vibrations
maximum amplitude is located in the contact patch and have the same order of magnitude
as the vertical vibrations. The lateral vibrations are located in the contact zone and decrease
towards 0 as we move away from the contact zone. The magnitude of the lateral vibrations
are much lower than the vertical and longitudinal components.
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Figure 13. Time evolution of the vibrations displacement for (y = width/2, r = R;) of the lin-

earized solution (—) and the reference solution (—) (full simulation (top) and zoom around one
period (bottom)).

Figure 14 shows the vibrations velocity spectrum. Both solutions give more or less
the same vertical and longitudinal velocities. The main difference between the methods
are observed in the lateral direction. A set harmonics around the multiples of the blocks
frequency with the same modulation effect described in the quasi-static rolling results is
observed for both solutions. The lateral vibrations velocity spectrum has a frequency comb
distribution. The harmonics around the multiples of the rotation frequency have vanished
for the longitudinal and vertical vibrations. Hence, the linearization method allows us to
separate the dynamic behaviors operating at different scales. The vertical and longitudinal
vibration velocity magnitude is more or less the same and greater than the magnitude of
the lateral velocity. The same observation was found for the quasi-steady acceleration.
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Figure 14. Frequency spectrum of the vibration velocity for (y = width/2, r = R;) of the linearized
solution (—) and the reference solution (—).

Figure 15 illustrates the vibrations variation in the radial and lateral directions. The vi-
brations amplitude decreases as we move away from the tread pattern in the radial direction.
The lateral vibrations amplitude decreases as we move towards the contact center in the
lateral direction whereas the vertical and longitudinal vibrations remain constant. The same
observation was found for the quasi-static displacement in Figures 4 and 5.
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Figure 15. Time evolution of the vibration displacement of the linearized solution for r = R, (—),
r=(Re+R;)/2(—)and r = R; (—) — y = width/2 (top) and for y = width/2 (—), y = width/4 (—)
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Figure 16 shows the vibrations velocity variation in the circumferential direction.
Unlike the quasi-steady acceleration, the mechanical behavior at the entry of the contact
patch is no longer similar to the behavior at the exit of the contact patch. The vertical
vibrations are, as expected, null in the contact patch and at the opposite of the contact
patch (6 = 180 deg). The lateral vibrations maximum is situated at the contact patch entry
and decreases towards 0 as we move away from the contact active zone. The longitudinal

vibrations velocity has a more or less symmetric distribution with respect to the plane
(z=Ry).
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Figure 16. Time evolution of the vibration velocity in the circumferential direction (r = R,,

y = width/2) using the linearization method.

3.3.2. Coefficient of Friction Impact

The aim of this section is to study the coefficient of friction impact on the linearization
process and on the vibrations response. A comparison between the displacement com-
ponents of the linearized solution with the reference solution for various values of y is
displayed. A new boundary condition is proposed to improve the linearization method.
Finally, the coefficient of friction impact on the vibrations amplitude is investigated.

Unlike the frictionless case, a greater difference between the vibrations is observed
in Figure 17 for all values of y. The differences are especially observed in the contact
active zone for the longitudinal and lateral vibrations displacement. Increasing the value
of u makes the vibrations constant in the contact patch for the reference solution. Indeed,
the quasi-static rolling results show that increasing u favors the stick regime. Hence,
the longitudinal and lateral vibrations displacements remain constant in the contact patch.
The constant value is not equal to 0 since the inertia changes the contact stiffness [22].
The boundary condition (31) used to treat the contact constraint is no longer valid for
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friction. A simple change of this condition is to impose an homogeneous displacement in
the contact active zone as follows
w=0 on FE (39)

The results of the boundary conditions change are given in Figure 18 that illustrates
the time evolution of the vibrations field for various values of y. A clear improvement of
the linearized solution with respect to the reference solution is observed whether inside
or outside the contact patch and especially for high values of u. The biggest difference is
observed for y = 0.1. Indeed, for this value of y, the nodes in the contact patch operate in
the slip regime, which is clearly incompatible with the new boundary condition but still
better than the previous one especially outside the contact zone. A more precise boundary
condition to treat the frictional contact should depend on the contact regime. Now, we
compare between the vibrations for different values of y for both solutions.

Figure 19 shows the vibrations sensitivity with respect to the coefficient of friction.
Both solutions give more or less the same observations expect for ¢ = 0.1 due to the
incompatibility between the contact boundary condition and the friction slip regime. Larger
vibrations are observed for the frictionless case for both solutions. Increasing y results
in damping the vibrations amplitude until reaching an invariant vibration response for
u > 0.3. This translates the saturation effect observed for the quasi-static rolling. The same
saturation phenomenon is observed in [27] for advancing pin-loaded contacts with friction
where the equations of motion are solved using the Green’s functions.
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Figure 17. Time evolution of the vibrations displacement of the linearized solution (—) and the
reference solution (—) for various values of u (y = width/2, r = R,).
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Figure 18. Time evolution of the vibrations displacement of the linearized solution (—) with the new
boundary condition (—) and the reference solution (—) for various values of u (y = width/2, r = R,).
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Figure 19. Time evolution of the vibrations displacement of the linearized solution with the new
boundary condition (right) (—) and the reference solution (left) for frictionless contact (—), u = 0.1
(—),n=03(),uy=05(—)and u = 1.0 (y = width/2, r = Re).

4. Conclusions

In this paper, an adapted two-step approach to simulate the nonlinear vibrations of a
hyperelastic solid undergoing large deformations in contact with rigid plane is presented.
The methodology allows not only the separation between the dynamics operating at
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different scales but also shows numerical robustness and consistency. The Coulomb friction
law is used in the contact interface. This numerical approach is applied to a finite element
model corresponding to a grooved cylinder. The linearization process seems to work very
well for frictionless contact; however, significant differences can be observed for the case
with frictional contact, especially for higher values of u. The change of the boundary
condition in the contact active zone seems to improve the linearized solution. A much more
precise condition in the contact active zone would probably depend on the friction (slip or
stick) regime.

As previously mentioned, the example proposed and discussed in this paper corre-
sponds to a grooved cylinder undergoing large deformation in contact with rigid plane.
One of the most crucial next steps is to be able to provide an illustration of the feasibility of
the proposed approach on a tire structure. Numerous future research can be carried out to
increase the understanding of non-linear phenomena on tire structures. Although it is not
possible to give an exhaustive list of topics of interest, some studies that seem to have a
certain priority and interest may be considered:

e  First of all, it can be noted that damping has been neglected in modeling; however,
experiments show that vibration energy is not transported to the opposite of contact
patch due to strong damping of tire structure for such relatively high frequencies.
The vibration energy is thus concentrated close to the entrance and the exit of contact
patch. Moreover the vibrations evolution in the circumferential direction shows the
opposite observation; therefore, the addition of a suitable damping model seems
important and is one of the priority issues to be explored. The inclusion of the Kelvin—
Voigt model, often used to treat the viscosity of tire rubber, seems to be an interesting
option [28].

¢  Ina similar way, the modeling of friction at the contact interface should be completed
by the consideration of the coefficient of rolling friction [29] in order to reproduce
more realistic physical phenomena involved in tire/pavement interaction vibration
and noise. Indeed, the consideration of only the coefficient of sliding friction force as
proposed in this study may be not sufficient to accurately reproduce real phenomena
of tire vibration response.

¢ It should be interesting to apply the proposed two-step approach on a real industrial
tire structure and to compare the results with full experimental tests. One of the most
important challenges may be to identify the different sources of nonlinear vibrations
in order to identify and quantify the first-order physical phenomena involved. In this
context, more realistic modeling including both tire rubber viscosity and Hertzian
contact for polymorph materials or the model of contact 3D multi-layered structures
with orthotropic material should be developed to reproduce more specifically the
design of a real wheel tire.

*  Extension of the prediction of non-linear vibrations in a real environment and in
real conditions would also be interesting with the consideration of a more realistic
pavement with imperfections. The road roughness excitation mechanism could be
added to the proposed methodology by integrating the road texture in the normal
gap function calculation. In this context, one of the main challenges for engineers
working on the developments of optimization procedures for tire structures in a real
environment should be the inclusions of modeling errors and uncertainties.

*  The developments and combination of optimization procedures, genetic algorithms
or artificial neural in relation with the proposed methodology should also be of prior
interest to conduct parametric studies leading to increase the reliability and safety of
tire structures subjected to complex and various external excitations.
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Nomenclature
O Reference configuration
Ot Current configuration
X Coordinates of reference configuration
X Coordinates of current configuration
Iy Dirichlet boundary condition zone in the reference configuration
r Dirichlet boundary condition zone in the current configuration
Iy Neumann boundary condition zone in the reference configuration
1"5[ Neumann boundary condition zone in the current configuration
I Potential contact zone
It Contact active zone
1] Mapping of reference to current configuration
u Displacement field
\% Gradient with respect to X
I Identity second order tensor
F Deformation gradient
C Cauchy-Green tensor
E Green-Lagrange strain tensor
o Cauchy stress tensor
P First Piola-Kirchhoff stress tensor
S Second Piola-Kirchhoff stress tensor
W Strain energy function
c Fourth order elasticity tensor
N Unit outward normal in the reference configuration
n Unit outward normal in the current configuration
I, Normal contact pressure
I1; Tangential stress vector
Uy Normal displacement
uy Tangential displacement
n Normal gap function
s Sliding direction
Coulomb friction coefficient
uy Sliding velocity
1% Translation velocity
w Rotation speed
Tw Rolling radius
d Deflection
ey Normal penalization
& Regularization coefficient
At Time step
R, External radius of the prototype
R; Internal radius of the prototype
w Width of the prototype
(A,u)  Lamé constants
E Young Modulus
v Poisson coefficient
Y Density
H'(Q) First order Sobolev space
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