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a b s t r a c t

This study presents experiments and numerical simulations of a beam with non-ideal
boundary conditions and subjected to two broadband correlated or uncorrelated random
excitations. Modeling of a beam with non-ideal boundary conditions and additional
static pretension, as well as the modeling of multipoint correlated or uncorrelated
random excitations, are developed. Based on numerical simulations via an extension
of the Harmonic Balance Method, comparisons between experiments and numerical
simulations are performed for various broadband bi-point correlated random excitations.
In order to achieve such an objective, experiments are performed for four types of
correlation between the two broadband random excitations: correlated excitations in
phase, opposite phase and quadrature phase, and uncorrelated excitations. Experimental
results demonstrate that the different configurations of broadband random excitations
drastically affect, not only the amplification or attenuation of some symmetric or anti-
symmetric modes of the beam in the vicinity of their primary resonance, but also the
appearance of harmonics and a combination of harmonic components. Good correlations
are observed between experiments and numerical simulations, thus validating the
proposed modeling and the computational strategy for the prediction of the nonlinear
vibrational phenomena of the beam system subjected to two correlated or uncorrelated
broadband random excitations.

To be noted that the experimental data set including the input and output mea-
surements of the four configurations are provided as supplementary files on Talik et al.
[1].
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The integration of nonlinearities and the prediction of nonlinear vibrations in mechanical systems are today common
opics among researchers and engineers. They allow them to investigate more complex problems in which nonlinearity
eads to a variety of complex phenomena. This is particularly the case for the vibration analysis of beams that remains

∗ Corresponding author at: Laboratoire de Tribologie et Dynamique des Systèmes UMR CNRS 5513, École Centrale de Lyon, France.
E-mail address: jean-jacques.sinou@ec-lyon.fr (J.-J. Sinou).
ttps://doi.org/10.1016/j.cnsns.2022.106328
007-5704/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
icenses/by/4.0/).
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an important issue in structural engineering applications in the field of civil engineering or aerospace. The nonlinear
vibrations of these structures often lead to unanticipated vibrational behavior that results in severe structural damage. In
addition the boundary conditions present in real systems do not correspond to the ideal conditions assumed in the usual
mathematical modeling. These small deviations from those ideal conditions can lead to changes in the nonlinear behavior
of such systems.

A large number of papers have been devoted to the analysis of beam vibrations. The choice of types of beams (i.e., linear
r nonlinear, uniform and non-uniform as well as planar or non-planar) induces a more or less complex modeling [2].
his can also lead to the observation of complex phenomena that involve not only the occurrence of nonlinear dynamic
ehavior [3] but also potential transitions to chaos for flexible beams [4–10]. In addition, this has a direct impact on
he resolution and analysis methods to be used in order to obtain reliable and validated results. A brief state-of-the-
rt of recent directions in modeling and vibration analysis of beam can be found in [9]. Another challenging part is to
e able to predict the nonlinear dynamic behavior of beams with non-ideal boundary conditions. The proposed study
ill focus more specifically on this second topic. Such a subject of study has received particular attention and remains
challenge due to its inherent difficulties [11–16]. One of the most popular approach to predict the characteristics of
eam systems with non-ideal boundary conditions is the perturbation methods, such as multiple scales [2,17]. Even if
ne of the advantages of the method of multiple scales is to provide an analytical solution of the nonlinear problem,
ne restriction of such approach is based on the consideration of ’’small nonlinearities’’. Thus numerical methods such
s the iteration perturbation method [13], the Harmonic Balance Method [18–20], the shooting method [21–23] or the
ombination of the asymptotic numerical method with the Harmonic Balance Method [24] have been recently proposed
o predict harmonically forced vibrations of beam systems.

Although extensive work has been developed to examine the nonlinear response of beam systems with non-ideal
oundary conditions subjected to harmonic, multi-harmonic or parametric excitations [19,25,26], little research has been
one to determine the effect of different excitation signals on beam systems and the effectiveness of modeling and
umerical methods to accurately reproduce these more realistic vibration cases. Although random excitations are one
f the most popular excitation techniques for experimental modal analysis, the modeling of broadband excitations and its
mplementation in numerical methods remains challenging. Indeed simplifying assumptions on excitations are common
n computer-aided mechanical design for engineering applications. They make the problem to be treated easier to solve
athematically and sometimes easier to model and incorporate into the system equations. Recently, some numerical
tudies have investigated the nonlinear response of a beam under one random excitation [15,27]. Roncen et al. [23]
tudied both experimentally and theoretically the nonlinear characteristics of a beam subjected to random excitation, but
he proposed study focused more on the efficiency of numerical methods, such as the Harmonic Balance Method and the
hooting method, for robust prediction of the nonlinear behavior of a beam, subjected to one basic random excitation, in
n adequate computing time. To the best of our knowledge, there is little work in the literature offering a complete vision
ombining experimentation, modeling and numerical simulation to validate a global strategy for constructing nonlinear
odel allowing to predict the nonlinear dynamic behavior of a system subjected to random multipoint excitations. Indeed

he consequences of different multipoint solicitations on the nonlinear dynamic behavior of a mechanical system and
he potential relationship between the excitation sources and the evolution of the nonlinear signature of the vibrational
esponse are areas of expertise that remain little explored through numerical simulations during the design process of
onlinear mechanical systems. This is mainly due to the complexity of the nonlinear methods to be developed to achieve
uch an objective. This situation is particularly detrimental since many efforts have been made to enhance vibration
esting [28] and to improve the identification and characterization of nonlinearities from experiments [29,30]. So one
f the main scientific challenges is not only to better understand the evolution of the nonlinear dynamic behavior of
echanical systems, but also to be able to correctly predict the nonlinear responses of mechanical systems subjected to
arious complex solicitations. From this point of view, taking into account multiple correlated or uncorrelated random
xcitations corresponds to solicitations often encountered in practice for many nonlinear dynamic systems. Having a
ood confidence in modeling through confrontation between experiments and simulations for such complex excitations
s nowadays a crucial point. A second major interest for the engineer is to ultimately have a robust and efficient nonlinear
ethod to predict the nonlinear dynamic behavior and performance of a mechanical system in more realistic scenarios.
he following study is intended to meet this objective and to better investigate the nonlinear response that exhibits many
nteresting characteristics when correlated and uncorrelated random excitations are applied on the mechanical system
f interest. One of the objectives of this study is to answer this question by proposing a complete approach allowing
he development of numerical techniques and the construction of nonlinear models capable of reproducing nonlinear
ibrational responses based on different solicitations. The efficiency of the proposed methodology will be studied on
he nonlinear response of the clamped–clamped beam subjected to two correlated or uncorrelated broadband random
xcitations. This work is continuation of the previous work by Claeys et al. [19] and by Roncen et al. [23], who studied
he nonlinear behavior of the beam system to swept sine and a basis random excitation, respectively. One of the main
riginal points of the proposed study in comparison with the latter is to undertake a complete experimental protocol
o analyze the nonlinear behavior of a beam with non-ideal boundary conditions and subjected to two correlated or
ncorrelated broadband random excitations. In addition, a proposal for an appropriate modeling not only of the beam
ystem but also of a multipoint correlated random excitation is discussed in order to reproduce the experimental results
y numerical simulation via an extension of the Harmonic Balance Method.
2
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This paper is organized as follows: First, the experimental setup of the clamped–clamped beam with non-ideal
oundary conditions is presented with observations of correlation on temporal input data for four different types of
orrelation (in phase, opposite phase, quadrature phase and uncorrelated excitations). Then various experiments are
roposed to highlight the presence of harmonics or a combination of harmonic components. Secondly, a nonlinear model
f the beam with non-ideal boundary conditions and additional static pretension is introduced. Some notions about
he modeling of two homogeneous correlated or uncorrelated random excitations are discussed. Then, an extension of
he classical Harmonic Balance Method (HBM) is proposed for the prediction of the nonlinear dynamic behavior of a
echanical system subjected to two correlated or uncorrelated broadband random excitations. Finally, the numerical
imulations are compared with experiments for the appearance and/or attenuation of some symmetric or anti-symmetric
odes of the beam in the vicinity of their primary resonance, as well as the appearance of harmonics or combinations of
armonics.

. Experiments

.1. Experimental setup: the CEA-beam benchmark structure

The experimental clamped–clamped beam under study, called the CEA-beam benchmark structure, has been previously
escribed in detail in [19,23]. The following is a brief reminder of the essential elements of description of the mechanical
ystem under consideration.
The complete mechanical structure is presented in Fig. 1(a). The system is composed of a steel beam of dimensions

70 × 20 × 5 mm3 plus two heavy steel blocks of dimensions 100 × 100 × 85 mm3 each. In order to avoid undesirable
nonlinear phenomena at the connections between substructures, the beam and the two blocks have been manufactured
from a single bulk piece of steel. Due to the smooth transition between the beam and each block, the beam needs to be
modeled with non-ideal boundary conditions (see the previous study by Claeys et al. [19] for more details). The whole
structure (i.e., the beam plus the two blocks) is screwed to a heavy steel block.

The mechanical system is instrumented with four three-dimensional accelerometers (A1, A2, A3 and A4), two one-
dimensional accelerometers (A5 and A6) and two cell forces (F1 and F2), as depicted in Fig. 1(b). Accelerometers A2, A3
and A4 are present to control and to validate the correct embedding of the whole structure during experiments. Indeed,
the accelerations measured on these sensors appeared to be negligible, which validates the embedding hypothesis. The
beam is subjected to a bi-point random excitation via two electrodynamic shakers (referenced as S1 and S2 in Fig. 1(b))
and using the Multi-Input-Multi-Output (MIMO) control technology [31].

It should be noted that the position of each shaker is fixed for all of the experiments, and symmetrical about the center
of the beam. This choice will make it possible to highlight the contributions of symmetric or anti-symmetric modes of
the beam, depending on the given correlation between the two broadband random excitations. For a chosen frequency
band, four types of correlation between the two excitations will be tested: in phase, opposite phase, quadrature phase
and uncorrelated.

At this stage of the study, we recall that many efforts have been made to enhance vibration testing [28]. Experimental
modal analysis and vibration testing, in general, are classic techniques for obtaining the dynamic characteristics of linear
engineering structures, for instance, resonant frequencies, mode shapes and modal damping. Such basic prior analysis is
well established in the industry, in particular during the ground certification of aeronautical and aerospace structures
for which the use of multipoint excitations with specific approaches, such as phase resonance or phase separation
methods is classically conducted [31–37]. Extension to nonlinear structures is also becoming more and more studied and
developed. As reported in [29,30], experiments for dynamic testing of nonlinear vibrating structure and characterization
of nonlinearities from experiments have also been conducted in recent years with a focus on identifying nonlinear normal
modes of engineering structures [38–44]. Therefore, we recall that the objective of the experimental studies carried out in
this study is not to propose a contribution in this sense but only to provide a sufficiently complete and varied experimental
database to allow us to test and validate the relevance of the proposed model and the numerical approach developed.

2.2. Preamble and modal testing

The purpose of this section is to provide some classical preliminary experimental results that will be used to validate
the numerical model proposed in Section 3. Indeed, since the boundary conditions of the beam are not ideal and since
many accelerometers are present on the structure, a first preliminary recalibration of the linear model of the beam is
essential. These preliminary results will also provide useful basic information for a better understanding of the complex
experimental and numerical results for the nonlinear beam subjected to two broadband correlated or uncorrelated random
excitations.

First of all, Table 1 gives the natural frequencies (linear modes) of the beam system in the frequency range of interest
[20; 1000] Hz. It should be noted that a classical impact hammer testing (in the z-direction) has been used and each natural
frequency is calculated using the PolyMAX optimization algorithm [45] for a set of ten repeatable Frequency Response
Functions (FRF) and three different impact points (i.e., at the locations of Accelerometers A1, A5 and A6). Moreover, the

shape of each mode has been given by the Simcenter Testlab software (i.e., symmetric or anti-symmetric shape of each

3
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Fig. 1. A picture (a) and a diagram (b) of the experimental setup which includes six accelerometers (A1 to A6) and two cell forces (F1, F2) connected
o the two electrodynamic shakers S1 and S2.

Table 1
Identified modes, corresponding frequency and damping ratio from experimental modal analysis.
Mode number Designation Frequency (Hz) Damping ratio (%)

1 symmetric bending mode 108.9 0.25
2 anti-symmetric bending mode 307.0 0.12
1T symmetric transverse mode 417.8 0.33
3 symmetric bending mode 594.9 0.13
4 anti-symmetric bending mode 997.3 0.17

Table 2
Measured mass of each accelerometer present on the beam.
Accelerometer Measured mass (g)

A1 6.0
A5 1.1
A6 1.1

normal or transverse mode). The first four bending modes of the linear beam are detected, as well as a vibration transverse
mode identified at 417.8 Hz. The identification of this transverse mode reveals a transverse component in the hammer
impact. This transverse behavior will not be modeled; only the bending modes of the beam in the z-direction will be
odeled. However, this first experiment indicates that when the excitation is not perfectly axial (in the z-direction),

ransverse modes may appear.
The mass of each accelerometer is given in Table 2. It should be noted that the mass of the accelerometers A3 and A4

≤ 10 g) is not given, since they are situated on each embedding block (≈ 7000 g), so they do not have any influence on
the mechanical behavior of the system.

2.3. Experimental results for two broadband random excitations

2.3.1. Preamble and validation of the temporal input data
One of the key points of the experiments carried out in this study is to be able to ensure that the chosen correlation

between the two input signals is respected and well mastered. The objective of this section is to briefly present the
selected experimental protocol and its implementation.

Each shaker is driven with a Power Spectral Density (PSD) and the correlation between the two excitations is defined
in the Cross Spectral Density (CSD) with the notions of coherence and phase, according to Eq. (1)

S12(f ) =

√
γ 2
12(f )S11(f )S22(f ) exp (jφ12(f )) (1)

where S11(f ) and S22(f ) are the PSD of the temporal excitations F1(t) and F2(t) (which correspond, respectively, to the
force measured at the connection with Shakers 1 and 2, respectively). Here, f corresponds to the frequency; φ12(f ) is the
phase between the two temporal excitations F1(t) and F2(t); and γ12(f ) defines the coherence between the two forces. It
should be noted that preliminary experiments demonstrated that the experimental value of γ12 varies between 0.05 and
0.98. Although this preliminary result implies that it is not possible in practice to generate two perfectly uncorrelated or
correlated multipoint excitations with the electronic devices of this experimental setup, this emphasizes that the following

protocol will be sufficient for generating the following desired broadband random excitations:

4
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Fig. 2. Experimental inputs: (a) two experimental random temporal forces F1 (blue) and F2 (red) generated with the MIMO control technology [31]
nd (b) zoom on the four excitation configurations (from top to bottom: correlated excitations in phase, correlated excitations in opposite phase,
orrelated excitations in quadrature phase and uncorrelated excitations).

• correlated excitations in phase: φ12 = 0◦ and γ12 = 0.98;
• correlated excitations in opposite phase: φ12 = 180◦ and γ12 = 0.98;
• correlated excitations in quadrature phase: φ12 = 90◦ and γ12 = 0.98;
• uncorrelated excitations: γ12 = 0.05;

For each experiment that will be conducted, the shape of the band-limited white noise PSD is rectangular, i.e., the level
f excitation is constant along the entire bandwidth. The sampling frequency is 3200 Hz with a resolution frequency of
.098 Hz. The total duration of one experiment is 307.2 s. The output signal is divided into 30 time intervals of 10.24 s
ach. A periodogram estimate computes an approximation of the PSD for each time interval. Then, the PSD of the output
ignal is calculated by averaging all estimates [46]. The input PSD is constant over time to ensure that the response is
tationary.
In order to illustrate and to validate the proposed protocol for the generation of input signals, Fig. 2(a) shows

xperimental temporal random inputs for one time interval of 10.24 s for the correlated excitations in phase. Moreover,
ooms on experimental temporal random inputs are given in Fig. 2(b) for the four different correlation types (in phase,
pposite phase, quadrature phase and uncorrelated). These preliminary results validate the experimental protocol for
enerating a bi-point correlated random excitation with the MIMO control technology.
The experiments carried out comprise two main parts:

• First of all, the global vibrational behavior of the beam system with non-ideal boundary conditions is investigated.
More specifically, the effects of the four configurations of the two chosen broadband random excitations (i.e., cor-
related excitations in phase, opposite phase and quadrature phase, and uncorrelated excitations) are discussed. All
experiments are performed with the same level of excitation (≈ 0.71 N RMS) along the bandwidth [20; 1000] Hz.
These first experiments will allow us to check the robustness of the proposed nonlinear model to reproduce the
vibrational behavior of the beam system subjected to different broadband random excitations.

• Secondly, more particular attention is devoted to the nonlinear signature of the system and the evolution of
the nonlinear contributions and harmonic components according to the different configurations of the broadband
random excitations (i.e., correlated excitations in phase, opposite phase and quadrature phase, and uncorrelated
excitations). In order to achieve such an objective, all experiments are conducted for the same level of excitation
(≈ 0.5 N RMS) along the bandwidth [20; 500] Hz and the nonlinear signature of the system is investigated along
the bandwidth [500; 1000] Hz. This experimental procedure allows to highlight more particularly the nonlinear
contributions over the frequency range [500; 1000] Hz. For the present study, it will allow us to verify the relevance
of the nonlinear model as well as the associated numerical approach to reproduce the nonlinear contributions and
their variations in function of the four types of correlation between the two broadband random excitations.

It is recalled that one of the original contributions of the present study is to share the data sets to give the opportunity
o researchers to conduct additional analysis. All the data sets are available on [1].

.3.2. Effect of the two broadband correlated or uncorrelated random excitations
The experimental results for Accelerometers A1, A5 and A6 for the same level of excitation (≈ 0.71 N RMS) along

he bandwidth [20; 1000] Hz are plotted in Fig. 3 for the three configurations of correlated random excitations and the
5
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Fig. 3. Experimental output PSD for Accelerometers A1 (a), A5 (b) and A6 (c) with RMS level of 0.71 N for four different correlation types along the
bandwidth [20; 1000] Hz: correlated excitations in phase (blue), correlated excitations in opposite phase (red), correlated excitations in quadrature
phase (green), and uncorrelated excitations (orange)
6
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Table 3
Frequency values of experimental output PSD for the four configurations of broadband random excitations with RMS
level of 0.71 N along the bandwidth [20; 1000] Hz.

Frequency (Hz)

In phase Opposite phase Quadrature phase Uncorrelated

f1 112.1 111.6 111.3 111.4
f2 300.8 300.5 300.1 300.2
f3 581.8 583.3 580.8 582.2
f4 987.2 986.3 986.1 986.1

Table 4
Modal damping ratio values of experimental output PSD for the four configurations of broadband random excitations
with RMS level of 0.71 N along the bandwidth [20; 1000] Hz.

Damping ratio (%)

In phase Opposite phase Quadrature phase Uncorrelated

ξ1 0.34 0.3 0.31 0.29
ξ2 0.07 0.1 0.07 0.09
ξ3 0.12 0.22 0.22 0.3
ξ4 0.07 0.03 0.03 0.07

Table 5
Peak values of experimental output PSD for Accelerometer A1 with RMS level of 0.71 N for the four configurations of
broadband random excitations along the bandwidth [20; 1000] Hz.
Frequency PSD ((m s−2)2/Hz)

In phase Opposite phase Quadrature phase Uncorrelated

f1 689.54 3.59 310.05 523.51
f2 – – – –
f3 287.22 1.27 111.55 111.77
f4 – – – –

configuration of uncorrelated random excitations previously defined in Section 2.3.1. The associated frequency values and
the modal damping ratios of the first four vibration bending modes of the beam are given in Tables 3 and 4. Even if these
values remain almost unchanged depending on the type of excitations, it can be noted that they are not exactly the same
than those measured during the preliminary modal testing (see Table 1). This is mainly due to the presence of the two
shakers, small variations in boundary conditions during experiments and a potential nonlinearities contribution [19,47].
To be noted that the potential large variation of modal damping ratios to the kind of excitation is mainly induced by the
nonlinear behavior of the beam. As previously mentioned in [48–52] a growth of damping with the vibration amplitude
during nonlinear vibrations can be observed during experiments. In addition the identification procedure has been checked
by carrying out repeatability tests, even if small variations were also observed on modal damping ratios.

Then Tables 5–7 summarize the peak amplitudes of the experimental output PSD for Accelerometers A1, A5 and A6,
espectively. It should be noted that the four largest amplitude peaks retained in this preliminary analysis correspond
o amplitude peaks associated with the first four bending vibration modes of the beam with non-ideal boundary
onditions. An attenuation or amplification of the system modes appears very clearly depending on the selected excitation
onfiguration. The results obtained are consistent with a relationship between the shape of each eigenmode (symmetric
r anti-symmetric vibration modes) and the type of excitation chosen (coherence and phase between the two excitations).
or example, PSD peaks for the symmetric modes (anti-symmetric modes, respectively) are amplified (attenuated,
espectively) in the case of correlated excitations in phase. Conversely, PSD peaks for the symmetric modes (anti-
ymmetric modes, respectively) are attenuated (amplified, respectively) in the case of correlated excitations in opposite
hase. Moreover, in the two last cases of correlated excitations in quadrature phase or uncorrelated excitations, all of the
ymmetric and anti-symmetric modes in the frequency range of interest appear very clearly with non-negligible amplitude
evels. It is also observed that anti-symmetric modes have no amplitude at the center of the beam (see Fig. 3(a) for f2
nd f4) which corresponds to a classic expected result. Moreover, results for Accelerometers A5 and A6 are very similar
ecause of the symmetry of the beam. Finally, some additional peaks that do not correspond to fundamental frequencies
n the frequency range of interest (i.e., f1, f2, f3 and f4) are also observed. The appearance of such harmonic components
and combinations of harmonics, as well as their evolutions with broadband correlated or uncorrelated random excitations,
will be discussed in the next section.

2.3.3. Analysis of the nonlinear components
As described in [23], the proposed clamped–clamped beam subjected to broadband random excitations may induce

a hardening effect and the enlargement of the response peak in the vicinity of the primary resonance, as well the
presence of secondary peaks resulting from the harmonics and a combination of harmonic components generated by the
7
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Table 6
Peak values of experimental output PSD for Accelerometer A5 with RMS level of 0.71 N for the four configurations of
broadband random excitations along the bandwidth [20; 1000] Hz.
Frequency PSD ((m s−2)2/Hz)

In phase Opposite phase Quadrature phase Uncorrelated

f1 344.67 1.76 153.52 260.13
f2 176.25 24581.10 15603.50 10104.3
f3 115.91 0.76 48.22 46.61
f4 0.98 72.28 39.54 20.72

Table 7
Peak values of experimental output PSD for Accelerometer A6 with RMS level of 0.71 N for the four configurations of
broadband random excitations along the bandwidth [20; 1000] Hz.
Frequency PSD ((m s−2)2/Hz)

In phase Opposite phase Quadrature phase Uncorrelated

f1 326.03 1.74 147.56 248.31
f2 176.66 24724.50 15691.70 10114.9
f3 133.54 0.63 48.12 53.70
f4 0.64 47.57 27.76 13.62

primary resonance. In order to analyze in more detail the nonlinear behavior of the system for the different excitation
configurations previously chosen and to highlight the contribution of the harmonics and combination of harmonic
components, the following experimental protocol is proposed in addition to the previous tests: experiments are performed
for one level of excitation (≈ 0.5 N RMS) along the bandwidth [20; 500] Hz, where only the first symmetric mode f1
nd the first anti-symmetric mode f2 of the clamped–clamped beam are present, whereas a small level of excitation of

approximately 0.0035 N RMS along the bandwidth [500; 1000] Hz is applied. It should be noted that the frequencies of
he symmetric mode f3 and the second anti-symmetric mode f4 belong to this second frequency interval [500; 1000] Hz.
sing this experimental protocol, the appearance of additional amplitude peaks (other than frequencies f3 and f4) between
500; 1000] Hz corresponds to an amplification of harmonics or combination of harmonic components of the beam.

Both experimental PSD inputs and outputs for the four excitation configurations (i.e., correlated excitations in phase,
pposite phase and quadrature phase and uncorrelated excitations) are plotted in Fig. 4. The blue and red curves for the
nput PSD correspond to the shakers S1 and S2, respectively. The output PSD are those from Accelerometers A1 (red),
5 (blue) and A6 (green). First of all, the frequency values of the first four vibration bending modes of the beam are
iven in Table 8 and the associated modal damping ratios of the first two vibration bending modes are provided in
able 9. Comparing these frequency values with those of the previous experiments (see Table 3), a small increase in
he frequency value of the four primary resonances with an increase of the excitation level is observed. This fact reflects
hardening effect. Then Tables 10–12 give the peak amplitudes of the experimental output PSD for the four primary

esonances, respectively. It can be observed that the effects of the different excitation configurations are in accordance
ith the previous results discussed in Section 2.3.2. Considering more specifically the experimental input and output for
he two correlated excitations in phase depicted in Figs. 4(a) and 4(b), several amplitude peaks that are not present
n the experimental input signal along the bandwidth [500; 1000] Hz are observed. These results reveal a nonlinear
ynamic behavior of the mechanical beam. As indicated in Fig. 5(a), some of these peaks correspond to harmonics of the
undamental frequency f1 (i.e., 5f1, 6f1, 7f1, 8f1 and 9f1) and a combination of harmonic components such as 2f1 + f2. The
ontributions of these harmonics are more important at the center of the beam (around Accelerometer A1). This result
s consistent with the fact that the maximum amplitude is situated at the center of the beam. Once again, the results
btained for Accelerometers A5 and A6 are very close, due to the geometrical symmetry of the beam system under study
nd the symmetrical position of the sensors in relation to the center of the beam.
Thus, Figs. 4(c) and 4(d) show the experimental input and output for the two correlated excitations in opposite

hase. Here again it is possible to detect several peaks of harmonic components: the two most important contributions
orrespond to the second and third harmonic components (i.e., 2f2 and 3f2) of the second fundamental anti-symmetric
ode (see Fig. 5(b)). This result is to be put in relation with the fact that the chosen excitation highlights mainly the
articipation of the second mode (see also Fig. 4(d)). Moreover, three other minor contributions that correspond to the
th, 6th and 7th harmonics of the first fundamental symmetric mode are visible (see 5f1, 6f1 and 7f1 in Fig. 5(b) for
ccelerometer A1).
Similarly the experimental input and output for the two correlated excitations in quadrature phase (or for the two

ncorrelated excitations, respectively) are given in Figs. 4(e) and 4(f) (Figs. 4(g) and 4(h), respectively). It can be noted
hat experimental measurements for both inputs and outputs are very similar for these two configurations. As shown
n Figs. 5(c) and 5(d), the number of nonlinear components along the bandwidth [500; 1000] Hz is greater than in the
wo previous cases (to be compared with Figs. 5(a) and 5(b)). This is explained by the fact that, for these two excitation
onfigurations, all of the modes (symmetric and anti-symmetric) present along the bandwidth [20; 500] Hz are solicited
ithout favoring the amplification of one mode over the other. Thus, the harmonics of the first and second modes (i.e., 5f ,
1

8
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Table 8
Frequency values of experimental output PSD for the four configurations of broadband random excitations with RMS
level of 0.5 N along the bandwidth [20; 500] Hz and RMS level of 0.0035 N along the bandwidth [500; 1000] Hz.

Frequency (Hz)

In phase Opposite phase Quadrature phase Uncorrelated

f1 110.3 110.5 110.3 110.4
f2 298 298.1 298 298
f3 575.1 – 576.5 577.8
f4 970.1 970.8 970.1 970.7

Table 9
Modal damping ratio values of experimental output PSD for the four configurations of broadband random ex-
citations with RMS level of 0.5 N along the bandwidth [20; 500] Hz and RMS level of 0.0035 N along the
bandwidth [500; 1000] Hz.

Damping ratio (%)

In phase Opposite phase Quadrature phase Uncorrelated

ξ1 0.3 0.31 0.17 0.16
ξ2 0.08 0.11 0.08 0.08

Table 10
Peak values of the experimental output PSD for Accelerometer A1 with RMS level of 0.5 N along the band-
width [20; 500] Hz and RMS level of 0.0035 N along the bandwidth [500; 1000] Hz for the four configurations of
broadband random excitations.
Frequency PSD ((m s−2)2/Hz)

In phase Opposite phase Quadrature phase Uncorrelated

f1 1.103 7.100 1.103 1.103

f2 – – – –
f3 6.10−3 – 4.10−3 3.10−3

f4 3.10−6 1.10−6 3.10−6 3.10−6

2f1 + f2 2.10−4 – 2.10−3 2.10−3

5f1 6.10−3 3.10−3 3.10−3 3.10−3

2f2 – 2.10−1 9.10−2 4.10−2

6f1 6.10−4 1.10−4 3.10−4 3.10−4

f1 + 2f1 – – 2.10−4 1.10−4

7f1 1.10−5 – – –
8f1 1.10−5 – – –
3f2 – 5.10−5 2.10−5 1.10−5

9f1 4.10−5 – – –

6f1, 7f1, 2f2 and 3f2), as well as the combination of harmonics (i.e., 2f1 + f2 and f1 + 2f2), are visible. It can also be noted
hat the contributions 2f1 + f2 and f1 + 2f2 are more important for the correlated excitations in quadrature phase and the
ncorrelated excitations, contrary to the two other excitation configurations, due to the fact that this choice of excitations
oes not lead to the attenuation of the participation of the first or second modes. For the interested reader, Tables 10–12
ummarize the presence of each peak as well as the associated amplitude value of the experimental output PSD for all of
he excitation configurations. All of these results demonstrate that the excitation configuration may induce changes on
he nonlinear dynamic behavior of the beam system with the more or less marked appearance of nonlinear components.

Finally, it can be observed that the control of the input PSD is not perfect for the four excitation configurations tested
ith the presence of unexpected resonance peaks along the bandwidth [500; 1000] Hz in Figs. 4(a), 4(c), 4(e) and 4(g).
his necessarily may lead to the presence of these additional peaks in the experimental output. This phenomenon may
lso be due to the coupling between the control at the two excitation points and the nonlinear response of the beam. For
xample, it can also be noted that the two shakers are positioned near the maxima of the second mode shape of the beam
i.e., the first anti-symmetric mode). Thus, the coupling between the experimental control and the experimental output
s stronger for the configuration of correlated excitations in opposite phase (for which the contribution of the second
ode is amplified), than for the configuration of correlated excitations in phase (for which the contribution of the second
ode is attenuated). Likewise, the two configurations related to the correlated excitations in quadrature phase and the
ncorrelated excitations lead to a solicitation of all modes. This implies the presence of a greater number of unexpected
esonance peaks along the bandwidth [500; 1000] Hz than in the two previous cases (i.e., correlated excitations in opposite
hase and correlated excitations in phase), but with slightly smaller amplitudes.
9
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Fig. 4. Experimental input and output PSD with RMS level of 0.5 N along the bandwidth [20; 500] Hz and RMS level of 0.0035 N along the
bandwidth [500; 1000] Hz; (a, b) correlated excitations in phase; (c, d) correlated excitations in opposite phase; (e, f) correlated excitations
in quadrature phase; (g,h) uncorrelated excitations; (a, c, e, g) input PSD from Shaker S1 (blue) and Shaker S2 (red); (b, d, f, h) output from
Accelerometers A1 (red), A5 (blue) and A6 (green).
10
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Fig. 5. Experimental output PSD along the bandwidth [500; 1000] Hz for the experiment with RMS level of 0.5 N along the bandwidth [20; 500] Hz
nd RMS level of 0.0035 N along the bandwidth [500; 1000] Hz for Accelerometers A1 (red), A5 (blue) and A6 (green); blue vertical lines: harmonics
f the 1st mode; red vertical lines: harmonics of the 2nd mode; black vertical lines: combinations of harmonics; (a) correlated excitations in phase;
b) correlated excitations in opposite phase; (c) correlated excitations in quadrature phase; (d) uncorrelated excitations.

Table 11
Peak values of the experimental output PSD for Accelerometer A5 with RMS level of 0.5 N along the
bandwidth [20; 500] Hz and RMS level of 0.0035 N along the bandwidth [500; 1000] Hz for the four
configurations of broadband random excitations.
Frequency PSD ((m s−2)2/Hz)

In phase Opposite phase Quadrature phase Uncorrelated

f1 6.102 3.100 5.102 5.102

f2 1.102 1.104 1.104 6.103

f3 3.10−3 – 1.10−3 1.10−3

f4 1.10−5 6.10−4 6.10−4 1.10−3

2f1 + f2 4.10−5 – 3.10−4 3.10−4

5f1 1.10−3 7.10−4 7.10−4 7.10−4

2f2 – 1.10−1 6.10−2 3.10−2

6f1 1.10−4 1.10−4 1.10−4 1.10−4

f1 + 2f1 – – 4.10−4 2.10−4

7f1 – – – –
8f1 – – – –
3f2 – 8.10−4 3.10−4 2.10−4

9f1 1.10−5 – – –
11
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Table 12
Peak values of the experimental output PSD for Accelerometer A6 with RMS level of 0.5 N along the
bandwidth [20; 500] Hz and RMS level of 0.0035 N along the bandwidth [500; 1000] Hz for the four
configurations of broadband random excitations..
Frequency PSD ((m s−2)2/Hz)

In phase Opposite phase Quadrature phase Uncorrelated

f1 6.102 3.100 5.102 5.102

f2 1.102 1.104 1.104 6.103

f3 3.10−3 – 1.10−3 1.10−3

f4 1.10−5 3.10−4 6.10−4 3.10−4

2f1 + f2 5.10−5 – 5.10−4 5.10−4

5f1 1.10−3 9.10−4 9.10−4 9.10−4

2f2 – 1.10−1 6.10−2 3.10−2

6f1 8.10−5 – – –
f1 + 2f1 – – 4.10−4 2.10−4

7f1 – – – –
8f1 – – – –
3f2 – 1.10−3 3.10−4 2.10−4

9f1 6.10−6 – – –

3. Modeling

3.1. Modeling of a multipoint correlated random excitation

This section details the modeling of a bi-point correlated random excitation. The main idea is to approximate a real
xcitation by a random Gaussian excitation [53,54] using the central limit theorem. This can be done by simulating
series (of finite length p) of cosine functions with weighted amplitudes and evenly spaced frequencies. One of the
ajor advantages will be to be able to directly use this modeling in the numerical method (i.e., the Harmonic Balance
ethod [23]) implemented in the rest of the study.
For the interested reader, Shinozuka et al. [53] demonstrate that such an approached excitation has the following

roperties:

• the average of the simulated excitation is zero;
• the autocorrelation function of the simulated excitation tends to the autocorrelation function of the real excitation.

As a consequence, using the Wiener–Khintchine relation, the PSD of the simulated excitation tends to the PSD of the
real excitation.

• the convergence of the autocorrelation function of the simulated excitation is as
1
p2

to the autocorrelation function

(the PSD function, respectively) of the real excitation.

As previously presented in Section 2.3.1, the modeling of a multipoint correlated random excitation starts with the cross-
spectral density matrix S(ω) (where ω is the pulsation, which is defined for two temporal excitations f1(t) and f2(t) by

S(ω) =

[
S11(ω) S12(ω)
S21(ω) S22(ω)

]
(2)

where S11(ω) and S22(ω) are, respectively, the PSD of the temporal excitations f1(t) and f2(t). S21(ω) is the cross-
spectral density function between temporal excitations f1(t) and f2(t). The correlation type (i.e., in phase, opposite phase,
quadrature phase or uncorrelated excitations) between the two excitations is defined by the extra-diagonal terms of S(ω)
according to Eq. (1). S(ω) is non-negative definitive [53] and therefore, using the unique Cholesky decomposition

S(ω) = H(ω)H∗(ω)T (3)

where the notation .∗ indicates the complex conjugate and .T is the transpose. H(ω) is a lower triangular matrix given by

H(ω) =

[
H11(ω) 0
H21(ω) H22(ω)

]
(4)

where the Hij(ω) coefficients can be determined with the principal minors of the matrix S(ω) [54]. We have

H11(ω) = S11(ω)
1
2 (5)

H21(ω) =
S21(ω)

S11(ω)
1
2

(6)

H (ω) =
(
S (ω) − |H (ω)|2

) 1
2 (7)
22 22 21

12
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Then, the two correlated temporal excitations f1(t) and f2(t) can be expressed as

f1(t) =
√
2∆ω

p∑
n=1

|H11(ωn)| cos
(
ω′

nt + θ11(ωn) + φ1n
)

(8)

f2(t) =
√
2∆ω

p∑
n=1

|H21(ωn)| cos
(
ω′

nt + θ21(ωn) + φ1n
)
+

√
2∆ω

p∑
n=1

|H21(ωn)| cos
(
ω′

nt + θ22(ωn) + φ2n
)

(9)

The parameters present in the two previous equations are defined in such a way that:

• p is the finite length of the series of cosine functions of the approximated excitation. It has to be considered as a
power of 2 in order to use Fast-Fourier Transforms (as detailed below for the numerical simulation);

• ∆ω defines the pulsation step along the bandwidth [ωmin, ωmax]. It is given by ∆ω =
ωmax−ωmin

p ;
• ωn corresponds to the frequency discretization [53]. It is given by ωn = ωmin +

(
n −

1
2

)
∆ω. For the numerical

simulation, FFT algorithms discretization is chosen in order to use the Fast-Fourier Transform technique [55];
• ω′

n is defined as ω′
n = ωn + δωn, where δωn is a small random pulsation introduced to avoid the periodicity of the

simulated excitation [53]. In this study, in order to use the Harmonic Balance Method (see Section 4), we must have
a periodic excitation so δωn = 0 and ω′

n = ωn;
• θjk(ωn) is defined as

θjk(ωn) = tan−1
(

ℑ(Hjk(ωn))
ℜ(Hjk(ωn))

)
(10)

where ℑ and ℜ are the imaginary and real parts, respectively. Given that S(ω) is a Hermitian matrix, we have
θ11(ω) = θ22(ω) = 0. The dephasing between temporal excitations f1(t) and f2(t) comes from the variable θ21(ωn);

• φ1n and φ2n are independent random phases uniformly distributed between 0 and 2π . The random part of the
multipoint excitation comes from these variables.

rom a numerical point of view (computational time and storage), the calculation of such a series may be expensive
or high values of p. In order to avoid this, it is possible to rewrite Eqs. (8) and (9) by using the Fast-Fourier Transform
FFT) [55] as

f1(tn) =
√
2∆ωℜ

(
IFFT

(
H11 [n] ejφ1[n]

))
(11)

f2(tn) =
√
2∆ωℜ

(
IFFT

(
H21 [n] ejφ1[n]

))
+

√
2∆ωℜ

(
IFFT

(
H22 [n] ejφ2[n]

))
(12)

here IFFT denotes the Inverse of the Fast Fourier Transform and j is the pure imaginary number. x [n] indicates the nth
erm of the vector x. H11, H21, H22, φ1 and φ2 are, respectively, the vectors defined by H11[n] = H11(ωn), H21[n] = H21(ωn),
22[n] = H22(ωn), φ1[n] = φ1n and φ2[n] = φ2n. tn is the discretized time tn = ndt where dt is the temporal sampling
tep. It should be noted that Poirion et al. [56] add another independent random variable for the weighted amplitudes in
rder to respect Box and Muller transformation [57] and to ensure that the simulated force is Gaussian for any fixed p,
hereas in the study by Shinozuka et al. [53], the simulated force is only asymptotically Gaussian: i.e., when p→∞. In
he present study, it has been chosen not to add these independent random variables.

In conclusion, using the experimental cross-spectral density matrix, it is possible to simulate two correlated or
ncorrelated random excitations.

.2. Modeling of the beam system with non-ideal boundary conditions and additional static pretension

The modeling was proposed initially by Nayfeh [58]. An extension of this model is proposed in the following.
The dynamical differential equation of the beam system with non-ideal boundary conditions and two broadband

andom excitations is defined by

ρA
∂2w

∂t2
+ µ

∂w

∂t
+ EI

∂4w

∂x4
= F1

(
xF1 , t

)
+ F2

(
xF2 , t

)
+ T (t)

∂2w

∂x2
(13)

here ρ and E are the mass density and the Young modulus of the beam, respectively. A and I are the cross-sectional area
nd moment of inertia. µ corresponds to the linear viscous damping coefficient. w defines the transverse displacement in

the reference frame of the beam. F1
(
xF1 , t

)
and F2

(
xF2 , t

)
are the first and second temporal forces situated at the abscissa

xF1 and xF2 , respectively. It can be noted that, thanks to the low thickness-length ratio of the experimental beam, it is
legitimate to neglect the inertial and curvature nonlinear terms pointed out by Nayfeh [58]. For the interested reader
a more complete modeling of a beam system including the geometric and internal nonlinearities as well as complete
methodologies for solving such nonlinear beam system can be found in [5–9].
13
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T (t) corresponds to the tensile force, which is assumed to be invariant along the length of the beam. It is given by

T (t) = T0 + EA

(
∂u
∂x

+
1
2

(
∂w

∂x

)2
)

(14)

here T0 is a static pretension and u corresponds to the displacement along the beam axis. For the interested reader, the
tensile force T (t) can be assumed to be constant along the beam length due to the fact that the dimensionless quantity
Rg
L is very small for the beam under study (and consequently the longitudinal inertia is neglected, see [2], pages 446–455
for a detailed explanation). L corresponds to the beam length (i.e., the effective length L = 2l) and Rg denotes the radius

f gyration given by Rg =

√
I
A where I is the second moment of area and A the total cross-sectional area. Considering the

geometrical parameters of the beam it comes Rg
L = 0.003 which leads without ambiguity to validate the hypothesis of a

constant tensile force along the beam length.
The non-ideal boundary conditions of the beam model are defined as

T (0) = kboundu(0) ; T (2l) = −kboundu(2l) (15)
w(0) = 0 ; w(2l) = 0 (16)

EI
∂2w(0)

∂x2
= krot

∂w(0)
∂x

; EI
∂2w(2l)

∂x2
= −krot

∂w(2l)
∂x

(17)

here the springs kbound and krot are unknown parameters to be updated, due to the non-ideal boundary conditions
i.e., the deformable block, and each end of the beam being tapered [19]). It should be mentioned that there are several
pproaches for modeling of the non-ideal boundary conditions: the interested reader can referred to the paper of Rezaei
nd Zamanian for additional comments on this subject [14].
It is pointed out that only half of the beam has been modeled in the previous studies by Claeys et al. [19] and by

oncen et al. [23] due to the fact that the structure and its excitation are symmetric. In the present study, the two
andom excitations are not symmetric so the modeling of the beam is carried out over its total length 2l. Another
xtension compared to the previous models by Claeys et al. [19] and by Roncen et al. [23] is the inclusion of the mass
f Accelerometers A1, A5 and A6. Indeed, experimental tests (not presented in the present study for the sake of brevity)
ave shown a weak but not negligible influence of these added masses. Thus, taking into account these additional masses
ill allow a better correlation between experimental and numerical results. It should be noted that the effective length
l is no longer an unknown parameter to be updated, thanks to the introduction of the static pretension T0, unlike the
revious studies [19,23]. This novelty will be presented and discussed in the rest of the paper.
Considering the boundary conditions given by Eq. (15), as well as by integrating T (t) between x = 0 and x = 2l, the

tensile force of the beam can be defined as a function that depends only on the transverse displacement w(x, t). Indeed,
it comes that∫ 2l

0
T (t)dx = T (t)2l = T02l + EA

(∫ 2l

0

∂u
∂x

dx +
1
2

∫ 2l

0

(
∂w

∂x

)2

dx

)
(18)

hen applying the boundary conditions defined by Eq. (15) on the longitudinal displacement u(x, t), we have∫ 2l

0

∂u
∂x

dx = u(2l) − u(0) = −2
T (t)
kbound

As a result the expression of the tensile force ca be given by

T (t) =

(
1 +

EA
lkbound

)−1
(
T0 +

EA
4l

∫ 2l

0

(
∂w

∂x

)2

dx

)
(19)

nd the dynamical nonlinear problem associated with the boundary conditions and the static pretension can be defined
y

∂2w

∂t2
+

µ

ρA
∂w

∂t
+

EI
ρA

∂4w

∂x4
=

1
ρA

F1
(
xF1 , t

)
+

1
ρA

F2
(
xF2 , t

)
+

(
1 +

EA
lkbound

)−1 T0
ρA

∂2w

∂x2

+

(
1 +

EA
lkbound

)−1 E
4lρ

∫ 2l

0

(
∂w

∂x

)2

dx
∂2w

∂x2
(20)

The next step is to obtain a set of discrete differential equations to be able to apply the numerical simulation process
based on the Harmonic Balance Method used in this work. For this purpose, Eq. (20) can be projected on the modal basis
of its associated homogeneous equation. After calculations, the projection yields the following discrete equation for the
ith mode

ẅi +
µ

ρA
ẇi + ω2

i wi = Γi,1F1(xF1 , t) + Γi,2F2(xF2 , t) +

Nm∑ Nm∑ Nm∑
Γijkmwjwkwm (21)
j=1 k=1 m=1

14
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with

Γi,1 =
1
ρA

∫ 2l

0
δ(x, xF1 )Yi(x)dx =

1
ρA

Yi(xF1 ) (22)

Γi,2 =
1
ρA

∫ 2l

0
δ(x, xF2 )Yi(x)dx =

1
ρA

Yi(xF2 ) (23)

Γijkm = −
E
4lρ

(
1 +

EA
lkbound

)−1

ajakam

∫ 2l

0

dYj(x)
dx

dYk(x)
dx

dx
∫ 2l

0

dYi(x)
dx

dYm(x)
dx

dx (24)

ai =

[∫ 2l

0
Y 2
i (x)dx

]−1

(25)

here δ(x, a) is a Dirac delta function defined at abscissa a. To be noted that vibration modes of the beam are coupled in
nonlinear way in Eq. (21). Thus the transverse displacement w(x, t) is defined by the product of two one-dimensional

unctions w(x, t) =
∑Nm

i=1 aiwi(t)Yi(x), where Nm is the number of modes Yi(x) retained in the modal projection. As a
eminder, wi(t) are the unknown functions to be determined (see Section 4 for the calculation of wi(t) using the Harmonic
alance Method). The modal solution Yi(x) can be expressed as

Yi(x) = αi sin
(
τ1,ix

)
+ βi cos

(
τ1,ix

)
+ γi sinh

(
τ2,ix

)
+ δi cosh

(
τ2,ix

)
(26)

with

τ1,i =

√
−α +

√
∆i

2 EI
ρA

(27)

τ2,i =

√
α +

√
∆i

2 EI
ρA

(28)

∆i = α2
+ 4

EI
ρA

ω2
i ≥ 0 (29)

ωi =

√
EI
ρA

(
λi

2l

)4

− α

(
λi

2l

)2

(30)

α =

(
1 +

EA
lkbound

)−1 T0
ρA

(31)

here λi is the modal parameter of the ith vibration mode. Considering the previous non-ideal boundary conditions, the
our variables αi, βi, γi and δi are a solution of⎡⎢⎢⎣

0 1 0 1
τ1,i ητ 2

1,i τ2,i −ητ 2
2,i

sin
(
τ1,i2l

)
cos

(
τ1,i2l

)
sinh

(
τ2,i2l

)
cosh

(
τ2,i2l

)
f1
(
τ1,i, η

)
f2
(
τ1,i, η

)
f3
(
τ2,i, η

)
f4
(
τ2,i, η

)
⎤⎥⎥⎦
⎡⎢⎣αi

βi
γi
δi

⎤⎥⎦ =

⎡⎢⎣0
0
0
0

⎤⎥⎦ (32)

ith

η =
EI
krot

(33)

f1
(
τ1,i, η

)
= −ητ 2

1,i sin
(
τ1,i2l

)
+ τ1,i cos

(
τ1,i2l

)
(34)

f2
(
τ1,i, η

)
= −ητ 2

1,i cos
(
τ1,i2l

)
− τ1,i sin

(
τ1,i2l

)
(35)

f3
(
τ2,i, η

)
= ητ 2

2,i sinh
(
τ2,i2l

)
+ τ2,i cosh

(
τ2,i2l

)
(36)

f4
(
τ2,i, η

)
= ητ 2

2,i cosh
(
τ2,i2l

)
+ τ2,i sinh

(
τ2,i2l

)
(37)

inally, each modal parameter λi is determined by seeking the zeros of the determinant of the 4 × 4 matrix defined
n Eq. (32), then each modal shape Yi can be obtained. The first four modal shapes for the problem under study (i.e., with
he presence of a static pretension and non-ideal boundary conditions) are plotted in Fig. 6. Compared to previous work
y Claeys et al. [19] and by Roncen et al. [23], all of the vibration modes are orthogonal for the problem defined in Eq. (20)
ith the proposed non-ideal boundary conditions defined in Eqs. (15), (16) and (17).
15
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Fig. 6. The first four modal shapes along the length of the beam: 1st mode (blue) 2nd mode (red) 3rd mode (green) and 4th mode (orange).

Finally, equations describing the dynamic behavior of the beam system are

Mẅ(t) + Dẇ(t) + Kw(t) = F(t) + FNL(w(t)) (38)

where M and K are the mass and stiffness matrices. The mass matrix M includes the mass contribution of the three
ccelerometers A1, A5 and A6, and is written as

M = Mbeam
+ MmA1 + MmA5 + MmA6 (39)

ith:

Mbeam
ij =

∫ 2l

0
ρAaiajYi(x)Yj(x)dx ; MmA1

ij = mA1aiajYi(xA1)Yj(xA1) (40)

MmA5
ij = mA5aiajYi(xA5)Yj(xA5) ; MmA6

ij = mA6aiajYi(xA6)Yj(xA6) (41)

where mA1, mA5 and mA6 are the masses of Accelerometers A1, A5 and A6, respectively (situated at the abscissa xA1, xA5
and xA6, respectively).

Similarly, the stiffness matrix K includes the static pretension and the non-ideal boundary conditions. We have

K = Kbeam
+ Kk0 + Kk2l + KT0 (42)

with

K beam
ij =

∫ 2l

0
EIaiaj

d2Yi(x)
dx2

d2Yj(x)
dx2

dx ; K T0
ij =

∫ 2l

0
T02laiaj

dYi(x)
dx

dYj(x)
dx

dx (43)

K k0
ij = krotaiaj

dYi(0)
dx

dYj(0)
dx

; K k2l
ij = krotaiaj

dYi(2l)
dx

dYj(2L)
dx

(44)

D corresponds to the damping matrix, which is defined by a modal damping ratio ξi per vibration mode

∀ i ∈ [[1,Nm]], Dii = 2ξiΩi (45)

where Ωi corresponds to the natural pulsations of the generalized eigenvalue problem
(
K − ω2M

)
X = 0. It is worth

noting that Ωi is slightly different from ωi, since additional masses are present in the model.
The generalized excitation vector F(t) is defined as

∀ i ∈ [[1,Nm]], Fi(t) = ρAΓi,1aif1(t) + ρAΓi,2aif2(t) (46)

where Γi,1, Γi,2 and ai are given by Eqs. (22), (23) and (25) for each ith vibration mode of the beam. Moreover, the vector
FNL represents the nonlinear contributions given in Eq. (21)

∀ i ∈ [[1,Nm]], FNL,i(t) = ρA
Nm∑
j=1

Nm∑
k=1

Nm∑
m=1

Γijkmwj(t)wk(t)wm(t) (47)

For the rest of the study, it was chosen to keep only the first five bending modes, i.e., w(t) =
[
w1(t) w2(t) w3(t)

w (t) w (t)
]T .
4 5
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4. Simulation results

4.1. Preamble on the Harmonic Balance Method

In this section, the proposed numerical method based on the extension of the classical Harmonic Balance Method for
andom excitations will be presented. For more details, the interested reader is referred to [23,59].

The Harmonic Balance Method seeks the response of the nonlinear system defined in Eq. (38) as a truncated Fourier
eries (if this solution exists), such as

w(t) = B0 +

p∑
n=1

(An sin (nΩt) + Bn cos (nΩt)) (48)

where p corresponds to the chosen order of the truncated Fourier series and
(
B0, (An,Bn)∀n∈[[1,p]]

)
are the unknown Fourier

coefficients of the solution w to be determined. As discussed in [23], the Harmonic Balance Method can be adapted to
random excitation by choosing the frequency resolution ∆f as the fundamental frequency of the excitation. In this case,
the multipoint random excitation is foreseen as a multipoint deterministic excitation with one fundamental pulsation
Ω = 2π∆f (see Section 3.1) and the vector force F(t) can be defined by a finite Fourier series of order p, such as

F(t) =

p∑
n=1

(
Sn,excit sin (nΩt) + Cn,excit cos (nΩt)

)
(49)

Moreover, it is assumed that the nonlinear contributions FNL(t) can be solved in finite Fourier series of order p

FNL(t) = C0 +

p∑
n=1

(Sn sin (nΩt) + Cn cos (nΩt)) (50)

here
(
C0, (Sn, Cn)∀n∈[[1,p]]

)
are the Fourier coefficients of the nonlinear force FNL.

In order to determine the value of the Fourier coefficients
(
B0, (An,Bn)∀n∈[[1,p]]

)
, the decompositions (48), (49) and

50) are re-injected into Eq. (38). This leads to a set of Nm × (2p + 1) nonlinear equations given by

KB0 = C0 (51)[
K − (nΩ)2M −nΩD

nΩD K − (nΩ)2M

][
An
Bn

]
=

[
Sn,excit
Cn,excit

]
+

[
Sn
Cn

]
∀n ∈ [[1, p]] (52)

The coefficients
(
C0, (Sn, Cn)∀n∈[[1,p]]

)
depend on the coefficients

(
B0, (An,Bn)∀n∈[[1,p]]

)
. An extension of the clas-

sical Alternate Frequency–Time domain method (AFT-method [60]) is used to calculate these Fourier coefficients(
C0, (Sn, Cn)∀n∈[[1,p]]

)
(see [23,59] for more details).

Finally, the nonlinear equations (51) and (52) are solved by minimizing the following relation

H(X, Ω) = AX − B − BNL(X) (53)

with

A = Diag

(
K,

[
K − (nΩ)2M −nΩD

nΩD K − (nΩ)2M

]
∀n∈[[1,p]]

)
(54)

B =
[
0 S1,excit C1,excit . . . Sp,excit Cp,excit

]T (55)

BNL =
[
C0 S1 C1 . . . Sp Cp

]T (56)

Minimizing Eq. (53) imposes a convergence criterion given by

∥H(X,Ω)∥2

∥B∥2
< ϵHBM (57)

here ϵHBM is a chosen numerical precision and ∥.∥2 is the quadratic norm. For the rest of the study, ϵHBM is chosen to
e equal to 10−5.

.2. Numerical results and comparison with the experiments

The objective of this section is to compare the simulation results with the experiments presented in Section 2.3. Specific
ttention will be paid to the understanding and analysis of the nonlinear dynamic behavior of the beam system. In order
o achieve such an objective, results are decomposed into two main parts:
17



S. Talik, J.-J. Sinou, M. Claeys et al. Communications in Nonlinear Science and Numerical Simulation 110 (2022) 106328

t
o
t
t
I
T

Table 13
Values of the physical parameters of the beam.
Parameter Value

Mass density ρ 7850 kg m−3

Cross-sectional area A 10−4 m2

Cross-sectional moment of inertia I 2.08 10−10 m4

Young modulus E 205 109 Pa
Half-length of the beam l 0.235 m

Table 14
Values of the numerical parameters for Case 1 and Case 2.
Parameter Case 1 Case 2

Excitation bandwidth [20; 1000] Hz [20; 500] Hz
krot 2320 N m 1834 N m
kbound 8.11 107 N m−1 8.11 107 N m−1

T0 2809 N 3231 N
mA1 0.006 kg 0.006 kg
mA5 0.00171 kg 0.00171 kg
mA6 0.00171 kg 0.00171 kg

• Case 1: comparison between numerical results and experiments are investigated for the dynamic behavior of the
beam system with a constant PSD level along the bandwidth [20; 1000] Hz. The objective of this first analysis is to
verify the ability of the simulations to reproduce the effects related to the four configurations of the two broadband
random excitations (i.e., correlated excitations in phase, opposite phase and quadrature phase, and uncorrelated
excitations). Numerical simulations are performed with an ideal excitation, as previously described in Section 3.1
(i.e., with a constant PSD level along the bandwidth [20; 1000] Hz).

• Case 2: more particular attention is devoted to the comparison of the nonlinear signature and the evolution of
the harmonic components according to the four configurations of broadband random excitations (i.e., correlated
excitations in phase, opposite phase and quadrature phase, and uncorrelated excitations). In order to achieve
such an objective, two series of numerical simulations are performed: the first ones consider an ideal excitation
with a high constant PSD level along the bandwidth [20; 500] Hz and a low constant PSD level along the band-
width [500; 1000] Hz. The second ones are made by interpolating the measured experimental excitation for each
configuration (as given and described in Figs. 4). This choice will allow us to assess the origin of the observed
nonlinear effects on the nonlinear dynamic response of the beam system under study.

Tables 13 and 14 give the values of the physical parameters of the beam system under study and the physical values of
he updated parameters, respectively. As previously described in [19,23], some variations of the fundamental frequencies
f the beam (identified at low excitation) are observed from one experiment to another. Claeys et al. [19] assume that
hese frequency variations come from the static constraints in the beam induced by the two embedding blocks screwed
o the heavy steel block and they proposed to update the eigenfrequency through an effective half-length of the beam.
n the present study, readjustment of eigenfrequencies has been performed by updating the physical parameters given in
able 14. The modal damping ratio of the first five bending modes used for the numerical data are: ξ1= 0.40%, ξ2= 0.085%,

ξ3= 0.45%, ξ4= 0.15% and ξ5= 1.5%. To be noted that the fifth bending mode is outside the frequency range of interest (with
a frequency observed experimentally around 1464 Hz).

4.2.1. Case 1 — Reproduction of the effects related to the different configurations of the excitations by simulation
As previously explained, comparison between numerical results and experiments are first performed with a constant

PSD level along the bandwidth [20; 1000] Hz.
Figs. 7(a–c), 7(b–d), 8(a–c) and 8(b–d) give the numerical results (blue curves) compared to experimental measure-

ments (red curves) for the four configurations of the two chosen broadband random excitations (i.e., correlated excitations
in phase, opposite phase and quadrature phase, and uncorrelated excitations, respectively). Results are provided for
Accelerometers A1 and A5. It should be noted that results for Accelerometer A6 are similar to those for Accelerometer A5
and therefore they are not provided for the sake of brevity.

It is observed that the numerical simulations are in good agreement with the experimental data. It is clearly shown that
the effects related to the different configurations of the two broadband random excitations (i.e., correlated excitations in
phase, opposite phase and quadrature phase and uncorrelated excitations) are well reproduced by the numerical results.
Depending on the selected excitation configuration, attenuation and amplification of each mode in the frequency range
of interest [20; 1000] Hz are well reproduced. As previously discussed in Section 2.3.2, all of these results can be easily
interpreted by considering the relationship between the shape of each eigenmode (symmetric or anti-symmetric vibration
modes) and the type of excitation chosen. These first comparisons between experiments and numerical results validate
the approach proposed for the modeling of a multipoint correlated random excitation as well as the modeling of the
nonlinear beam with non-ideal boundary conditions and additional static pretension.
18
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Fig. 7. Experimental (red) and numerical (blue) output PSD for Accelerometers (a–b) A1 and (c–d) A5 with RMS level of 0.71 N for correlated
excitations (a–c) in phase along the bandwidth [20; 1000] Hz and (b–d) in opposite phase along the bandwidth [20; 1000] Hz.

We can also observe that the numerical simulation does not reproduce one experimental frequency peak of low
amplitude (in the vicinity of 700 Hz). The appearance of this frequency peak is only due to an out-of-plane parasite
excitation, which causes the excitation of a transverse mode of the beam. It results from experimental biases inherent in
the experimental setup, such as the imperfect positioning of the two shakers.

4.2.2. Case 2 — Comparison of the nonlinear signature and harmonic components
In this section, the capability of the numerical simulation to reproduce the experimental nonlinear signature and the

evolution of the nonlinear contributions and harmonic components according to the different configurations of broadband
random excitations is investigated.

As previously explained in Section 2.3.3, an original experimental protocol has been proposed to analyze the nonlinear
behavior of the beam system. The protocol is based on a high level of random excitation along the bandwidth [20; 500] Hz
(where only the first symmetric mode f1 and the first anti-symmetric mode f2 are present) combined with a small level
of excitation along the bandwidth [500; 1000] Hz. Therefore, the vibratory signature along the bandwidth [500; 1000] Hz
brings out a complex behavior, which results from the appearance and the combination of harmonics.

Figs. 9, 10, 11 and 12 illustrate the numerical results (blue and green curves) compared with the experimental
measurements (red curves) for the four configurations of the two chosen broadband random excitations. Zooms on the
frequency band [500; 1000] Hz with identification of the harmonics and combination of harmonics are provided to better
assess the comparison between experiments and numerical simulation. It should be noted that the numerical results
defined by the blue lines refer to the use of an idealized excitation, whereas the numerical results given by the green lines
refer to the use of an interpolation of the measured experimental excitation. To be noted that one of the assumptions
made in this modeling is to consider a linear constant modal damping for all excitation cases. This choice seems relevant
19



S. Talik, J.-J. Sinou, M. Claeys et al. Communications in Nonlinear Science and Numerical Simulation 110 (2022) 106328

e

(
o
o
T
O
t

s
b
c
d
m
s

Fig. 8. Experimental (red) and numerical (blue) output PSD for Accelerometers (a–b) A1 and (c–d) A5 with RMS level of 0.71 N for (a–c) correlated
xcitations in quadrature phase along the bandwidth [20; 1000] Hz and (b–d) for uncorrelated excitations along the bandwidth [20; 1000] Hz.

and sufficient in the study proposed because of the good comparisons between the experiments and the numerical results
for the four configurations of the two chosen broadband random excitations. For the interested reader, nonlinear damping
identification and a potential observation of a damping growth with the vibration amplitude during nonlinear vibrations
have been carried out in [48–52].

First of all, it is observed that the numerical simulations based on the interpolation of the measured experimental
excitation are in good agreement with the experiments. Indeed, the appearance of additional amplitude peaks corre-
sponding to the harmonics or combination of harmonic components are well predicted by the numerical simulation (see,
for example, nf1, nf2 or ±nf1 ± mf2 where n and m are positive integers). Moreover, it can be noted that the evolution
i.e., the appearance, attenuation or amplification) of each harmonic or combination of harmonic components depending
n the different configurations of the excitations are well reproduced. Also, it is interesting to note that the frequency peak
f the symmetric mode f3 and the second anti-symmetric mode f4 belong to this second frequency interval [500; 1000] Hz.
hese small contributions for f3 and f4 are only due to the small level of excitation along the bandwidth [500; 1000] Hz.
nce again, these comparisons between experiments and numerical results validate the proposed numerical strategy and
he modeling of both the nonlinear beam system and the multipoint correlated random excitations.

Secondly, comparing the two series of numerical simulations (i.e., the first ones with an ideal excitation and the
econd one with an interpolation of the measured experimental excitation) can lead to interesting recommendations to
e made on the modeling of the input signal. Indeed, it is clearly shown that considering an ideal excitation (with a high
onstant PSD level along the bandwidth [20; 1000] Hz, and a low constant PSD level along the bandwidth [500; 1000] Hz)
oes not allow the nonlinear signature of the beam system to be reproduced exactly, while an interpolation of the
easured excitation allows a very good match with the experiments. This is especially true for the appearance of some
pecific frequency peaks, such as: 2f + f and 5f for correlated excitations in phase; 2f for correlated excitations in
1 2 1 2
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Fig. 9. Experimental (red) and numerical (blue, green) output PSD for Accelerometers (a–b) A1, (c–d) A5 and (e–f) A6 with RMS level of 0.5 N for
orrelated excitations in phase along the bandwidth [20; 500] Hz and RMS level of 0.0035 N along the bandwidth [500; 1000] Hz — (b, d and f)
oom on the frequency range [500; 1000] Hz.
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Fig. 10. Experimental (red) and numerical (blue, green) output PSD for Accelerometers (a–b) A1, (c–d) A5 and (e–f) A6 with RMS level of 0.5 N for
correlated excitations in opposite phase along the bandwidth [20; 500] Hz and RMS level of 0.0035 N along the bandwidth [500; 1000] Hz — (b, d
and f) Zoom on the frequency range [500; 1000] Hz.
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Fig. 11. Experimental (red) and numerical (blue, green) output PSD for Accelerometers (a–b) A1, (c–d) A5 and (e–f) A6 with RMS level of 0.5 N for
correlated excitations in quadrature phase along the bandwidth [20; 500] Hz and RMS level of 0.0035 N along the bandwidth [500; 1000] Hz — (b,
d and f) Zoom on the frequency range [500; 1000] Hz.
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t

Fig. 12. Experimental (red) and numerical (blue, green) output PSD for Accelerometers (a–b) A1, (c–d) A5 and (e–f) A6 with RMS level of 0.5 N for
uncorrelated excitations along the bandwidth [20; 500] Hz and RMS level of 0.0035 N along the bandwidth [500; 1000] Hz — (b, d and f) Zoom on
he frequency range [500; 1000] Hz.
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opposite phase; 2f1 + f2, 5f1, 2f2 and 3f2 for correlated excitations in quadrature phase or uncorrelated excitations. These
esults demonstrate without any ambiguity that a fine modeling of the excitation signal is essential and that the intrinsic
onlinear model of the beam is not sufficient by itself to reproduce the complexity of the experimental results.
It is clearly shown that the effects related to the different configurations of the two broadband random excitations

i.e., correlated excitations in phase, opposite phase and quadrature phase and uncorrelated excitations) are well repro-
uced by the numerical results. Depending on the selected excitation configuration, the attenuation and amplification of
ach mode in the frequency range of interest [20; 1000] Hz are well reproduced. As previously discussed in Section 2.3.2,
ll of these results can be easily interpreted by considering the relationship between the shape of each eigenmode
symmetric or anti-symmetric vibration modes) and the type of excitation chosen. All these comparisons between
xperimental and numerical results validate the approach proposed for the modeling of a multipoint correlated random
xcitation, as well as the modeling of the nonlinear beam with non-ideal boundary conditions and additional static
retension.
Finally, some small differences are however noticeable between the simulated results and the experimental tests,

n particular for Accelerometer A1. As previously discussed, the main reason is due to experimental biases from the
xperimental setup. In fact, the punctual external forces for the two shakers may not be perfectly applied in the vertical
irection during experiments. This leads to additional modal contributions and interactions between bending modes and
ther out-of-plane modes, which are not taken into account in the model presented in this study.

. Conclusion

Experiments and numerical simulations of a nonlinear clamped–clamped beam subjected to two broadband correlated,
ncorrelated or partially correlated random excitations have been carried out in detail.
Based on experiments, the amplification and the attenuation of some symmetric or anti-symmetric vibration modes

f the beam in the vicinity of their primary resonance are clearly shown (depending on the excitation configuration).
herefore, nonlinear phenomena have been identified as the presence of additional frequency peaks resulting from
armonics and a combination of harmonic components generated by the primary resonance of the vibration modes. One
f the original contributions is to provide open data of all the experimental tests discussed in Section 2.3 [1].
Thus, a complete numerical strategy based on the formulation of a new modeling of the nonlinear beam with non-ideal

oundary conditions and additional static pretension, as well as an extension of the Harmonic Balance Method for random
xcitations, has been proposed. The efficiency of the proposed methodology is illustrated by performing comparisons
etween experiments and numerical simulations for different types of random excitations.
Although the validity of the modeling choices and the efficiency of the proposed numerical strategy were unambigu-

usly demonstrated by the high-quality comparisons between the experimental tests and the numerical results for several
onfigurations, there are several directions that should be investigated for future research. Although it is not possible
o give an exhaustive list of topics of interest, some studies that seem to have a certain priority and interest may be
onsidered:

• It should be interesting to apply the proposed numerical strategy on a real industrial nonlinear systems subjected to
correlated or uncorrelated broadband random excitations. In this context, one of the main challenges for engineers
working on the developments of such nonlinear strategy for mechanical structures in a real environment should be
the inclusions of modeling errors and uncertainties.

• A directly related point concerns the modeling of more realistic representation of real excitations such as random
excitations applied to a surface and spatially correlated. One of the most common example of this kind of excitation
source concerns industrial applications with turbulent boundary layer noises. For related nonlinear studies, it is
necessary to reduce the number of excitation points while keeping an accurate prediction of the nonlinear response
of the system.

• The proposed study focuses on the use of a numerical approach to predict the nonlinear vibrations of a beam
with non-ideal boundary conditions and subjected to two correlated or uncorrelated broadband random excitations.
Although the proposed strategy has been successfully validated due to the perfect agreement between experimental
tests and numerical results, it could be interesting to compare these results with other alternative methodologies.
To this end, the authors propose in [1] the data set for experiments discussed in this present study. This database
gives the opportunity to researchers to validate analytical and numerical models for the prediction of the nonlinear
dynamic behavior of the beam with non-ideal boundary conditions and subjected to two correlated or uncorrelated
broadband random excitations.
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