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Abstract 

Microsegregation formed during solidification is of great importance to material 

properties. The conventional Lever rule and Scheil equation are widely used to predict 

solute segregation. However, these models always fail to predict the exact solute 

concentration at a high solid fraction because of theoretical assumptions. Here, the 

dynamics of microsegregation during polycrystalline solidification of refined Al-Cu 

alloy is studied via two- and three-dimensional quantitative phase-field simulations. 

Simulations with different grain refinement level, cooling rate, and solid diffusion 

coefficient demonstrate that solute segregation at the end of solidification (i.e. when the 

solid fraction is close to unit) is not strongly correlated to the grain morphology and 

back diffusion. These independences are in accordance with the Scheil equation which 

only relates to the solid fraction, but the model predicts a much higher liquid 

concentration than simulations. Accordingly, based on the quantitative phase-field 
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simulations, a new analytical microsegregation model is derived. Unlike the Scheil 

equation or the Lever rule that respectively overestimates or underestimates the liquid 

concentration, the present model predicts the liquid concentration in a pretty good 

agreement with phase-field simulations, particularly at the late solidification stage. 

 

Keywords: microsegregation; grain refinement; cooling rate; back diffusion; phase-

field method. 

 

1. Introduction 

Microsegregation in as-cast alloys caused by solute partition during solidification 

is a composition variation at the grain scale (or within the grain), which influences the 

mechanical properties, corrosion resistance of cast products and formation of 

macrosegregation [1, 2]. Several microsegregation models with different assumptions 

and simplifications have been proposed to predict solute redistribution and related 

phenomena during binary alloy solidification (Table 1). The Lever rule [3] describes 

equilibrium solidification with assuming complete solute diffusion in both liquid and 

solid phases, and the solute concentration in liquid, CL, is described as 

 
( )

0
L
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C
C

k f
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− −
  (1) 

where C0 is the nominal composition, k is the solute partition coefficient, and fS is the 

solid fraction. The Lever rule is simple to use but is usually inaccurate because solute 

diffusion in solid (back diffusion) is very slow for most metallic alloys. To take into 

account the non-equilibrium effects during alloy solidification, the Scheil equation [3] 

can be employed to predict the solute concentration in liquid, which still assumes 

complete solute diffusion in liquid, but neglects diffusion in solid. The solute 



3 

 

concentration in liquid is written as follows 

 ( )
1

L 0 S1
k

C C f
−

= −   (2) 

According to Eq. (2) the Scheil equation is not adequate for predicting the solute 

concentration at the late solidification stage because CL → ∞ (for k < 1) or CL → 0 (for 

k > 1) as fS → 1. Moreover, the liquid concentrations predicted by these two simple 

models are independent of the microstructure details. In order to predict 

microsegregation more accurately, several models have been developed by considering 

the back diffusion, the size and morphology of grains, and coarsening [4-12]. The solute 

concentration in liquid predicted by those models could be reformulated in a 

generalized formula as follows 

 ( )
1

1
L 0 S1 1

k

kC C k f
−

−= − −     (3) 

where Φ is a parameter linking to both the back diffusion and the grain morphology. 

The expressions of parameter Φ in Eq. (3) of many previously developed 

microsegregation models are briefly overviewed in Table 1. Its value strongly depends 

on the solid diffusion coefficient (DS), local solidification time (tf), and the 

characteristic length of grains (λ), which are included into a parameter, α = 4DStf/λ
2. 

However, quantitative analysis in both experiments and numerical simulations has 

indicated that the effect of back diffusion on microsegregation is very weak for most of 

metallic alloys [4, 13], since the solute diffusion coefficient in solid is usually 3~4 

orders of magnitude smaller than that in liquid. Another important issue is that the 

characteristic length of grains actually varies with the grain morphology, and therefore 

an accurate prediction using these derived models must access the dynamical evolution 

of the grain structure. 
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Table 1. The expressions of parameter Φ in Eq. (3) in different models. 

Microsegregation model Parameter Φ References 

Scheil equation Φ = 0 [3] 

Lever rule Φ = 1 [3] 

Brody-Flemings model Φ = 2α [4] 

Clyne-Kurz model Φ = 2α[1 – exp(–1/α)] –

exp[–1/(2α)] 

[5] 

Voller model Φ = 2α/[(1 – feut)
2 + 2α] [8] 

Voller-Beckermann model Φ = 2α+/[(1 – feut)
2 + 2α+] [9, 10] 

Won-Thomas model Φ = 2α+[1 – exp(–1/α+)] –

exp[–1/(2α+)] 

[11] 

 

Regarding to the effect of grain morphology, it is well known that the solute 

distribution strongly relies on the solidification microstructure such as the grain size 

[14, 15] and the secondary dendritic arm spacing (SDAS) [16], which depends on the 

process conditions (e.g. the growth rate of columnar grains during directional 

solidification [17] and the cooling rate during equiaxed solidification [18, 19]). 

Accordingly, the grain refinement is conventionally viewed as a method to reduce 

solute segregation [20]. However, this correlation is difficult to be verified directly by 

traditional experimental methods, since it is influenced by many factors such as melt 

flow, solidification history and diffusion process after solidification, etc. More 

significantly, measuring the solute distribution within a grain precisely is a real 

challenge for 3D dendrites with very complicated shape and branching. The traditional 

experimental characterization of solute concentration on a sectioned surface from a 

quenched sample is very likely to be not conserved since the solute transport occurs in 
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3D space during solidification. The obtained solute concentration that varies with solid 

fraction may mislead our understanding of the actual solute segregation dynamics. The 

developed numerical simulation techniques, like the cellular automaton (CA) method 

[21-23] and the phase-field (PF) [24-26] method, have been powerful tools to 

investigate microstructure evolution during alloy solidification. Recently, 3D PF 

simulations regarding details of microstructure evolution by Ohno et al. [13] provided 

a more accurate prediction for microsegregation. However, their PF simulations only 

focused on a single crystal and thus might not be able to describe the collective 

segregation behavior in polycrystalline solidification. 

In this paper, the multi-grain growth of Al-Cu alloy during isothermal solidification 

of equiaxed crystals under continuous cooling condition is studied using a quantitative 

PF method. Effects of grain refinement, cooling rate, and back diffusion on 

microsegregation are investigated to give a clear picture of the dynamics of solute 

segregation in alloys during equiaxed solidification. Based on the analysis of the 

quantitative PF simulations, a new analytical microsegregation model is developed to 

provide a more accurate prediction for solute concentration, particularly at the late 

solidification stage with a high solid fraction. The model differs markedly from the 

Scheil equation and Lever rule, or any of their derivative models, but remains simple 

and easy-to-use. Consequently, it has great potential to be embedded into 

macrosegregation models of ingots [27-30] or the CALPHAD (CALculation of PHAse 

Diagram) software packages, such as Thermo-Calc [31], to calculate the stable phase 

formation during solidification based on the predicted solute concentration with 

thermodynamic databases. 

 

2. The phase-field model and numerical implementations 
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2.1 The quantitative PF model of equiaxed dendritic growth of a binary alloy 

The quantitative PF model presented in Ref. [32] is adopted to model slow 

solidification of binary alloys under continuous cooling condition, and the quantitative 

capability of this model to reproduce the time evolution of microstructure during alloy 

solidification has been demonstrated in many previous studies [33-36]. The governing 

equations of the phase field ϕ and the rescaled solute concentration U are respectively 

given as 

 

( ) ( ) ( )
( )

( )

( )
( )

22c

, ,0

2
3 2c

0

1

1
1

i

i x y z i

WR t
W W

m C t

R t
U

k m C


  



   

=

     + =   +            

 
+ − − − − 

− 


n

n n n

  (4) 

 

( ) ( ) ( )

( )

0 1 11 1 1

2 2 2 2

1 1

2

W k Uk k U
D U

t t

k U

t

   





 + − + − −  −    =    + 
    

+ − 
+



  (5) 

with 
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where C is the local solute concentration, C0 is the initial concentration, k is the solute 

partition coefficient, Rc is the cooling rate, and m is the liquidus slope. The solid and 

liquid phases are represented by ϕ = +1 and ϕ = −1, respectively. The spatial length and 

time are rescaled respectively by the interface width W0 and relaxation time τ0, and 

therefore the dimensionless value for the solute diffusion coefficient in liquid is 
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1 22
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where d0 = Γ/[|m|C0(1−k)] is the chemical capillary length with Γ the Gibbs-Thomson 

coefficient, a1 = 5 2 / 8  and a2 = 47/75 [32]. The coupling coefficient λ in Eq. (4) is 



7 

 

given as λ = a1W0/d0. The standard form of the fourfold symmetry of the surface energy 

anisotropy is considered, and thus W(n) = W0as(n) and τ(n) = τ0as(n)2 where 

 ( )
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s 4 4 4
, ,

1 3 4
i

i x y z

a


 
=


= − +


n   (8) 

In order to expedite large-scale quantitative PF simulations, a nonlinear preconditioning 

[37] of the phase field ϕ is employed to allow coarser grids to be used in the interface 

layer. The transformed phase field ψ is given as 

 tanh
2




 
=  
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  (9) 

And hence the standard PF model (Eqs. (4) and (5)) is transformed into the nonlinearly 

preconditioned formula, as follows 
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The numerical accuracy and efficiency of the preconditioned PF formula has been 

examined carefully [38]. The detailed numerical and material parameters can be 

referred to our previous study [39], but C0 is set to be 1 wt.% to result in a larger 



8 

 

capillary length. Large-scale simulations can be therefore realized quantitatively in a 

relatively wide range of cooling rates. The interface width parameter, ξ = W0/d0, is 

determined according to the convergence tests (Fig. S1 in the supplementary materials) 

to guarantee the results of simulations being quantitative. 

 

2.2 The numerical implementations 

The parallel adaptive finite element method, with multiple processors using 

distributed memory based on the MPI protocol, is employed to solve the nonlinearly 

preconditioned PF model. Numerical implementations are realized by the open source 

deal.II library [40], and the adaptive mesh refinement/coarsening is achieved through a 

simple but efficient approach [38]. The front-tracking method [38] is used to capture 

crystallographic orientations to improve the computing efficiency dramatically. The 

computational domain size is 5 × 5 mm2 and 1 × 1 × 1 mm3, respectively in 2D and 3D 

simulations. Grains nucleate simultaneously at the beginning of simulations, with the 

number of grains 36~324 in the 2D simulations and 8~125 in the much more time-

consuming 3D simulations. All the simulations were carried out on a supercomputer 

with an Intel® Xeon E5-2683 v4 CPU (2.10 GHz and 32 cores) and 256 GB memory at 

each computing node. For the 2D simulation with the lowest cooling rate (0.01 K/s) and 

the largest grain number (324), it took about 14 days using 96 cores to finish the 

computation until the solid fraction fS = 0.99, and most of the regions which were not 

solidified formed grain boundaries eventually. Here, totally solidified zones are defined 

as ψ ≥ 0. However, the 3D simulations were ended at a relatively low solid fraction (fS 

= 0.25) because of the unbearable computing time when grains impinged. 

 

3. Dynamic evolution of microsegregation in polycrystalline alloy 
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3.1 Effects of the grain refinement on the solute segregation 

 

Fig. 1. Equiaxed dendritic microstructure of Al-1 wt.% Cu alloy at a cooling rate Rc = 

0.1 K/s with different grain numbers, N, respectively at solid fraction fS = 0.9 in the 2D 

(a1 to a4) and fS = 0.2 in 3D (b1 to b4) PF simulations. (a1) N = 36; (a2) N = 100; (a3) 

N = 225; (a4) N = 324; (b1) N = 8; (b2) N = 27; (b3) N = 64; (b4) N = 125. The colors 

represent the crystal orientations. 

 

The equiaxed dendritic microstructure of refined Al-1 wt.% Cu alloy during 

isothermal solidification with a constant cooling rate Rc = 0.1 K/s in the 2D and 3D PF 

simulations is shown in Fig. 1 for various imposed number of grains. As the number of 

grains increases (by artificially adding more nucleation sites in simulations), the grain 

size becomes smaller and smaller, and the equiaxed crystal shape evolves from highly 

branched dendrite to nearly uniform globular, with the secondary arms less developed 

and even disappearing. Changes in the grain size and morphology can be attributed to 

the solute interaction between neighboring grains, which suppresses the growth of 

primary arms and the development of sidebranches, therefore bringing out a much 

denser equiaxed dendritic microstructure. The solute interaction between grains has 
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been well characterized through the in situ and real-time observation of Al-Cu 

solidification experiments performed by Bogno et al. [41]. They have found that 

equiaxed dendritic growth experiences two regimes, namely the free growth and the 

impinged growth. Impingement causes grain growth being slowed down or even 

stopped. The impinged growth took most of the computing time to complete 

solidification in current simulations, particularly for 3D computations. 
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Fig. 2. The average solute concentration in liquid, CL (a), and the solid fraction, fS (b), 

in the 2D and 3D PF simulations of Al-1 wt.% Cu alloy at Rc = 0.1 K/s with different 

grain numbers. The predictions by the Scheil equation and Lever rule are also plotted. 

 

 The average liquid concentration, CL, in both 2D and 3D simulations is plotted in 

Fig. 2(a). In general, the simulated CL in both 2D and 3D with different number of 

grains almost fall in one curve. Apart from a slight difference that branched dendrites 

will cause a slightly lower CL, the evolution of CL shows no strong dependence on the 

grain morphology, for either dendrites with developed branches or nearly globular 

grains with smooth interface. Furthermore, CL in the PF simulations, as expected, falls 

in between the predictions by the Scheil equation and Lever rule. At the early 
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solidification stage (fS < 0.55) both analytical models predict CL identical to the 

simulations, indicating that the grain morphology is not a crucial factor to affect CL at 

a low solid fraction. As solidification proceeds, the grain impingement takes place 

(characterized by the slow-down increasing rate of fS in Fig. 2(b) at t ~ 30 s) and the 

analytical predictions deviate gradually from the PF simulations.  

Fig. 2(b) shows the variation of solid fraction as a function of undercooling. Like 

the average solute concentration in liquid, the solid fraction has no significant 

correlation to the number of grains (or the grain morphology) too, and fS in the PF 

simulations is close to the predictions by the Scheil equation and Lever rule as fS < 0.55. 

However, as fS increases furtherly, it evolves gradually in between the predictions by 

these two microsegregation models. It is worthy noticing that, no visible difference in 

CL can be found here between 2D and 3D simulations (Fig. 2 (a)). Even though it has 

been quantitatively convinced that the crystal growth kinetics and solute transport are 

different in 2D and 3D PF simulations [42], the difference in solute transport in 2D 

planar and 3D cubic space could be offset because solute is rejected from solid into 

liquid through a curve in 2D while a surface in 3D. Unlike the traditional experimental 

measurement of solute distribution on a sectioned 2D surface where the conservation 

of measured solute cannot be ensured, the 2D simulations here like the 3D simulation 

always guarantee the solute conservation during the entire solidification process, and 

are therefore feasible to reveal the dynamic evolution of microsegregation. 

Prediction for CL only gives the average solute concentration in the rest of liquid 

but does not describe the spatial distribution of solute. The segregation extent can be 

quantitatively evaluated using the solute segregation index, 
0

I

0

1 i

V

C C
S dV

V C

-
= ò  

with Ci the solute concentration at the ith quadrature point (in both solid and liquid 
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phases in the computational domain of PF simulations) and V the total domain volume. 

SI should be more appropriate to evaluate the segregation extent than the mean solid or 

liquid solute concentration, as SI spatially measures the deviation of the solute 

concentration from C0. The results in 2D and 3D PF simulations are plotted in Fig. 3(a). 

Again, no apparent difference can be found for SI between 2D and 3D simulations. 

During the early solidification stage, an increasing amount of solute is rejected into 

liquid and piles up ahead of the solid-liquid interface, thus leading to an increment in 

SI. As solidification proceeds, the difference from C0 for CL is larger and larger, while 

for the average solute concentration in solid, CS, becomes smaller and smaller. As a 

result, SI increases to a peak value at fS  0.8, and then drops down with fS → 1 because 

the area of solid weights more and more in the SI calculation. When fS is close to 1, 

though CL departs from C0 very obviously (Fig. 2(a)), the liquid fraction is so small that 

the solute distribution in solid plays a dominant role in determining SI. At the late 

solidification stage, the solute interaction between grains is going to suppress the 

growth of crystals, but CL continues increasing, which could be attributed to the fact 

that the crystal growth does not stop entirely when the solid fraction is high and the 

diffusion time is sufficient to homogenize the composition in the sample. The variation 

trend of SI observed in Fig. 3(a) is independent of the grain number or morphology, but 

the peak value of SI is apparently affected by the grain refinement. Interestingly, less 

grains with developed branches lead to a lower peak value of segregation index, which 

is consistent with the experimental study of He et al. [16] who have indicated that the 

decreases in SDAS would reduce the microsegregation. However, values of SI for 

different number of grains almost overlap as fS → 1 (Fig. 3(a)). Again, it is revealed 

that the segregation extent after complete solidification has no strong correlation to the 

grain refinement.  
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Fig. 3. Variation of SI (a) and Cmax (b) with fS in the 2D and 3D PF simulations of Al-1 

wt.% Cu alloy at Rc = 0.1 K/s. The 3D simulations are ended at a relatively low solid 

fraction because of the unbearable computing time when grains impinge. 

 

Another parameter quantifying the segregation is the maximum solute 

concentration in liquid, Cmax (Fig. 3(b)). For interdendritic segregation, Cmax locates at 

the root of dendritic branches and can be approximated by the liquidus equilibrium 

concentration in the phase diagram, CL
E = C0 – ΔT/m with ΔT the applied undercooling. 

Owing to the curvature effect of the concave solid-liquid interface, Cmax is in fact 

slightly larger than the equilibrium concentration CL
E obtained from the phase diagram. 

However, this difference is invisible in PF simulations as shown by Fig. 4(a to d) and 

the approximation Cmax ≈ CL
E sounds reasonable. Another issue is that the grain shape 

should lead to a slight difference in Cmax, owing to the different CL
E arising from the 

different undercooling required to approach the same solid fraction (Fig. 2(b)).  
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Fig. 4. Solute distribution in the 2D PF simulations of Al-1 wt.% Cu alloy at Rc = 0.1 

K/s with N = 36 and 324. (a and b) Variation of CL, CS, Cmax, and CL
E against fS; (c and 

b) The solute profile along the lines shown in (e and f) at fS = 0.9. (e and f) show the 

corresponding local grain morphology in the simulations with N = 36 and 324, 

respectively. Blue is solid and red is residual liquid. 
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Nevertheless, the apparent enlargement of Cmax for N = 36 in the 2D PF simulation 

at a low solid fraction (fS < 0.5) is due to the higher undercooling (or solidification time) 

to reach the same fS (Fig. 2(b)). It means that liquid is solidified at a higher undercooling 

for the same solid fraction when grain number is reduced, thereby gaining a higher 

equilibrium concentration and thus a larger Cmax. However, as fS > 0.5, Cmax for N = 36 

evolves into a slightly lower value than other cases owing to a shorter time taken to get 

the same fS (Fig. 2(b)). The slight difference in Cmax with various grain numbers can be 

seen more apparently in Fig. 4(c to f). At the same solid fraction (fS = 0.9), because of 

the lower undercooling for N = 36 (Fig. 2(b)), the solute concentration near the interface 

exhibits a smaller value than that for N = 324. To sum up, when the grain number is 

smaller (N = 36), the melt solidifies slower at a low solid fraction (fS < 0.5). In contrast, 

at the late solidification stage smaller number of grains solidifies a little faster because 

grains impinge with each other not so terribly as that for high numbers of grains, thus 

leading to a relatively lower CL
E and Cmax, as well as smaller SI. Obviously, curves of 

CL with fS is always below CL
E in Fig. 4(a and b). 

 

3.2 Effects of the cooling rate on the solute segregation 

Rapid solidification has been always considered as an efficient method to reduce 

segregation. Increasing the cooling rate not only shortens the solute transport time but 

also refines grains. To clarify the effect of cooling rate on microsegregation, here the 

solidification of Al-1 wt.% Cu alloy with different cooling rates are simulated and the 

results are shown in Fig. 5. Please notice that with a large cooling rate (e. g. ~1.0 K/s) 

the quantitative results in the present 2D PF simulations are not able to be ensured even 

though W0 has been reduced to 0.4 μm, in which the computational domain size and 

computing time will be augmented dramatically, making the large-scale quantitative PF 
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simulations extremely difficult. Therefore, the maximum cooling rate in our PF 

simulation is limited to Rc = 0.2 K/s, at which the results can still be converged with the 

given available W0. Based on the limited range of Rc, the following discussions about 

the effects of cooling rates on microsegregation are restricted to the slow solidification 

regime where the local equilibrium at the solid-liquid interface is satisfied. Fig. 5 shows 

that when grain number is small (N = 36), a higher cooling rate causes a slightly lower 

CL, whereas an opposite behavior is observed when grain number is large (N = 324). 

These opposite effects should be ascribed to the difference in grain morphology. For N 

= 36 (Fig. 5(g)), as the cooling rate increases the sidebranches have been well developed 

and SDAS is shortened. For N = 324 (Fig. 5(h)), the cooling rate has no obvious effect 

on grain morphology due to the grain impingement occurs very early, and the longer 

diffusion time at a lower cooling rate will thereby lead to a better solute homogenization 

in liquid. Regardless of the cooling rate or grain refinement, it can be drawn that higher 

undercooling required to reach the same fS results in higher CL (Fig. 4(c, d) and Fig. 

5(a, b, e, and f)). However, the effect of cooling rate on CL is not apparent overall in all 

these cases and they all evolve along close curves that fall in between the predictions 

by the Scheil equation and Lever rule. 

The effect of cooling rate on the dynamics evolution of Cmax and SI is shown in Fig. 

6. Increasing the cooling rate results in slightly larger Cmax when fS < 0.55 (Fig. 6(a, b)). 

This variation is in agreement with the fact that Cmax strongly depends on the 

undercooling of the melt so that it varies in the same manner as undercooling shown in 

Fig. 5(e, f). For fS > 0.55, no significant difference can be found except for the case 

with N = 324 and Rc = 0.01 K/s, which may be attributed to the well mixing solute in 

the liquid arising from the narrow spacing between grains and sufficient diffusion time. 

As the cooling rate increases, SI is reduced in the simulation with a small grain number 
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(N = 36 in Fig. 6(c)). Lower cooling rate causes a higher peak value of SI due to the 

increase in CL (Fig. 5(a)) and SDAS [16] (Fig. 5(g and h)). However, analogous to CL, 

the influence of cooling rate on SI shows an opposite trend for a large grain number (N 

= 324 in Fig. 6(d)) with almost globular crystal shape (Fig. 5(h)). SI at the late 

solidification stage will be enlarged with the cooling rate increasing for N = 324 (Fig. 

6(d)) and faster cooling causes a higher peak value. 
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Fig. 5. Effects of the cooling rate on CL (a and b), CS (c and d), the undercooling (e and 

f), and equiaxed dendritic microstructure (g and h) in the 2D PF simulations of Al-1 

wt.% Cu alloy with N = 36 (a, c, e, g1 to g4) and N = 324 (b, d, f, h1 to h4). fS in (g 

and h) is about 0.9, and the colors represent the crystal orientations. The cooling rate is 

0.01 K/s (g1, h1), 0.05 K/s (g2, h2), 0.1 K/s (g3, h3) and 0.2 K/s (g4, h4). 

 

These different evolution behaviors can be ascribed to that when the grain number 

is large enough to make the crystal shape almost globular, the sidebranches will not be 

well developed owing to the strong solute interaction between neighboring grains. In 

this case, the solute diffusion in liquid plays a dominant role to reduce SI, and the time 

for solute homogenization by diffusion at a slower cooling rate is longer, thus leading 

to a decline in SI. In contrast, with sufficient space to develop sidebranches, the grain 

morphology is the main factor affecting the segregation extent. A higher cooling rate 
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promotes the sidebranch formation, thus leading to a lower SI arising from smaller CL 

and SDAS [16]. Interestingly, similar to the effect of grain number, no matter what 

extent of the influence by the cooling rate exists during solidification, the curves of SI 

eventually drop down to a roughly same value when solidification nearly completes. 

This is because CS that occupies most of the computational domain dominates the 

calculation of SI at the late solidification stage. As solute should be kept conserved and 

meet the local equilibrium condition during polycrystalline solidification, CS 

approaches to C0 at the end of solidification for different conditions (Fig. 5(c, d)), 

leading to the coincidence feature of SI. 

 

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

M
a

x
im

u
m

 c
o
n

ce
n

tr
a
ti

o
n

 C
m

a
x
 (

w
t.

%
 C

u
)

Solid fraction f
S

 R
c
 = 0.01 K/s 

 R
c
 = 0.05 K/s 

 R
c
 =   0.1 K/s 

 R
c
 =   0.2 K/s 

(a)

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

(b)

M
a

x
im

u
m

 c
o
n

ce
n

tr
a
ti

o
n

 C
m

a
x
 (

w
t.

%
 C

u
)

Solid fraction f
S

 R
c
 = 0.01 K/s 

 R
c
 = 0.05 K/s 

 R
c
 =   0.1 K/s 

 R
c
 =   0.2 K/s 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(c)

S
o

lu
te

 s
eg

re
g
a

ti
o
n

 i
n

d
ex

 S
I

Solid fraction  f
S

 R
c
 = 0.01 K/s 

 R
c
 = 0.05 K/s 

 R
c
 =   0.1 K/s 

 R
c
 =   0.2 K/s 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(d)

S
o

lu
te

 s
eg

re
g
a

ti
o
n

 i
n

d
ex

 S
I

Solid fraction  f
S

 R
c
 = 0.01 K/s 

 R
c
 = 0.05 K/s 

 R
c
 =   0.1 K/s 

 R
c
 =   0.2 K/s 

 
Fig. 6. Effects of cooling rates on the solute segregation behavior in the 2D PF 

simulations of Al-1 wt.% Cu alloy. Cmax and SI at various cooling rates are shown in (a, 

b) and (c, d), respectively. The grain number in (a, c) is 36, while that in (b, d) is 324. 
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3.3 Effects of back diffusion on solute segregation 

The back diffusion is commonly considered as an important factor that influences 

the solute microsegregation behavior. However, for most of metallic alloys, the effect 

of back diffusion on microsegregation is negligible since the solute diffusion coefficient 

in solid is usually 3~4 orders of magnitude smaller than that in liquid (e. g. DS/DL ≈ 

10−3 for Al-Cu alloys). Here, to ascertain how back diffusion influences 

microsegregation, the 2D PF simulations at the cooling rate Rc = 0.1 K/s and grain 

number N = 36 are performed with various solid diffusion coefficients (by artificially 

changing DS), and the simulated results including CL, Cmax, and SI are shown in Fig. 7. 

No apparent differences in all these quantities are observed for fS < 0.6. However, as 

the solid fraction increases furtherly, it will take a relatively shorter time to reach the 

same fS with a larger DS (Fig. 7(a)), which causes a lower equilibrium concentration, 

CL
E. As Cmax is equal to CL

E approximately, Cmax will also be reduced with a larger DS 

(Fig. 7(b)), thus leading to a lower average solute concentration, CL (Fig. 

7(c)).Therefore, the solute segregation index, SI, will be lowered as DS increases (Fig. 

7(d)).  

The microsegregation behavior shown in Fig. 7 is still consistent with the 

experimental study by He et al. [16], who have found that decreasing solid diffusion 

coefficient would give rise to the increase in microsegregation. However, the 

differences between the curves with no back diffusion (DS = 0) and a small DS (10−3DL) 

is not pronounced, which means that the back diffusion is not a crucial factor that 

influences microsegregation for most of the metallic alloys with a DS several orders of 

magnitude smaller than DL. Furthermore, it is also worth noticing that CL in the 

simulation with DS/DL = 10−1 is very close to the prediction by the Lever rule, which 

demonstrated that the assumption of complete diffusion in both solid and liquid 
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employed in the Lever rule is well satisfied with such a large DS. 
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Fig. 7. Variation of the undercooling (a), Cmax (b), CL (c), and SI (b) against fS in the 2D 

PF simulations of Al-1 wt.% Cu alloy at Rc = 0.1 K/s and N = 36, with various DS. 

 

4. A new microsegregation model for binary alloys 

In terms of above simulations and analysis, it has been confirmed that for relatively 

slow solidification rather than rapid solidification, the grain morphology, cooling rate, 

and back diffusion (if not relatively high), have some slight influences on 

microsegregation but not the crucial factors to change CL and the final segregation for 
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substitutional alloys. The liquid concentration in simulations is between the predictions 

by the Scheil equation and Lever rule, which are two limiting cases for the real non-

equilibrium solidification. As already recognized, these two models fail to predict the 

solute redistribution at the late solidification stage when the solid fraction is close to 

unit, in particular for Scheil equation which gives a highly unrealistic value (k < 1). To 

overcome this drawback, it is necessary to develop a new model to gain a more accurate 

prediction for CL. According to the Lever rule, the solute concentration in liquid during 

binary alloys solidification is given by Eq. (1). As shown in Fig. 2(a), CL
Lever is in a 

good agreement with the PF simulations at the early solidification stage with fS < 0.55. 

However, at the late solidification stage as fS → 1, CL is much larger than CL
Lever and 

close to the maximum solute concentration in liquid, Cmax, owing to that the solute 

concentration in the very little residual liquid is nearly uniform. It should be noticed 

that although the Scheil equation describes the limiting case with considering non-

equilibrium effects during solidification, the predicted CL is unrealistic at a high solid 

fraction, and hence Cmax is a better choice of the upper limit for CL. Therefore, CL could 

be interpolated between CL
Lever and Cmax through a function of fS, as follows 

 ( ) ( )Lever

L S L S max1C w f C w f C= − +     (12) 

where w(fS) satisfies 

 
( )

( )

S S

S S

0,  0

1,  1

f w f

f w f

= =

= =
  (13) 

which reflects that CL changes gradually from the predicted value by the Lever rule (the 

lower limit) to Cmax (the upper limit). Even though the geometric shape of the solid-

liquid interface leads to Cmax deviating from CL
E (the equilibrium liquidus concentration 

at a given undercooling for a flat interface), Cmax still could be approximated by CL
E, as 

follows 
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 E

max L 0

T
C C C

m


 = −   (14) 

with m < 0 for k < 1. This approximation has been proved by Fig. 4(c, d) which shows 

that Cmax at the interdendritic region is very close to CL
E for both developed dendrites 

and globular grains. Please notice that Cmax is larger than C0/k when solidification nearly 

completes because the temperature reached at the end of solidification is lower than the 

solidus temperature. Eqs. (1) and (14) are substituted into Eq. (12), yielding 

 ( )
( )

( )0
L S S 0

S

1
1 1

C T
C w f w f C

k f m

 
= − + −     − −  

  (15) 

This relation of CL should be true for any binary alloys. But ΔT in Eq. (15) is also an 

unknown variable which makes the relationship between CL and fS implicit. According 

to the Lever rule and Scheil equation, the solid fraction could be expressed respectively 

as 

 
( )

Lever

S

0 1

T
f

k T k T


=

 + − 
  (16) 

 

1

1
Scheil

S

0

1
1 1

kT k
f

T k

−  −
= − + 

 
  (17) 

where ΔT0 = mC0(1 − 1/k) is the solidification range. Interestingly, as shown in Fig. 8, 

the simulated solid fraction could be expressed as the mean of fS
Scheil and fS

Lever, namely 

 ( )
( )( )

1

1
Lever Scheil

S S S

0 0

1 1
1 1

2 2 1

kT T
f f f

k T mC mC

−
 

   = + = + − −  −  −  
  

  (18) 
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Fig. 8. Comparison of fS predicted by two widely used microsegregation models (Lever 

rule and Scheil equation) and the 2D PF simulation of Al-1 wt.% Cu alloy at Rc = 0.1 

K/s and N = 36. 

 

Eq. (18) again arises from the fact that the Lever rule and the Scheil equation 

describe two limiting cases and the real non-equilibrium solidification is in between the 

predictions by these two simple models. Using Eq. (18), an explicit relationship 

between fS and ΔT can be obtained naturally. However, the exact solution of Eq. (18) 

is difficult to be found because it is a high-order power equation. One way to solve the 

complicated Eq. (18) is to simplify it into a simple equation that can be solved easily. 

Here three intermediate variables are defined as 

 

0

S

1

1

1

1

2 1

X
T

mC

p
k

q f




−


−

 −

  (19) 

where X and q would be considered as the rescaled undercooling and solid fraction, 

respectively. Then Eq. (18) could be transformed into 
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pq X pX p= − − +   (20) 

with 0 < X < 1 (for k < 1 and m < 0), X > 1 (for k > 1 and m > 0), and −1 ≤ q ≤ 1. It 

should be noticed that Eq. (20) is robust for different substitutional alloys with various 

k and m, because it is only a transformed from of Eq. (18) that depicts the relationship 

between the solid fraction and undercooling during solidification and no restriction of 

k and m is assumed in the derivation of Eq. (20). It is still quite difficult to solve Eq. 

(20) analytically, but as shown in Fig. 9, a linear approximation between q and X could 

be found for different k as 

 q aX b= +   (21) 

with a and b being two fitting parameters. It is easily to found that when X = 1 (ΔT = 

0), q = a + b = −1, thus leading to that b = −(a + 1). The values of the fitting parameter 

a for different k are given in Fig. 10 and Table. S1 in the Supplementary Materials. 

Since X and q are independent of k but Eq. (20) is equivalent to Eq. (21) which also 

relates to k, the parameter a must be a function of k. Indeed, from Fig. 10, a is 

proportional to 1/(k − 1) which reflects an inverse relationship to the solubility of solute 

in solid. A higher solubility means a smaller parameter a and thus a lower CL. With a 

small solute partition coefficient (k < 0.3), an approximate linear relationship between 

a and k is found. For a larger k, the fitting parameter a could be obtained directly from 

Fig. 10 and Table. S1, or by solving Eq. (20) numerically using Newton iteration 

method or other methods. Numerical practice shows that the Newton iteration method 

converges to the solution very fast after only a few iterations. 

Combining the simplified linear Eq. (21) and the fitted parameter a in Fig. 10 or 

Table. S1, an explicit relationship between CL and fS can be found readily. The variable 

X in Eq. (21) could be solved as 
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1

1
q

X
a

+
= +   (22) 

Replacing X in Eq. (19), the following equation could be obtained as 

 
S

0

S

2

2

f
T mC

a f
 =

+
  (23) 

Then CL in Eq. (15) could be expressed as a function of only three independent 

variables (C0, fS, and k) and an extra fitting parameter a (dependent on k), which is given 

as 

 
( )

( )
( )S

L 0 S

S S

1

1 1 2

w f a
C C w f

k f a f

 −
= + 

− − + 
  (24) 

CL predicted by Eq. (24) with w(fS) = fS is plotted in Fig. 11(a), and a much better 

agreement with the simulation has been achieved, compared with the Lever rule and 

Scheil equation (as well as the Clyne-Kurz model and the Won-Thomas model 

considering the back diffusion), particularly at the late solidification stage with a high 

solid fraction. Moreover, it could be seen from Fig. 11(b) that the choice of the 

interpolation function w(fS) has no apparent influence on CL predicted by Eq. (24), so 

it is reasonable to set a simple form of w(fS) = fS as shown in Fig. 11(a). Therefore, the 

final analytical model of CL is given as 

 
( )

S S
L 0

S S

1

1 1 2

f af
C C

k f a f

 −
= + 

− − + 
  (25) 

where the value of a is given in Fig. 10 and Table. S1 for k in the range of [0, 1) and 

(1, 10] which covers most binary alloy systems. As the concentration in solid can be 

obtained by CS = kCL, based on the definition of the solute segregation index, SI also 

can be calculated accordingly as 
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  (26) 

with fL the liquid fraction.  
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Fig. 9. Plotting of q against X with various solute partition coefficients. (a) k = 0.14 (for 

Al-Cu alloy); (b) k = 0.3; (c) k = 0.6; (d) k = 0.9; (e) k = 1.5; (f) k = 2.0.  
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The predicted SI by Eq. (26) is plotted in Fig. 12, varying in the same manner as 

that in the PF simulation and showing a much better agreement with simulation than 

the Lever rule and Scheil equation before SI reaches the peak value as fS < 0.73. 

Accordingly, using Eqs. (25) and (26) one can easily calculate the solid fraction at 

which the microsegregation is most severe for a given binary alloy. The proposed 

microsegregation model is easily applied to a different alloy. Once the solute partition 

coefficient is known, the parameter a could be obtained through Fig. 10 or Table. S1, 

and then CL could be calculated directly by Eq. (25). However, it needs to be 

emphasized that the proposed model in the present work is still limited into the 

solidification where the local equilibrium at the solid-liquid interface is satisfied, which 

is consistent with the Scheil equation. 
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Fig. 10. Plotting of the fitting parameter, a, against k in Eq. (21). (a) k < 1; (b) k > 1. 

The inset figure in (a) shows the values of parameter a with k < 0.3, which could be 

well fitted by a linear function. 
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Fig. 11. (a) Comparison between CL predicted by Eq. (24) and classical models, as 

well as the result in the 2D PF simulation with Rc = 0.1 K/s and N = 36. (b) CL predicted 

by Eq. (24) with different choice of w(fS). SDAS in the simulation with Rc = 0.1 K/s 

and N = 36 is about 50~100 μm at fS = 0.4~0.9, and for the other cases with N = 100~324, 

the average grain size is 150~500 μm. Therefore, the parameter α = 4DStf/λ
2 (as shown 

in Table 1), a constant related to SDAS or the grain size (in the case of globular grain 

with no developed sidebranches) in the Clyne-Kurz model is estimated to be 0.01~0.10. 

For the Won-Thomas model, the Fourier number is α+ = α + αC with αC = 0.1 [11]. 
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5. Conclusions 

Microsegregation behavior during polycrystalline equiaxed solidification of Al-Cu 

alloy is studied through quantitative phase-field simulations. With solidification 

proceeding, although more and more solute is rejected into melt and the average solute 

concentration in liquid increases gradually, the solute segregation index that reflects 

solute distribution homogeneity in both liquid and solid, evolves in an anomalous 

manner as first increasing to a certain peak value and then decreasing. Interestingly, the 

segregation index when liquid solidifies completely is almost the same for all cases, 

showing weak dependence on the grain refinement and cooling rate. This evolution 

behavior gives rise to the guidance of the best solid fraction for implementing rapid 

cooling or semisolid processing to reduce segregation. The grain size or morphology, 

and the cooling rate slightly influence the solute concentration in liquid, but they are 

not the crucial factors to change the microsegregation for the relatively slow 

solidification. For most of metallic alloys with substitutional solute elements, the effect 

of back diffusion on microsegregation is also not significant. 

Moreover, it is revealed through PF simulations that the average solute 

concentration in liquid is between the Lever rule prediction and the maximum 

concentration in liquid that strongly relies on the applied undercooling. PF simulations 

also disclose that the solid fraction could be well estimated as the average of predictions 

by the Lever rule and Scheil equation with appropriate solute back diffusion in solid. 

Based on these findings, a new microsegregation model is deduced to accurately predict 

the solute concentration, particularly at the late solidification stage with a high solid 

fraction. The model is also as simple and easy-to-use as the Lever rule and Scheil 

equation, only relating to the sample nominal composition, solid fraction, partition 

coefficient, and a fitting parameter (also relying on the partition coefficient). The 
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segregation behavior and analytical model presented in this work would provide a new 

insight into the control of solute segregation in alloys during relatively slow 

solidification, and help to more accurately calculate phases and transformation kinetics 

of substitutional alloys by the CALPHAD method, as well as being in favor of 

simulations of macrosegregation in castings and ingots. For rapid solidification with 

solute trapping at the interface, same as the Lever rule or Scheil equation, the proposed 

model fails to predict the liquid concentration. Further improvement should be 

considered in the present model for the metallic alloys with interstitial solute elements 

which have large solute diffusion coefficients in solid. In these alloys, such as carbon 

steels, the back diffusion plays an important role in microsegregation. 
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