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Abstract: We introduce a concept of autoregression depth that provides a ro-
bust ordering of autoregression parameter values according to their adequacy
with respect to the underlying process. We dérivé a uniform strong consistency
resuit for the corresponding sample autoregressive depth. which allows us to
prove that the sample deepest parameter value is strongly consistent for its
population version. Our depth concept finds applications in both point estima-
tion and hypothesis testing: regarding point estimation, the deepest parameter
value provides a robust estimator of the parameter of autoregressive processes,
which we show to be strongly consistent by complementing the aforementioned
consistency results with a Fisher-consistency resuit. Regarding hypothesis test-
ing, the depth of the zéro parameter value yields a natural test statistic to test
for randomness. We investigate the AR(1) case in some details. Our results are
illustrated with Monte Carlo exercises.

1. Introduction

Statistical depth is a device that allows measuring centrality of a d-vector 2 with
respect to a probability measure P over Rd. Many such depths are available in
the literature; see [13]. Arguably, the most famous depth is the halfspace depth
introduced in [10], that is defined as

HD{z, P) := inf P[u\Z - z) > 0],
u£Sd-x

where Z dénotés a random d-vector with distribution P and Sd~l := {z G Rd :

||2||2 = z'z = 1} is the unit sphere of Rd. Like any other depth, halfspace depth
provides a center-outward ordering of the points in Rd: if HD(z\,P) > HD(z2,P),
then Z\ is more central than 22 with respect to P. This ordering is with respect
to the central région Mp := {2 E Rd : HD(z,P) = supyGKd HD (y, P)}, which is
non-empty (see, e.g., [9]). If a unique center is needed, then it is traditional to
use the Tukey médian, that is defined as the barycentre of Mp and extends to the
multivariate case the univariate concept of médian. Like any other halfspace depth
région Ra(P) := {2 G : HD(z,P) > a], the most central région is a convex
subset of R , so that the Tukey médian has itself maximal depth, hence constitutes
a valid représentative of Mp.

AMS 2000 subject classifications: Primary 62M10; secondary 62G20
Keywords and phrases: Autoregression processes, Runs tests, Statistical depth, Sign proce-

dures. Tests of randomness



58

Sample versions of halfspace depth and Tukey médian are readily obtained by
plugging Pm the empirical probability measure associated with a sample of observa-
fions Zi,..., Zn, into the définitions above. [9] established the upper semicontinuity
of the halfspace depth fonction and the compactness of the depth régions Ra{P),
a > 0. Jointly with the uniform strong consistency of the sample halfspace depth
fonction ([3]), this allows showing that the sample Tukey médian is strongly consis-
tent for its population counterpart.

Depth notions hâve been extended to parametric settings other than location.
[6] extended statistical depth to virtually any parametric setting by defining the
tangent depth D{9) P) of a d-dimensional parameter 9 with respect to P G V, for V
a parametric set of distributions with index set 0. This depth notion quantifies the
appropriateness of 9 (as a parameter for P) by considering

D(-,P) : 0->M+ : 6^D{9,P)= inf P[u'VeFd{Z)> 0],
uesd~l

where Fq(z) measures (lack of) fit of the parameter value 9 for observation z. For
example, if 9 is a location parameter, then setting Fq(z) — h(\\z — 9\\), with h : 1R+ —>
M+ smooth and monotone increasing, provides the halfspace depth HD{9) P). Simi-
larly, in the régression context where z = (x, y) involves a d-dimensional covariate x
and a scalar response y, taking Fq(z) = h(\y — 9'x|), with h as above, yields the
concept of régression depth from [8]. Tangent depth therefore provides a turnkey
notion of depth in any parametric space (by using the generic choice of measure of
fit Fq(z) — — logLq(z), for Lq{z) the likelihood of z under parameter value 9).

Few general results about tangent depth are available, however, as the behaviour
of the obtained depth dépends crucially on the geometry of the parameter space
and on the chosen measure of fit. Consequently, the properties of each paramet-
rie depth fonction need to be explored on a case by case basis. [7], for example,
studied (a modification of) the tangent depth for shape parameters in multivariate
distributions.

The présent contribution introduces and studies a concept of autoregression depth.
The concept, which is of a tangent depth nature, provides means for comparing the
relevance of two such parameter values and, in the context of autoregressive pro-

cesses, a robust estimate of the autoregressive parameter. The proposed autoregres-
sion depth also allows conducting hypothesis testing, in particular in the framework
of testing for randomness, where it provides (generalized) runs tests of randomness.

The outline of the paper is as follows. Section 2 defines the concept and es-
tablishes its Fisher-consistency in autoregressive models. Section 3 introduces the
corresponding sample depth fonction and proves its uniform strong consistency. Sec-
tion 4 further explores the concept in the particular case of AR(1) models, provides
Bahadur représentation results for the depth-based estimator of the parameter and
a test for randomness in that setting. Finally, some final comments close the paper.
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2. Autoregression depth

Let {Yt : t G Z} be an autoregressive process of order at most p, satisfying
p

(2.1) Yt — cf)jYt-j + Et
3=1

for any integer t, where the et s are mutually independent and admit the common

density /. Here, we consider any parameter value 0 = (0î, • • •, 0P) G W, hence also
those providing non-causal autoregressive processes or autoregressive processes with
an order that is strictly smaller than p. Throughout, the density / will be assumed
to belong to the collection P of densities having a unique médian at zéro (Le., such
that the corresponding cumulative distribution F takes value 1/2 at zéro only). Our
goal in this section is to introduce a concept of autoregression depth that will allow
us to measure how well an autoregressive model of this form lits a given stationary
process.

To this end, consider a stationary process {Zt : t G Z} on the measure space

(Q, P, P), which may or may not be an autoregressive process. For any 0 G WJ. we
deüne the autoregressive depth of 0 with respect to P as

ARDp(<t>,P):= inf P[u'V^F(Zt, Zt_i, • • ■, > 0],
uESP-1

where F(Zt, Zt~1,..., Zt-P, à) = h(\Zt - Y7j=1 |) involves an arbitrary func-
tion h : K+ —> 1R+ that is différentiable, monotone strictly increasing and is such
that h(0) = 0. A direct computation shows that, irrespective of the function h
adopted,

AKD„(<j>,P)= inf P[et{<t>)u'Zt-1 > 0],
uESP-1

where we let e4(0) := Zt - Y?j=i and Zt-\ := (Zt-1,. • ■, Zt-P)'. The larger
the autoregressive depth of 0 with respect to P, the better the corresponding au-

toregressive process fits the underlying stationary process.

Autoregression depth is Fisher-consistent in the sense that, if the underlying pro-
cess {Zt : t G Z} is a stationary autoregressive process of order at most p, with
parameter 0o = (0oi, • • •, 0Op) say, then the autoregression depth is uniquely maxi-
mized at 0 = 0o- Fisher-consistency thus also holds under over-identihcation, that
is, when the order, q say, of the underlying autoregressive process is smaller than p.
More precisely, we hâve the following resuit.
Theorem 2.1. Let {Zt : t G Z} be a causal (hence, stationary) autoregressive
process of order q with autoregressive parameter 0o = (0oi, • • •, 0oq) and innovation
density f £ F. Then, letting 0o = (0q, 0,..., 0)' G W,

AFtDp(<t>,P)<ARDp(<t>0,P) = \
for any 0 G and the equality holds if and only z/0 = 0q.
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The proof requires the following preliminary resuit.
Lemma 2.1. Let {Zt : t G Z} be a causal autoregressive process of order q with
autoregressive parameter </>o = and innovation density f G T. Then,
P[u'Zt~i = 0] = 0 for any u eW \ {0}.

Proof. Fix u £W \ {0} and let r := min{j = 1,... ,p : Uj ± 0}. Then P[u'Zt-\ =
0] = P[Zt-r = — ]Cj=r+i vjZt-j}-, where we let Vj — Uj/ur and where a sum over an
empty collection of indices is defined as zéro. Conditioning with respect to Tt-r-i ■—

cr(Zt-r-i,Zt-r-2, ■ • •) readily yields

P[u Zt-l — 0] = P[et-r = ~Y^j=r+lVjZt-j ~ jZt-r—j]
= E[P[et-r = — Yfjj-r+lvj^t-j ~ Zt-r-j\J~t-r-l]\ — 0,

since the distribution of £t-r conditional on Tt-r-1, which coincides with the un-
conditional distribution of St-r, admits a density. □

We can now prove Theorem 2.1.

Proof. Lemma 2.1 ensures that P[u'Zt~\ = 0] = 0 for any u G <SP_1. Therefore,
causality implies that

P[et(<Mv!Zt-i > 0] = Pfo{<k) < 0]P[u'2(_i < 0] + P[et(4>o) > 0}P[u'Zt.1 > 0]

= \PtfZt-1 < 0] + \p{u'Zt. 1 > 0] = i
for any u G <SP_1, so that ARDp((j)o, P) — 1/2.

Now, fix cj) E W \ {(J)o}. Pick then u0 := (</> - </>o)/||</> - </>o|| =: (</> - <^o)/A0
and write £t(4>) — £t{<j>o) + (<^o — f*)'Zt-\ = £t(<fo) ~ ^ou^Zt-i. We consider three
situations.

(i) In the case P[u'0Zt-i < 0] > 0 and P[u'0Zt-i > 0] > 0, it holds

PletWu^Zt-1 > 0] = P[(€t(<h) ~ > 0]

= P[(e*(0o) - A0Wo2t_i)wo2t_i > 0|uo^_! < 0]P[uq^-i < 0]

+P[(et(0o) - A0Wo2t_i)tio2t_i > 0|uq^_i > 0]P[uoZf_i > 0]

= - A0Uo2t_i < 0\u'0Zt-i < 0\P[u'0Zt-i < 0]

(2.2) +P[et(<f>o) - Xo^Zt-i > 0|«i2t-i > 0]PK2W > 0],
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i

Note that P[e*(0o) — Àqu^-i < 0|wq^_i < 0]

P[et(<M ~ ^ou'0Zt-i < 0\u'QZt-i = s}fuoZt~1{s)dsP[u'0Zt-i < 0]

=

pr / J , nj / Pfa < Xos\u'0Zt-l = s]f<Zt-1(s)ds < |P[u0Zt-i < Oj J_oo 2

and, similarly, P[et(0o) - Aqu^-i > 0|«o-2t-i > 0]
1 /*oo

=

p[ , - / Ph(<Ao) - AouJ-Zt-i > 0|u^-i = rfsP[M0zt_i > Oj 70
1 r00 l

=

^T7-5 TTIT / PN ^ = s\fu'°Zt-1{s)ds < -,"K^-1 > oj Jo 2

so that (2.2) yields

ARDp(<t>, P) < P{et(<t>)u'0Zt^ > Oj < ipK-Z,_i > 0] + < 0] = h
(ii) In the case P^^-i < 0] > 0 and P[u'0Zt-i > 0] = 0, Lemma 2.1 implies

that P[u'QZt-1 < 0] = 1, so that

ARDp(<j>, P) < P[£t{4>KZt-i > 0] = P[(£,(ÿ0) - Aoui^-iJuJ^-i > 0]
= P[et(0o) - Xou'0Zt-i < 0]

P[et Aos < 0|«j2t-i = s]/“«z,_1(s) ds

(iii) In the case P[uoZ^_i < 0] — 0 and P[u^Zt-1 > 0] > 0, Lemma 2.1 im-
plies that P[u'0Zt-i > 0] = 1, and the same argument as in case (ii) shows
that ARDp((j),P) < 1/2.

Thus, ARDP(4i, P) < 1/2 for any 0 G Mp \ {0o}, which establishes the resuit. □
We finish this section by showing that the function 0 h-» APDp(0, P) is upper

semicontinuous. To do so, first note that, for any fixed n, P P[gt(0)u,Zt_i > 0]
is upper semicontinuous for weak convergence. As a conséquence, by continuity of
the function 0 £t(4>)u'Zt-1, the mapping 0 !->• P[£t(0)id.2t_i > 0] is also upper
semicontinuous at each P. The resuit follows since 0 *-> APDp(0, P) is then the
infimum of a collection of upper semicontinuous functions.
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3. Sample autoregression depth

If an observed sériés Z\,..., Zn is available, then the sample autoregressive depth
of 0(G W) with respect to this sériés can be defined as

1 n
AEDp(4>,Pn)-.= inf Y l[et(<l>)u'Zt^ > 0],

U&SP-1 n — p 1t=p+1

still with et{<f>) = Zt - Y!j=i<t>jZt-j and Zt-\ = (Zt-u • • •, Zt-P)'. Under mild
ergodicity conditions on the underlying process, this sample autoregression depth
is a strongly consistent estimator of its population analog. Recall that a station-
ary process Xt on the measure space (fl, T, P) is ergodic if, denoting Zsj :=
(Zs, Zs+i,..., Zt)', for any k > l and any A,Bd Pk (the usual product sigma-
field on flfc),

- n— l

lira - V P[Zltk e A, Zt+u+k 6 B\ = P[Zhk 6 A}P[Zuk 6 B}.
n—>oo n L—'

t=0

The condition above (see [l] for more details) is trivially verified for autoregressive
processes. We then hâve the following resuit.

Theorem 3.1. Let {Zt : t G Z} be a stationary ergodic process on the measure
space (fl, J7, P). Dénoté as ABDp((f>, Pn) the sample autoregression depth of 0(g W)
associated with a realization of length n from this process. Then,

sup \ARDp((j), Pn) — ARDP(4>, P)| —> 0
0GRP

almost surely as n diverges to infinity.

Proof. Consider the stationary process {Vt := Wt <Z> Wt : t G Z}, where we let
Wt := (.Zt, Zt-1,..., Zt-p)'. With this notation,

1 A
ARDp(<t>,Pn)= inf V I[y,e%]

t=p+l

and

ARDp(<j>,P) = inf PKefl*.],

where H^u belongs to the collection P of ail closed halfspaces of M^+1^2. Now,
fix cf) G W and e > 0. If APDp((f), Pn) < ARDp{(j), P), then there exists u£ G SP_1
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such that (n - p) 1 Ya=p+i tfYt £ #<£,uj - -4RDp(0, Pn) + e. Therefore,
- ARDp(<j>y P)\î[AEDp(<f), Pn) < ARDr(4>,P)]

< sup
H£U

Since this holds for any e > 0, we obtain

1 n
< P [K e H^'} - — ^ I[K s H+,u,} + eU P

t=p+1

1 n
P[Vi s //] V vyt e h]

n — n L'n — p
t—p+1

+ £.

(3.1)

!ARDp^,Pn) - ABDp^,P)\I[ARDp(^Pn) < ARDp(^P)]

< sup
Heu

m e H]
1

n- p 53 m e h]
t—p+1

Working similarly, the inequality still holds after replacing I[AKDp{(j), Pn) < ARDp(cj), P)}
with I[ARDp{(j)) Pn) > ARDp((j), P)\ in (3.1). Adding up both inequalities then yields

\ARDp(<t>,Pn)-ARDp(4>,P)\ < 2 sup
Heu

m e H)
1

n — p 53 l[Vt e H]
t=p+1

hence

1 n
(3.2) sup \ARDp(^Pn)-ARDp(4>,P)\ < 2 sup P[Vt e H\ V l\Vt e H\ ,

<t>eRp Heu n~pt=^ 1

Since H is a Vapnik-Chervonenkis class (see, e.g., page 152 of [11]), the resuit follows
directly from the Glivenko-Cantelli results for ergodic sequences; see [1]. □

The following resuit, that shows that the sample deepest parameter value is
strongly consistent for its population analog, is then a rather direct corollary.
Theorem 3.2. Let {Zt : t G Z} be a stationary ergodic process on the measure
space (Q,P:P). Assume that ARDp((f),P) admits a unique maximizer f>. Dénoté as
ARDp((/):Pn) the sample autoregression depth off>(e Rp) associated with a realization
of length n from this process and let 4>n be an arbitrary maximizer of ÆDp((j), Pn).
Then, cj)n -U (f) almost surely as n diverges to infinity.

Proof. In view of the upper semicontinuity of <f i-> ARDp(çf P) and of the uniform
consistency resuit in Theorem 3.1, the resuit readily follows from Theorem 2.12(ii)
and Lemma 14.3 in Kosorok (2008). □

We close this section with the following illustration of Theorem 3.2 in the frame-
work of AR(p) models (note that Theorem 2.1 guarantees that the unique maxi-
mization assumption in Theorem 3.2 is always met when the underlying process is



64

AR(p), so that Theorem 3.2 applies for such processes). We generated n = 1,000
observations from four AR processes after an initial burn-in period of 2,000 obser-
vations starting from Z-\ — Zq = 0. The autoregression parameter (j) was taken as
either (f) = cj)a — (0,0)' or <f> = (j)b = (0.25,—0.375)', while the innovation density
was taken either standard Gaussian or Cauchy. Figure 1 displays the sample depth
values AJRDp((/): Pn) for each of the four resulting sériés. Clearly, the proximity be-
tween the true parameter value <fi and estimated parameter value <fin supports the
consistency resuit of Theorem 3.2 in ail four cases.

4. The AR(1) particular case

We assume, as in the previous section, that we observe Zi,..., Zn, but we restrict
now to autoregressive depth of order p — 1. For any 0, we then hâve

1 / n n

(4.1) ABDi(<f>, Pn) := —min I > 0],£lI[e,($Z,_i < 0]
' t=2 t=2

which, since Zt~i is different from zéro with probability one (Lemma 2.1), almost
surely rewrites

1 f n n \
ABDi(4>, Pn) = —— min £ l[Zt/Zt-i > <t>], £ .n ^ t=2 t=2 '

The sample deepest parameter (j) is then a médian of Z<i/Z\,..., Zn/Zn-\. If a unique
représentative is needed, then, in the same spirit as what is done for the Tukey me-

dian, the barycentre, </>n say, of the set of médians can be used. If the underlying
process is an AR(1) process with parameter (f>, then (f)n is a natural estimator for 0,
which we expect to hâve nice robustness properties. This is confîrmed by the follow-
ing resuit (for a proof, we refer to [2], where this estimator was first considered).
Theorem 4.1. Dénoté as T the collection of densities T that are bounded, are

positive at 0, satisfy a Lipschitz condition at 0, and admit finite moments of order 1+
5 for some (5 > 0. Assume that {Zt : t G Z} is an autoregressive process of order p — 1
with autoregressive parameter <f G (—1,1) and an innovation density f G T. Then,
as n —y oo,

1 n
(4.2) Vn(0n -4>) = oT/oWn 7 S Sign(e*)Sign(Z*_i) + oP(l),2f(0)E[\Zt\\pn ^
where Sign(x) stands for the sign of x, so that \/n{<fn — (f>) is asymptotically normal
with mean zéro and variance l/{4/2(0)E2[|^|]}.

As usual, the Bahadur représentation resuit in (4.2) readily implies that the in-
fluence function of (pn at (zt~i, zf)' is given by

■2/(0)El|Z,|] Sign(Z| ~
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Figure 1. Heat plots of the sample depth values ARD2(4>, Pn) for finite realizations of length n =

1,000 from four AR processes. These processes involve parameter values <j) = <j>a = (0,0)7 (top) or
(f> = (f>b = (0.25, — 0.375)' (bottom), and an innovation density that is standard Gaussian (left) or
Cauchy (right). AU panels display the true parameter value <f> (white disk) and the sample deepest
parameter value <fn (black diamond); see Section 3 for details.

The boundedness of this influence function in both zt-1 and zt confirms the robust-
ness of the depth-based estimator <pn. For the sake of comparison, recall that the
classical least-squares estimator (j)]f and the LAD estimator <^AD, which are defined
as

n n

4>nS := argmin - <f>Zt-1)2 and := argmin V |Zt - <j>Zt-1|.
</>e(-i,i) t—2 </>e(-i,i) t=2
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If E[ëf] = 0 and E[£2] < oo, then the least-squares estimator satisfies

l _ n
(4-3) -</>) = ^Tr ]C £tZt~l + 0p(!)

whereas, if / G J7, E[e<] = 0 and E[|e|2+<5] < oo for some ô > 0, then the LAD
estimator satisfies

1-2 n

(4.4) V^{i>nAD -4>) = E7rnwr 2i r S Sign(et)Zt_i + oP( 1),2/(0)E[^JVn ^
so that the corresponding influence functions are unbounded both in zt-1 and z*
for and unbounded in Zt for <^AD (we refer to [2] for proofs of the Bahadur
représentation results in (4.3)-(4.4)).

While this settles the case for robustness, efficiency is of course also of primary in-
terest. Obviously, (4.3)-(4.4) ensures that, under the assmnptions stated there, (f)]f
is asymptotically normal with mean zéro and variance 1 — </>2, while <^AD is asymp-
totically normal with mean zéro and variance (1 — </>2)/(4/2(0)E[£2]). Figure 2 plots
the resulting MSEs for each of the three estimators considered, more precisely the
limiting values of E[{y/n(<f) — 0)}2], for (f) — 0.6 and for t innovations with v degrees
of freedom, v — 1, E2,..., 12. The figure also reports Monte Carlo estimâtes of the
same MSEs evaluated from M = 100,000 independent samples of length n = 400
(obtained after an initial burn-in period of 1,000 observations starting from Zq — 0).
The same figure further provides the empirical MSEs obtained when 20 observations,
chosen randomly among the n = 400 observations used in each réplication, are mul-
tiplied by a factor 10. Clearly, without contamination, the depth-based estimator
competes well with the LS and LAD ones for heavy tails only, but it outperforms
its competitors with contamination.

Turning to hypothesis testing, depth-based tests can be defined for any null hy-
pothesis of the form Ho : (f) = 4>o, where </>o G (—1,1) is fixed. Typically, such a test
will reject the null hypothesis when the value of ARDp(<j)o, Pn) (see (4.1)) is too small,
since this will indicate that the AR(1) with parameter <f>o does not provide a suitable
fit for the observed sériés. In the important particular case of testing for randomness
(that is obtained with </>o = 0), the test statistic rewrites (with probability one)

1 f n n \
ARDp(<f),Pn) = ——mini ^l[ZtZt-i > 0],^I[ZtZ*_i < 0]71 1

2 t=2 '

= —-min(n - R^Rn ~ l),
n — 1

where Rn is the number of runs in the sériés Sign(Zi),..., Sign(Zn), where a run is a
maximal sequence of consecutive equal signs. Consequently, the depth-based test of
randomness coincides, in the AR(1) case, with the classical runs test of randomness;
see [5] and the references therein.
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Without contamination With contamination

FIGURE 2. (Left:) For the depth-based, LS and LAD estimators, plots of the corresponding limiting
values ofE[{y/n((f> — 4>)}2] (dashed Unes) when the underlying AR(1) process is based on (j) = 0.6
and t innovations with u = 1.1.2,..., 12 degrees of freedom. Finite-sample versions of these MSEs,
obtained from M = 100,000 independent realizations of length n = 400, are also provided (solid
Unes); see Section f for details. (Right:) The corresponding finite-sample MSEs when obtained from
contaminated samples where 20 randomly selected observations out of the f00 used in each réplication
are multiplied by a factor 10.

I
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5. Final comments

In this paper, we introduced a concept of autoregression depth and derived various
consistency results. A Bahadur représentation for the estimator 0n of the deepest
parameter value was also provided in the AR(1) case. In the general AR(p) case, it
seems much more challenging to investigate the asymptotic behavior of this estima-
tor. While we considered depth-based tests for randomness in the AR(1) case only,
it is clear how to define them in the general AR(p) case, too: such tests would sim-
ply reject the null hypothesis of randomness for small values of Tn = ARDp(01 Pn).
The resulting tests are of a generalized runs nature; see, e.g., [4] or [12] (the latter
providing simplicial-based runs tests in the case p = 2). Exact rejection rules, how-
ever, are beyond the scope of the présent paper since, contrary to the case p = 1,
T is not distribution-free under the null hypothesis for p > 2, even with symmetric
innovation densities.
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