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Abstract

Due to structural heterogeneities within the tissue, the myocardium displays
an orthotropic material behavior. However, the link between the microstruc-
ture and the macroscopic mechanical properties is still not fully established. In
particular, if it is admitted that the cardiomyocyte organization induces a trans-
versely isotropic symmetry, the relative role in the observed orthotropic symme-
try of cardiomyocyte orientation variation and perimysium collagen “sheetlet”
structure, two mechanisms occurring at different scales, is still a matter of de-
bate. In order to shed light on this question, we designed a multiscale model of
the myocardium, bridging the cell, sheetlet and tissue scales. More precisely, we
compared the macroscopic anisotropy obtained by homogenization of different
mesostructures consisting in cardiomyocytes and extracellular collageneous lay-
ers, also taking into account the variation of cardiomyocyte and sheetlet orienta-
tions on the macroscale, to available experimental data. This study confirms the
importance of sheetlets layers in assuring the tissue’s anisotropic response, as
cardiomyocytes-only mesostructures cannot reproduce the observed anisotropy.
Moreover, our model shows the existence of a size effect in the myocardial tissue
shear properties, which will require further experimental analysis.
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1 Introduction

The cardiac tissue has a highly complex multiscale architecture that can be de-
composed into three main scales: the cell scale (10-100 um), the sheetlet scale
(100-1000 pm), and the tissue scale (1-10 mm) [Hunter, 1975]. At the cellu-
lar scale, the cardiomyocytes are roughly cylindrical, measuring 100-150 ym by
10-20 pym, surrounded by a thin layer of connective tissue, called endomysium.
The cardiomyocytes are locally parallel, arranged in bundles or fascicles of 5
to 10 cells, forming structures of 100-200 um, wrapped by a perimysial layer of
extracellular collagen called “sheetlets”. At the tissue scale, the cardiomyocyte
orientation has been widely studied: the myocardial fiber orientation exhibits a
helical geometry, characterized by the Helical Angle (HA), that transitions con-
tinuously and smoothly through the cardiac wall from about +60° close to the
endocardium to about —60° at the epicardium in the human heart [Streeter and
Bassett, 1966; Streeter et al., 1969]. However, it is still unclear how the sheetlets
are organized through the myocardial thickness, and along its wall: while some
studies support the predominance of a single laminar sheetlet population, with
an orientation that evolves linearly from about —90° near the endocardium to
about +90° near the epicardium [LeGrice et al., 1995; Ferreira et al., 2014;
Nielles-Vallespin et al., 2017], other studies propose the coexistence of two local
myocardial sheet populations [Kung et al., 2011; Kilner et al., 2015].

Knowledge about the passive mechanical properties of the cardiac tissue has
evolved over time. Various constitutive models of the passive properties of the
myocardium have been proposed in the past few decades, which can be split
into two categories. The first one includes macroscopic models that comprise
(i) phenomenological models based on general observations of the material sym-
metries and orientations in the tissue [Demiray, 1976; Guccione et al., 1991]
and (ii) structure-based models that take into account quantitative information
about each constituent in the myocardium [Horowitz et al., 1988; Holzapfel and
Ogden, 2009]. The second one consists in microstructure-based Representa-
tive Volume Element (RVE) models, where the RVE include a selection of mi-
crostructural heterogeneities [McEvoy et al., 2018]. Phenomenological models of
the myocardium are the most common in the literature. Several of the simplest
models are based on isotropic elasticity [Demiray, 1976]. Early invariant-based
macroscopic models suppose that the tissue is transversely isotropic, with one
preferred direction in the myocardium, the fiber orientation [Humphrey and
Yin, 1987]. Other models have been proposed over the years; however, it be-
came more and more clear that the passive behavior could not be fully described
by a transversely isotropic model. Thus, macroscopic orthotropic models were
also developed [Guccione et al., 1991; Costa et al., 2001].

One breakthrough experiment performed by [Dokos et al., 2002] implemented
shear tests to study the anisotropic response of the myocardium. Simple shear
was applied to cubic myocardium samples extracted from porcine hearts with
respect to the three principal material axes (the fiber axis (F), the sheetlet
axis (S) and the normal to the fiber-sheetlet plane (N)) in six shear modes. It
resulted in six different forces, highlighting the anisotropy in the tissue. The



deformation that produced an extension of the cardiac fibers (FS, FN) resulted
in the highest resistance to shear, and the ones producing an extension in the
normal to sheetlet direction (NF, NS) resulted in the lowest resistance to shear.
Similar results were later obtained for human hearts [Sommer et al., 2015]. More
orthotropic models were thus developed [Schmid et al., 2006, 2008]. More re-
cently, [Holzapfel and Ogden, 2009] proposed a model considering the fiber (f),
the sheetlet (s) and the sheet-normal (n) directions in the tissue. Although these
models give a fairly good description of the macroscopic mechanical properties of
the cardiac tissue, they lack explicit microstructural information, hence cannot
fully account for microstructural features and microscopic deformation mecha-
nisms. In order to do so, models containing quantitative information about the
composition and microstructure of the myocardium should be developed.

Structure-based models take into account detailed structural information
about the tissue constituents, separating their mechanical contributions, and
accounting for the interactions between them [Horowitz et al., 1988; Humphrey
and Yin, 1989]. Relatively recent structure-based models have been developed
[Avazmohammadi et al., 2017], using histological images to quantify the orien-
tation distributions and volume fraction of the cardiomyocytes, collagen fibers
and amorphous ground matrix. The energy contributions take into account
the orientation distribution of each of the constituents. Although promising,
structure-based models are complex, as they contain a large number of pa-
rameters that require microstructural parameters difficult to obtain. Moreover,
existing models focus on the microstructure at the cellular scale, and do not
straightforwardly represent the sheetlet scale.

Micromechanical modeling consists in identifying an heterogeneous RVE and
specifying proper mechanical properties for each constituents in order to study
local deformation mechanisms and global response. This allows notably to gen-
erate the resulting properties of the material at the upper spatial scale. Mi-
cromechanical models for the cardiac tissue are sparse, probably due to the
complexity of the tissue organization, and to the difficulty in identifying a suit-
able RVE. The work of [McEvoy et al., 2018] proposed a microstructural model
of the myocardium, generating an RVE based on histological studies, contain-
ing layers of parallel cardiomyocytes, surrounded by a layer of endomysium
(ECM 1) comprising vasculature. The layers are separated by perimysial colla-
gen (ECM 2). Collagen and cardiomyocytes are represented by a compressible
hyperelastic model [Nolan et al., 2014] that takes into account the collagen fiber
dispersion. The presence of an underlying isotropic material is also supposed,
and is described by a neo-hookean model. In order to investigate the compress-
ibility of the myocardium, the RVE is subjected to confined compression and
shows that at an applied strain of 5%, the vasculature volume decreases by 6.2%,
ECM 1 by 6.98%, ECM 2 by 6.2% and the cardiomyocytes by 0.5%. Moreover,
under such loading, all the fibers shorten, and the stress is governed by the
isotropic elastic behavior of the cardiomyocytes and extracellular matrix. Six
modes of shear deformation are then applied to the RVE. The obtained shear
behavior corresponds to the ones obtained previously by [Dokos et al., 2002;
Sommer et al., 2015], with both the shear stiffening and the correct order in the



stresses (FS>FN>SF>SN>NF2~NS). The non-linear responses to shear in NS
and NF are shown to be dependent on the endomysial and perimysial collagen
dispersion. The shear responses in SN and SF are also due to the perimysial
fibers aligned with the sheetlet direction, and the high stresses observed in FS
and FN are caused by the cardiomyocytes, with a higher stress for F'S due to the
dispersion of the perimysial extracellular matrix. To our knowledge, this is the
only micromechanical model that takes into account the microstructural infor-
mation of the cardiac tissue, and reproduces its macroscopic anisotropy; how-
ever, it does not pinpoint the structural component that induces this anisotropy
at the macroscale.

The anisotropic response of the cardiac tissue arises from two structural
arrangements in the tissue: the transmural variation of the cardiomyocyte ori-
entation (typically £60° in humans), and the configuration of the perimysial
extracellular matrix surrounding the cardiomyocyte bundles in sheetlets. How-
ever, no study has been conducted yet to assess to what extent each of these
structures, which occur at different scales, contribute to the observed macro-
scopic anisotropy. To address this question, experimental approaches require
to manipulate very small samples, and have not been performed up to now to
our best knowledge. Thus, in this study, we propose a multiscale model (see
Section 2.1) of the myocardium bridging the cell, sheetlet and tissue scales, and
aiming at determining the structural origin of the observed macroscale mechan-
ical anisotropy by [Dokos et al., 2002] (see Section 2.2). Various mesostruc-
tures are considered (see Section 2.1.1) and homogenized (see Section 2.1.3),
the resulting behavior being used in a macroscopic model of the experimental
setup (see Section 2.2.2). An optimization procedure (see Section 2.3) allows to
identify mesoscopic parameters minimizing the discrepancy between the macro-
scopic anisotropies predicted by the model and observed experimentally, thus
permitting to determine which mesostructure is potentially compatible with the
experimental data and which is not.

2 DMaterials and methods

A global schematic of our analysis is shown in Figure 1. To accurately represent
the cardiac hierarchical architecture, we took advantage of the tissue scale sep-
aration: at the mesoscopic scale (100-500 pm), we explored structures made of
cardiac cells and extracellular matrix with homogeneous orientation of the fibers
(see Section 2.1.1). Given the mesostructure, and a set of material parameters
p verifying thermodynamic bounds (see Section 2.1.2), periodic homogenization
was performed (see Section 2.1.3), generating the homogenized material prop-

erties of the resulting medium <g> These properties were then used at the

macroscale (>1 mm), where we took into account the change in orientation of
the mesostructure (see Section), and the experimental tests were simulated (see
Section 2.2.2). The obtained numerical results were compared to the experi-
mental ones using a cost function to optimize the microstructural parameters



(see Section 2.3). We will now detail each step of the analysis.

Optimized
parameters
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Convergence
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outside
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CMA-ES (stochastic method)
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Parameters
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Figure 1: Schematic representation of the adopted method: given a mesostructure and
a set of material parameters respecting the elastic bounds, a linear homogenization is

performed, generating the homogenized stiffness matrix <g > of the resulting medium.
These properties are used at the macroscale to simulate the experimental shear tests.
The obtained numerical stresses o are compared to experimental ones & via a cost

function Jop:. A stochastic, derivative-free method is used to identify mesoscopic
parameters that minimize the cost function.

2.1 Mesoscopic modeling and upscaling

We explored three mesostructures (see Figure 2, Mesoscale): first, a homoge-
neous mesostructure (H), made only of cardiomyocytes, aligned with the direc-
tion f. Then a second mesostructure (L), made of two blocks of cardiomyocytes
aligned with f, separated by a plane layer of extracellular matrix. Finally a
third mesostructure, (E), made of cardiac cells aligned with f, separated by the
collagen layer forming an ellipsoid. B

2.1.1 Mesostructures

Structure H: Homogeneous. As already mentioned, the first “mesostruc-
ture” is actually homogeneous, made of cardiomyocytes wrapped by endomysial
collagen. This structure was considered to determine whether the cardiomy-
ocyte rotation can explain alone the observed anisotropy at the macroscale.

Structure L: Laminar. This mesostructure was considered in order to in-
vestigate the effect of a laminar structure for the myocardium on the orthotropy
[LeGrice et al., 1995; Young et al., 1998; Sands et al., 2005; Pope et al., 2008].
The structure was made of two blocks (50 um) of parallel cardiac cells each
wrapped by endomysial collagen, separated by a layer of perimysial extracellu-
lar matrix. It has been shown that the collagen content of the heart evolves
with age: while it is of 3.924+ 0.8% in young subjects, it reaches 5.86+ 0.81% in
old hearts [Debessa et al., 2001]. We fixed the collagen thickness layer to 5 pm,
representing 4.75% of the total volume.



& e

' T e
\3_)
20

0
I ey .
== v
ey o

-4 61.
Mesoscale Macroscale Left Ventricle

Figure 2: Schematic showing the different scales for the mesoscale. We tested 3 dif-
ferent structures (H, L and E), where the cardiomyocytes wrapped by endomysium
are represented in red, and perimysium in blue. The macroscale shows the orientation
evolution of the cardiac cells and sheetlets in a 3x3x3 mm cubic sample, similar to
the ones used experimentally.

Structure E: Ellipsoidal. This mesostructure was explored in order to in-
vestigate the effect of the ellipsoidal clusters observed in the cross-sections of
the cardiac wall [Kanzaki et al., 2010]. We created an ellipsoid such that it
has 3 different axis ratios in the 3 different planes (see Figure 3) in order to
avoid having a transversely isotropic structure. Hence, our cell dimensions were
100x200x300 pm. The extracellular matrix layer thickness was 2.5 ym, repre-
senting 4.79% of the total volume.

2.1.2 Mesoscopic behavior and bounds on material parameters

In the following, we introduce the constitutive law for both cardiomyocytes
and extracellular matrix. We also recall the elastic bound, for compressible
[Lempriere, 1968], and incompressible [Loredo and Klocker, 1997; Garcia et al.,
1998] materials.

Cardiomyocytes. The cardiomyocytes being cylindrical elongated cells, it is
thus natural to model them as a transversely isotropic material, with physi-
cal properties symmetric about the cell axis (ey). The bundles being made of
locally parallel cells, they are also transversely isotropic. The material parame-
ters for the cardiomyocytes are therefore: Iy, the longitudinal elastic modulus,
Ey, the transverse or in-plane elastic modulus, Gy; and vy, the in-plane shear
modulus and Poisson ratio and Gy, and vy, the transverse shear modulus and
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Figure 3: Complete structure E and sections showing the different ellipse ratios on in
three orthogonal planes, in order to create an orthotropic mesostructure.

the Poisson ratio. The myocardial volume change (up to 10%) during the car-
diac cycle, is partly caused by the cardiac structure [Ashikaga et al., 2008]. We
therefore considered two cases for the cardiomyocytes: compressible and quasi-
incompressible. Bounds on elastic constants for a transversely isotropic material
are recalled in Table 1.

Compressible material || Incompressible material
Ef >0 Ef >0
E; >0 E, >0
Gft >0 Gft >0
_ __ B ~  E4E
G = 2(1-&-{11“) G = 4E,{—;3t
LS 2 =0.5
—\/ T, v < B, vee = U.
—1<utt<1—2y;t§—; v =1-— 2%f
Ef > %

Table 1: Elastic bounds for a compressible (left) and incompressible (right) trans-
versely isotropic material.

Collagen layers. The choice of constitutive law for the extracellular matrix
is not straightforward. Indeed, it is a thin layer made mostly of interlocking col-
lagen fibers arranged randomly. This structure hints at a transversely isotropic
symmetry, with uniform parameters in the plane, and a symmetry axis orthog-
onal to the plane. This leads to six material parameters. Considering the
thinness of the layer, these parameters might not be identifiable, as confirmed
by our sensitivity analysis in Appendix B. Thus, we use an isotropic material
to the extracellular matrix, with only two parameters to identify: the elastic



modulus E. (always > 0), and the Poisson ratio v, comprised between —1 and
0.5.

2.1.3 Periodic homogenization

The cardiac tissue being made of different constituents, its homogenized me-
chanical properties at the macroscale will depend on the coefficients of the
different constituents. Initially, homogenization techniques were based on the
Hill-Mandel lemma which separates the material into two scales, and connects
the mechanical energies of both scales [Hill, 1963]. Later developments showed
that the result can be recovered using a two-scale expansion method [Sanchez-
Palencia, 1974; Michel et al., 1999]. In our study, the two scales consist of
the mesoscale and the macroscale: At the mesoscale, the periodic unit cell (£2)
(mesostructures (L) and (E)) is heterogeneous, made of two materials, cardiomy-
ocytes and collageneous extracellular matrix. In order to obtain the material
properties of the homogeneous medium associated with each of the mesostruc-
tures, periodic homogenization was performed numerically, and allowed to com-

pute the homogenized elasticity tensor <C > at the mesoscale. All finite element
computations were performed using the FEniCS library [Alnzes et al., 2015].

2.2 Experimental data and associated modeling at
macroscale

2.2.1 Shear experiments and anisotropy characterization

Experiments revealing the anisotropic nature of the cardiac tissue consisted in
applying cycles of sinusoidal simple shear, during which the maximum shear
strain was increased, at each cycle between 5% and 50%, in six shear modes
NS,NF,FN,FS,SF,SN, on 3x3x3 mm cubic porcine samples [Dokos et al.,
2002], and 4x4x4 mm cubic human samples [Sommer et al., 2015]. Both studies
reveal the material anisotropy with a difference in the shear stresses along the
six directions, with the highest values for the F'S and F'N modes, and the lowest
ones for the NF' and NS modes (see Figure 13 in Appendix A).

We conducted our study using the data sent to us by Prof. Socrates Dokos
[Dokos et al., 2002]. We plotted the recorded stresses at 5%, 10%, 20%, 30%,
40% and 50% shear deformation for all modes (see Figure 4). We noticed that
the mode order stays consistent for all deformation levels, with the highest
stresses recorded for FS, followed by FN, SF, SN, NF and finally NS. We there-
fore concluded that the anisotropy is inherent to the material, and not induced
by large deformations. Thus, in order to investigate the structural origin of
tissue anisotropy, the small deformations mechanical framework is sufficient.

2.2.2 Associated macroscopic model

We simulated a 3x3x3 mm cube as seen in the experiment (see Figure 2,
Macroscale). The cardiac fibers and the sheetlets rotate in the cardiac tissue.
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Figure 4: Shear stress recorded at 5%, 10%, 20%, 30%, 40% and 50% deformation for
all modes showing a conservation of the anisotropy for small and large deformations.
Data obtained from [Dokos et al., 2002].

We therefore reproduced this rotation in our numerical cube. The cardiac fibers
rotate along e, by an angle «, in the (eg,e.) plane. This leads to the rotation
of e, around ey of an angle o as well, creating a new local system (e, ey, e€’).
The sheetlets rotate around ey by an angle 3, leading to a rotation of €/, in this
same plane, of an angle 5. The new local coordinate system for fibers, sheetlets,
and normal to fiber-sheetlets orientations become (e¢, es, €y ), as illustrated in
Figure 5. o

Fiber orientation. Cardiomyocytes rotate in the cardiac wall, from endo-
cardium to epicardium, such that they constitute a helical structure. Their
orientation is called the Helix Angle (HA), and varies linearly between +60° to
—60° in heart walls (10 mm) [Streeter and Bassett, 1966; Streeter et al., 1969].
Considering that the samples are extracted from mid wall, we assumed that the
fiber orientation « varies linearly between +18° to —18°.

Sheetlet orientation. The sheetlet orientation distribution in the cardiac
wall has not been fully characterized yet. Although this question has attracted
more and more attention, disparities between the observations and the lack of a
clear mapping of the sheetlets in the left ventricle leave this question partially
unanswered [LeGrice et al., 1995; Rohmer et al., 2007; Kung et al., 2011; Nielles-
Vallespin et al., 2017]. Cross-sections, orthogonal to the cardiomyocytes, have
shown an important variation of the sheetlet orientation () along the slices,
ranging from —90° to +90°. However, disparities in the values between the
different studies indicate that this orientation is still not fully understood. We
thus decided to conduct this study for several sheetlet orientations, ranging
from £0° to £50° from endocardium to epicardium, hence analyzing the effect
of their orientation on the tissue’s macroscopic behavior.

10



Figure 5: Euler angles representing rotation of local fiber and sheetlet system with
respect to global basis. In red: rotation of of angle « along e, leading to new system
(er,e5,€%). In blue: rotation of e, around ey by angle 8 in (er, €,) plane, creating the
new local system (ef, es,en). Cardiomyocytes are aligned with ef, and sheetlets are
in the (ey, es) plane. o

Material parameters. The homogenized stiffness matrix <C >7 computed in

Section 2.1.3, was used as an input material parameter at the macroscale. Tt
was oriented with the (ey, e, e,) basis at every point of the macrostructure.

Simple shear. Simple shear tests were simulated: Dirichlet boundary condi-
tions were applied on two sides of the cube, as shown in Figure 6, while keeping
the others stress-free. We restricted our problem to the linear elastic behavior.
Thus, the problem consisted in finding the displacement u(p) such that:

V(g) =0, g=g" in O
a= <g € in Q
e= 31T+ Ew®)) o
The solution u(p) to the problem allowed to compute the resultant shear stress

o(p) for each of the six different sets of Dirichlet boundary conditions (see
Table2).

11
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Figure 6: Schematic showing six possible simple shear modes for an orthotropic my-
ocardium cube defined with respect to the fiber (f), sheet (s), and sheet-normal (n)
directions. Replicated from [Dokos et al., 2002].

FN mode | u(xqy =0) =[0,0,0] | u(zy =3)=][0,0,4]
FS mode | u(zqy =0)=[0,0,0] | u(zy =3) =[0,1,0]
SF mode | u(z2 =0)=1[0,0,0] | u(ze =3) =[a,0,0]
SN mode | u(zy =0) =10,0,0] | u(xe =3) =10,0, u]
NS mode | u(zxz =0)=1[0,0,0] | u(zxs =3)=10,a,0]
NF mode | u(zz =0) =[0,0,0] | u(zs =3) = [g,0,0]

Table 2: Dirichlet boundary conditions applied on the macroscopic cube in 6 modes

12



2.3 Sensitivity analysis and parameter optimization
2.3.1 Material parameter sensitivity

Prior to performing the material parameter estimation, a sensitivity analysis
was conducted to identify the parameters identifiability at the mesoscale, with
the parameters influence on the homogenized material properties, and at the
macroscale, with their influence on the macroscopic shear response. The sen-
sitivity analysis method and results are presented in Appendix B. The main
results show that the responses at both scales are not sensitive to the extracel-
lular collageneous material parameters, which is due to its low volume fraction
in the tissue. As a consequence, we decided to use an isotropic material for this
layer (see Section 2.1.2), and we fixed its corresponding Young modulus E. and
Poisson ratio v..

2.3.2 Parameter estimation

Given that (i) our model is linear (hence the stress depends linearly on the stiff-
ness), and (ii) our main objective was to compare the anisotropy (or the order
of the shear stresses), we fixed one microscopic Young modulus (F; = 1 a.u.)
and actually considered shear stress ratios instead of the stresses themselves in
the cost function. The experimental stress ratios R and numerical ratios R were
{Gen Gsk OsN ONs ONFY apd {ZEN ISP OSN INs ONEY pegpectively. The

0rs’ OFs’ Ors’ Ors’ OFs ors’ opFs’ ors’ OFs’ OFs
optimization cost function Jopt Was

5
Z “Ri , (2.1)

R;

pg, being the mean value of ratio R;, and s g, its standard deviation, given that
each experiment is repeated on six specimen. The parameter optimization was
performed using CMA-ES (Covariance Matrix Adaptation-Evolution Strategy),
which uses stochastic, derivative-free methods for numerical optimization [Igel
et al., 2006].

2.4 Size effect

In order to investigate the size effect on the anisotropy of the sample, we com-
pared the shear stress ratios resulting from simple shear simulations on macro-
scopic cubes ranging from 1 to 10 mm. At the mesoscale, we chose to conduct
the study with the mesostructure (L) and the optimized parameters that fit the
experimental data. At the macroscale, as a reference, we simulated a linear vari-
ation of the cardiomyocyte orientation only, such that they vary between + 6°
for 1 mm samples and £+ 60° for 10 mm samples. Then we added the evolution
of the sheetlet orientation, such that § varies between 4 8.3° for 1 mm samples
and + 83.3° for 10 mm samples.

13



3 Results

We determined the optimal parameters for the different mesostructures (H), (L)
and (E), and the different possible sheetlet angles (3), to determine which ones
reproduce the best the experimental data.

3.1 Mesostructure (H)

Mesostructure (H) is made of aligned cardiomyocytes (see Figure 2, Mesoscale).
This cell is already homogeneous; we therefore only simulated the simple shear
displacement experiment on it and optimized the parameters.

A transversely isotropic material has six parameters (Ey, Ey, G, Gu, Ve
& vyy) in the compressible case, while only four (Ef, Ey, Gy & Gy) in the
incompressible case. We fixed one parameter, F; = 1 a.u., as we worked on
the shear stress ratios, which left us with two parameters to optimize in the
quasi-incompressible (Ef & Gy¢), and four in the compressible (Ef, G, vs &
vy) cell (see Table 1).

Figure 7 shows bar plots of the optimized shear stress modes, superimposed
with box plots of the experimental shear stress modes for compressible and
quasi-incompressible cardiomyocytes. In both cases, the optimization cannot re-
produce the experimental data, even though the results are slightly better in the
compressible case, which has more degrees of freedom. By varying the param-
eters in order to recover the experimental order in the compressible mesostruc-
ture, we found that an increase in mode % (c), led to an increase in mode %
(e) as well, change the order of the shear stress ratios. Their optimized values

are shown in Table 3.

Quasi-incompressible | Compressible
Optimized E; =207 E; =10.72
Gy =28.29 Gy =6.11
i = 2.82
Vit = —0.84
Computed Gy = 0.28 Gy = 3.12
Vit = 0.76
Fixed E, =1 E, =1
Ve = 0.49

Table 3: Optimized cardiomyocyte material parameter ratios (normalized by E; = 1)
in the quasi-incompressible and compressible cases for mesostructure (H).

3.2 Mesostructure (L)

Mesostructure (L) is made of aligned cardiomyocytes separated by a planar layer
of collagen. We consider the effect of the sheetlet angle (§) variation within the
macroscale cube.

14
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Figure 7: Experimental (box plot) vs. optimized (blue bar plot) shear stress ratios
(normalized with respect to largest value) for the quasi-incompressible (left) and com-
pressible (right) transversely isotropic Mesostructure (H). On the macroscale, we have
«a = +18° for all cases. Box plot: lower to upper quartile; whiskers: lowest datum
above Q1 — 3% (Q3 — Q1)/2, and highest datum below Q1 4+ 3% (Q3 — Q1)/2, where Q1
and @3 are the first and third quartiles; green triangle: mean; orange line: median;
hollow circles: data points outside the whiskers. Data courtesy of Prof. Socrates Dokos
[Dokos et al., 2002].

Quasi-incompressible cardiomyocytes. For quasi-incompressible car-
diomyocytes, the experimental vs. numerical shear mode ratios are represented
in Figure 8, for a sheetlet angle 8 varying between +0°, +12.5°, +25° and
+50°. The optimized parameters are shown in Table 4.

Even though the order of the optimized solutions agreed with the order of
the experimental ratios, we were not able to find material parameters, within
the bounds that match the experimental data (see Table 1). Optimized mode
% (b), was systematically too high compared to the experimental one for all
values of 5. We noticed, though, that the rotation of the sheetlets led to a closer
solution. However, a rotation of the sheetlets of more then £50° is unrealistic
in a 3 mm cube, because it means that the sheetlets rotate of more than 300°
in the cardiac wall, which is not physiological. Moreover, we concluded that
the incompressibility hypothesis of the assembly of cardiomyocytes wrapped
by endomysial extracellular matrix does not allow to reproduce the observed
anisotropy at the macroscale.

Compressible cardiomyocytes. The optimized simulation vs. experimental
data for compressible cardiomyocytes are shown in Figure 9. With the extra
degree of freedom of the compressibility, we were able to match the experimental
results. However, several optimal sets of parameters were obtained, meaning
that the solution to this problem is not unique. This result indicates that it
is not possible to identify many mesoscale parameters with simple shear assays
at the macroscale. As seen previously, an increase in angle 5 leads to a better
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Figure 8: Quasi-incompressible cardiomyocytes in the laminar mesostructure (L), for

a = £18°, with § ranging between +0° (a), £12.5° (b), £25° (c), £50° (d).

Figure 7 for details on box plots.

See

+0° +12.5° +25° +50°
Optimized | E; = 2842 | E; = 2873 | Ef =29.36 | E; = 28.8
Gpr =008 | Gpp =008 | Gpp =0.06 | G =0.01
Computed Gtt =0.99 Gtt =0.99 Gtt =0.99 Gtt =0.99
G.=0.005 | G.=0.005 | G.=0.005 | G. = 0.005
Vit — 0.98 Vit = 0.98 Vit = 0.98 Vit = 0.98
Fixed Et:]. Et:]. Et:]. Etzl
Ve = 0.49 Vit = 0.49 Ve = 0.49 Ve = 0.49
E.=05 E.=05 E.=05 E. =05
ve=-099 | v, =-099 | v. =-0.99 | v. =-0.99

Table 4: Quasi-incompressible cardiomyocyte and collagen optimized material param-
eter ratios (normalized by E; = 1) in the laminar mesostructure (L), for 8 ranging
between +0°, +£12.5°, £25° and +50°.

16



agreement between experiments

and model, with a fair match starting from
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Figure 9: Compressible cardiomyocytes in the laminar mesostructure (L), for a =

+18°, with 8 ranging between £0° (a), +£12.5° (b), £25° (c¢), £50° (d).

3.3 Mesostructure (E)

Mesostructure (E) is made of aligned cardiomyocytes separated by an ellipsoidal
layer of collagen. As for Mesostructure (L), we consider the effect of the sheetlet
angle (f) variation within the macroscale cube.

Quasi-incompressible cardiomyocytes For quasi-incompressible car-
diomyocytes, the experimental vs. numerical shear mode ratios are represented
in Figure 10, for sheetlet angles § of +0° and +50°. As for the previous
mesostructure, using quasi-incompressible cardiomyocytes, the order and the

values of the experimental ratios were not matched numerically, despite the in-
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troduction of high angles of sheetlet rotations. We therefore conclude that the
extra degree of freedom of compressibility is needed.
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Figure 10: Quasi-incompressible cardiomyocyte in a circular cluster mesostructure (E),
with 8 = £0° (a) and 8 = £50° (b).

Compressible cardiomyocytes The optimization results for mesostructure
(E) with compressible cardiomyocytes are shown in Figure 11, for sheetlet angles
B of £0° and +50°. The results observed for this mesostructure were similar
to the results of mesostructure (L): the observed anisotropy was able to be
reproduced by rotating the sheetlets, and the solution was not unique.
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Figure 11: Compressible cardiomyocyte in a circular cluster mesostructure (E), with
B =+0° (a) and 8 = £50° (b).
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3.4 Size effect

The obtained results are shown in Figure 12. The curves for a mesostructure
without sheetlet orientation variation show a quasi-constant evolution of the
anisotropy with the cube size. The effect of the sheetlet orientation variation is
shown in (b). The anisotropy is not conserved with the sample size, hinting at
the presence of important size effects. While the anisotropy order is maintained
for samples of 3x3x3 mm? and 4x4x4 mm?, in agreement with the experimen-
tal observations [Dokos et al., 2002; Sommer et al., 2015] on samples of 3 mm
and 4 mm respectively, we predict that the curves will intersect for samples
larger than 5 mm, with an important increase of the shear stress in FN and NS.
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351 —e~ SF/FS

—e— FNJFS —o— SNfFS
—e— SFIFS 304 —® NA/FS
3.0 —e— SNJFS NS/FS
—o— NF/FS
NS/FS
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P
°

5 6 7
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(b) Cardiomyocyte and sheetlet orienta-
(a) Cardiomyocyte orientation. tion.

Figure 12: Numerical shear stress ratios for samples ranging from 1 to 10 mm size,
taking into account the cardiomyocyte orientation variation only (a), and the car-
diomyocyte and sheetlet orientation variation (b).

4 Discussion

In this study, we investigated the microstructural origin of the anisotropic be-
havior of the cardiac tissue and we tested if it is solely induced by the rotation of
the cardiomyocytes in the heart wall, or by the presence of collageneous extra-
cellular layers at the mesoscale. We analyzed the macroscopic behavior of the
cardiac tissue composed of different mesostructural configurations consisting in
several organizations of cardiomyocytes and collagen planes. The orthotropic
material behavior induced by these mesostructures was compared to stresses
resulting from the application of shear displacement in six different modes on
myocardial samples.

The experimental data provided by Prof. Socrates Dokos showed that the
anisotropy is independent of the deformation level (see Figure 4), which allowed
us to conduct our study for small deformations, in a linear elastic limit.

Our study also shows that it is not possible to reproduce the macroscopic
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anisotropy with a transversely isotropic model, ¢.e., by solely taking into account
the transversely isotropic nature of the myocardium at the mesoscale, and the
transmural variation of the fiber orientation (see Figure 7). Nonetheless, the
consideration of the sheetlet structure at the mesoscale allows to replicate the
macroscopic shear ratios (see Figures 9 & 11). This result is in accordance
with a study performed by [Schmid et al., 2008], where macroscopic orthotropic
compressible models are used to fit the macroscopic shear stresses from [Dokos
et al., 2002]. Additionally, we show that the sheetlet orientation variation plays
an important role in the anisotropy (see Figures 9 & 11), with a better agreement
between numerical and experimental results for higher values of angle 8. It is
worth noting that important linear variations of this orientation were considered
(£50° in a 3x3%x3 mm cubic sample). This leads to an unrealistic variation
of the sheetlet orientation of more than 300° in the cardiac wall, however, it
served to evaluate the importance of these angles in the macroscopic anisotropy
response. Conversely, other configurations, such as a non-linear transmural
sheetlet orientation variation [Nielles-Vallespin et al., 2017], or the coexistence
of two distinct sheetlet populations [Kilner et al., 2015], could potentially be
investigated.

One essential assumption tested in this study is the incompressible behavior
of myocardial constituents, mainly the block of cardiomyocytes surrounded by
endomysial collagen (red blocks in Figure 2). The results show that this as-
sumption does not allow to reproduce the observed macroscopic anisotropy for
mesostructures (H), (L) and (E). We therefore suggest that the myocardium has
a certain level of compressibility, with changes in volume occurring in the en-
domysial and perimysial extracellular matrices. Indeed, a microstructural model
developed by [McEvoy et al., 2018] suggested that the myocardium should be
considered as a slightly compressible material.

It is worth mentioning that, considering the compressibility hypothesis, and
taking into account the microstructure orientation variation, we were not able to
determine which of mesostructures (L) or (E) best reproduced the experimental
results. To do so, more experimental data are required, at different scales, to
better fit the results. Indeed, this study hinted at the presence of important
size effects of the anisotropy, that should not be overlooked in numerical models.
When the sheetlet structure is taken into account, the anisotropy increases with
the increase of the the tissue sample sizes, and, more importantly, it is not
maintained. While the FN shear stress mode is dominant for most tissue sizes,
the response to shear in NS and NF increase in an unexpected way with the
increase of the sample size.

At last, our study revealed several sets of parameters to fit the macroscopic
data. Further sensitivity analysis should be performed to investigate the pa-
rameters influence on the macroscopic result. Moreover, a better understanding
of the microscopic parameters would allow a finer definition of the parameter
bounds, hence a better parameter optimization. This highlights the need for
more multiscale experiments on cardiac tissue.
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5 Conclusion

We proposed a multiscale model of the myocardium aiming at determining the
structural origin of the observed macroscale mechanical anisotropy. Our study
suggests that the cardiac anisotropy observed at the macroscale is not induced
by large deformations, but is inherent to the tissue. Moreover, our results show
the importance of the cardiac structure on its mechanical properties. Indeed,
the macroscopic anisotropy is not only induced by the transmural rotation of
the cardiomyocytes, but also by the organization and transmural rotation of
collagen layers at the mesoscale. An additional finding is that some level of
compressibility is required to fit the data. Furthermore, we highlighted impor-
tant size effects that should be taken into consideration in cardiac models.
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Supplementary information

A Comparison of experimental shear stress
studies

The results of [Dokos et al., 2002] reveal the material’s anisotropy with the
difference in the shear stresses along the six directions, with the highest values
for the F'S and FFIN modes, and the lowest ones for the NF and NS modes.

Similar results were also found in a more recent study on human hearts
[Sommer et al., 2015]. In Figure 13, we plotted the peak stress values at 50% de-
formation for both studies. The detailed data provided by Prof. Socrates Dokos
allowed us to plot the dispersion, however, we did not have the data from the
second study. We thus used the published experimental results. Although the
peak shear stress values obtained for swine are higher than the ones obtained
for humans, the ratios of the modes over SF are similar, with a slight difference
in modes NS and NF (see Figure 13). However, these modes seem to be inter-
changeable in the literature, with no significant difference found between them
[Dokos et al., 2002; Sommer et al., 2015; McEvoy et al., 2018].
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Figure 13: Comparison of experimental data extracted from [Dokos et al., 2002] and
[Sommer et al., 2015]. Bar plot of the peak shear stress values for 50% deformation for
both studies. The stress values recorded in [Dokos et al., 2002], performed on swine
hearts, are higher than the ones recorded in [Sommer et al., 2015], performed on human
hearts. However, the order of the modes is similar with FS>FN>SF>SN>NFX~NS.

Shear stress in KPa

Using the data from [Dokos et al., 2002], we plotted the recorded peak stress
of each mode, at 5% deformation for the four cycles (see Figure 14). At the
first cycle, the anisotropy is evident, with high shear stresses for modes FS
and FN (2 0.6 kPa), followed by SF and SN (= 0.3 Kpa), and low stresses
for NS and NF (= 0.2 kPa). We noticed that the stresses tended to converge
with the cycles, reaching = 0.02 kPa for all modes. This means that the more
cycles the tissue is subjected to, the more it is preconditioned, the more is loses
of its anisotropy and becomes isotropic. We thus decided to study the small
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deformation anisotropy at the first cycle.
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Figure 14: Comparison of the peak shear stress recorded at 5% deformation for all
cycles. Cycle 1 shows clear anisotropy with high shear stresses for modes FS and FN,
and low stresses for NS and NF. Shear stress decreases with cycles, and reaches a same
amplitude for all modes at cycle 4. Data extracted from [Dokos et al., 2002].

Given that our main objective was to compare the anisotropy, hence the
order of the shear stresses, we computed the experimental ratios over FS, FS
corresponding to the mode with the highest recorded shear stresses. This also
required to fix one of the material parameters, therefore reducing the number
of parameters to optimize.

B Sensitivity analysis

In principle, the estimation of microscopic parameters from macroscopic experi-
mental data is an ill-posed problem. We thus needed to characterize the material
parameters identifiability before the actual parameter optimization. The sensi-
tivity analysis was performed at two scales, using synthetic data generated with
the model. We studied the material parameters influence on the homogenized
stiffness matrix at the mesoscale, and on the shear stresses at the macroscale.
This was performed by evaluating the Hessian matrix of the cost function using
finite differences. In order to obtain a non-dimensional matrix, we introduced
the non-dimensional parameter p such that:

p=(p—po) @ po, (B.1)

po being a reference value of the parameters, and @ the Hadamard division.
The non-dimensional stiffness matrix cost function J is defined such that:

J(p) = J(p=po® (L+p)), (B.2)

with ® the Hadamard product.
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Using J(p), the first derivative V.J could thus be computed such that:

_ J 7"‘77‘1’71’ —J(p
vy, = L2 &) — /D) (B.3)
h
and the hessian such that:
_ J(P+ hi&i + hje;) — fF(p+ hie;) — f(p+ hje;) + f(p
V2, = (p+ hiei + hje;) — f(p+ hiei) — f(p+ hjé;) f(7)7 (B.4)

hih;

where h; and Ej are the introduced perturbations in the €; and é; directions,
typically equal to 1076 a.u.

Sensitivity of the homogenized stiffness matrix to microscopic pa-
rameters. At the mesoscale, we used the material parameters as an input
and computed a homogenized stiffness matrix. We therefore studied the sensi-
tivity of the homogenized matrix on the material parameters p, by evaluating
the Hessian matrix in Equation (B.4), with the error J(p) = J,,(p) computed
such that: a a

N / 2

, N — A

J= 3 BN (B.5)
n=1 ?

with \; and A} being respectively the eigenvalues of the stiffness matrix and the
perturbed stiffness matrix and Ny = 6.

The analysis was performed on mesostructures H, L and E, with compress-
ible cardiomyocytes (presented first), and quasi-incompressible cardiomyocytes
(presented next).

In the case of the compressible homogeneous mesostructure (H), with four
parameters, ¢, G, vy and vy, with By = 1 a.u. being fixed since only the
shear stress ratios are considered, Table 5 shows that parameters E¢, Gy, and
vy are associated with positive eigenvalues. The homogenized stiffness matrix
is thus sensitive to these parameters. However, vy is associated with a near-
zero eigenvalue. Therefore, at the mesoscale, vy, has no or little impact on the
homogenized stiffness matrix.

For mesostructures L and E, six input parameters were investigated, consid-
ering a compressible transversely isotropic material for cardiomyocytes and an
isotropic material for the perimysial extracellular matrix. The cardiomyocyte
parameters are p . = {Ef, Ey, G, Gy, Ve, vt }, where Ey = 1 a.u. is fixed

_ E —
and Gy = P The collagen parameters are p,, = {E¢,Gep, Ve }, where
Gep = % The Hessian matrix eigenvalues and relative eigenvectors were
P

computed. The primary directions of the eigenvectors relative to parameters
Ve, E. and vy, (see Tables 6 and 7) are associated with small eigenvalues. A
small variation of these parameters has therefore no or very little impact on
the homogenized stiffness matrix. These parameters are associated with the
perimysial extracellular matrix (except for vy;), which can be explained by the
fact that the extracellular matrix layer is thin, and represents only 5% of the
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Eigenvalues
] 4.00 \ 2.00 \ 0.06 \ 0.00 \
Eigenvectors
0.00 | +1.00 | 0.00 | 0.00 | Ef
+1.00 | 0.00 0.00 | 0.00 | Gy
0.00 0.00 0.00 | -1.00 | vy
0.00 0.00 | -1.00 | 0.00 | vu

Table 5: Eigenvalues and associated eigenvectors of the Hessian computing the sensi-
tivity of the homogenized material matrix to microscopic parameters in the isotropic
compressible case. Red indicates the parameter corresponding to the principle direc-
tion relative to the eigenvalue.

total volume. The choice of an isotropic material for the perimysial layer with
less material parameters is thus suitable.

Eigenvalues
[ 1850 | 363 | 1.96 | 0.01 | 0.00 [ 0.00 |
Eigenvectors
0.00 0.00 | +1.00 | 0.00 0.00 | 0.00 | Ef
0.00 | +1.00 | 0.00 0.00 0.00 | 0.00 | Gy
0.00 0.00 0.00 0.00 0.00 | -1.00 | vy
-1.00 | 0.00 0.00 0.00 0.00 | 0.00 | v
0.00 0.00 0.00 | +1.00 | 0.00 | 0.00 | E.
0.00 0.00 0.00 | +0.08 | +1.00 | 0.00 | v,

Table 6: Eigenvalues and associated eigenvectors of the Hessian computing the sensi-
tivity of the homogenized material matrix to microscopic parameters for mesostructure
L with compressible cardiomyocytes. Red indicates the parameter corresponding to
the principle direction relative to the eigenvalue.

In the case of the homogeneous mesostructure (H) with quasi-incompressible
cardiomyocytes, two parameters Ey and G, are investigated, F; = 1 a.u. being
fixed since the ratios are studied. At the mesoscale, Table 8 shows that both
parameters Ey and G have eigenvectors associated with positive eigenvalues.
The homogenized material matrix is thus sensitive to both.

For the laminar (L) and elliptical (E) mesostructures with quasi-
incompressible cardiomyocytes, two parameters £y and Gy, corresponding to
the cardiomyocytes, and parameters E. and v, corresponding to the perimysial
extracellular matrix are investigated.

Table 9 shows that the homogenized stiffness matrix is sensitive to parame-
ters B¢, Gy and E..

Mesostructure (E) shows the same parameter sensitivity results as
mesostructure (L), with no sensitivity for parameter v,, at the mesoscale.
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Eigenvalues
60.20 | 3.57 [ 0.16 | 0.01 | 0.00 [ 0.00 |
Eigenvectors
-0.11 | 0.00 | +0.79 | -0.33 | +0.50 | -0.04 | Ef
0.00 | +1.00 | 0.00 0.00 0.00 0.00 | G
0.00 0.00 | +0.60 | +0.44 | -0.67 | -0.01 | vp
-0.99 | 0.00 -0.09 | +0.06 | -0.04 0.00 Vit
-0.02 | 0.00 0.00 -0.83 | -0.55 | 4+0.09 | E.
0.00 0.00 | 40.03 | 40.06 | +0.06 | +1.00 | v,

Table 7: Eigenvalues and associated eigenvectors of the Hessian computing the sensi-
tivity of the homogenized material matrix to microscopic parameters for mesostructure
E with compressible cardiomyocytes. Red indicates the parameter corresponding to
the principle direction relative to the eigenvalue.

Eigenvalues
| 400 | 4.00 |
Eigenvectors
-+1.00 | 0.00 Ly
0.00 | +1.00 | Gy

Table 8: Eigenvalues and associated eigenvectors of the Hessian computing the sensi-
tivity of the homogenized material matrix to microscopic parameters in the isotropic
quasi-incompressible case. Red indicates the parameter corresponding to the principle
direction relative to the eigenvalue.

Eigenvalues
| 371 [ 2.08 | 0.83 [ 0.00 |
Eigenvectors
+0.04 | +0.94 | +0.34 | 0.00 | Ef
+1.00 | -0.06 | 4+0.07 | 40.01 | Gy,
+0.08 | +0.33 | -0.94 | -0.05 | E.
0.00 | +0.02 | -0.05 | +1.00 | vgp

Table 9: Eigenvalues and associated eigenvectors of the Hessian computing the sensi-
tivity of the homogenized material matrix to microscopic parameters for mesostructure
L with incompressible cardiomyocytes. Red indicates the parameter corresponding to
the principle direction relative to the eigenvalue.
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Eigenvalues
] 3.29 \ 1.90 \ 0.56 \ 0.00 \
Eigenvectors
+0.09 | +0.86 | +0.50 | +0.02 | Ey
+0.97 | -0.19 | 40.14 | +0.02 | Gy,
+0.21 | +0.47 | -0.85 | -0.06 | E.
-0.01 | +0.02 | -0.07 | +1.00 | vgp

Table 10: Eigenvalues and associated eigenvectors of the Hessian computing the sensi-
tivity of the homogenized material matrix to microscopic parameters for mesostructure
E with incompressible cardiomyocytes. Red indicates the parameter corresponding to
the principle direction relative to the eigenvalue.

Sensitivity of shear stresses to microscopic parameters. At the
macroscale, the input parameter was the homogenized stiffness matrix and the
outputs were the shear stresses. We therefore studied the influence of small
variations of material parameters on the resulting shear stress via the homoge-
nized stiffness matrix, by evaluating the hessian matrix in Equation (B.4), with
J(p) = Jur(p) such that:

Nr

_ R, — R;)?
i=1 g

with Nr = 5, the number of ratios to optimize. R; are the ratios of the exact
problem, and R) the ratios resulting from the problem with the perturbed pa-
rameters. At this scale, the three mesostructures H, L and E were investigated.

For mesostructure H, with compressible cardiomyocytes, four parameters
E¢, Gy, vy and vy were analyzed. The sensitivity analysis at the macroscale
showed that the macroscopic response is not affected by the parameter vy,
hence vy, is not identifiable (see Table 11). This result was expected given that
v¢: has no impact on the homogenized matrix, as seen in the previous section.
The rest of the parameters were associated with positive eigenvalues.

Eigenvalues
| 1.80 [ 0.47 [ 0.03 | 0.00 |
Eigenvectors
0.00 | 0.00 | -1.00 | 0.00 Ey
-0.11 | -0.99 | 0.00 | 0.00 | Gy
0.00 | 0.00 | 0.00 | +1.00 | v
+0.99 | -0.11 | 0.00 | 0.00 Vit

Table 11: Eigenvalues and associated eigenvectors of the Hessian computing the sen-
sitivity of the shear stress to microscopic parameters in the isotropic compressible
mesostructure. Red indicates the parameter corresponding to the principle direction
relative to the eigenvalue.

For mesostructures L and E, we show here the sensitivity study for the case
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with compressible cardiomyocytes. The analysis shows, again, that the extra-
cellular matrix parameters are not identifiable, with a quasi-null sensitivity (see
Tables 12 and 13). Thus, by performing simple shear assays at the macroscale,
it is not possible to identify the non-sensitive parameters, mainly the extracellu-
lar matrix ones. This confirms our choice of reducing the number of parameters
to identify for the extracellular matrix by choosing an isotropic material.

Eigenvalues
[ 063 | 032 [ 0.03 [ 0.00 | 0.00 | 0.00 |
Eigenvectors
+0.08 | +0.03 | +0.99 | -0.05 | +0.03 | +0.02 | Ef
+0.98 | +0.19 | -0.09 | +0.04 | -0.01 0.00 | Gp
0.00 0.00 -0.04 | +0.01 | +0.85 | +0.53 | vy
+0.20 | -0.98 | 40.02 | -0.04 | +0.01 | 0.00 Vit
-0.03 | -0.05 | +0.05 | +0.99 | -0.05 | 4+0.08 | E.
0.00 0.00 0.00 -0.09 | -0.53 | +0.84 | 1,

Table 12: Eigenvalues and associated eigenvectors of the Hessian computing the sen-
sitivity of the shear stress to microscopic parameters in mesostructure L with com-
pressible cardiomyocytes. Red indicates the parameter corresponding to the principle
direction relative to the eigenvalue.

Eigenvalues
| 054 [ 027 | 0.02 [ 0.00 | 0.00 | 0.00 |
Eigenvectors
+0.09 | +0.06 | +0.98 | -0.17 | +0.04 | +0.01 | Ef
+0.97 | +0.20 | -0.09 | +0.05 | -0.01 0.00 | Gy
0.00 0.00 | -0.04 | +0.01 | +0.91 | 40.41 | vs
+0.21 | -0.98 | +0.03 | -0.06 | +0.01 | 0.00 Vit
-0.02 | -0.06 | +0.17 | +0.98 | -0.03 | +0.06 | E.
0.00 0.00 | -0.01 | -0.07 | -0.41 | 40.91 | v,

Table 13: Eigenvalues and associated eigenvectors of the Hessian computing the sen-
sitivity of the shear stress to microscopic parameters in mesostructure E with com-
pressible cardiomyocytes. Red indicates the parameter corresponding to the principle
direction relative to the eigenvalue.

In the case of incompressible cardiomyocytes, the macroscopic shear
stress sensitivity to the microscopic material parameters is shown in Ta-
bles 14, 15 and 16.

At the macroscale, Table 14 shows that both parameters E; and Gy; have
eigenvectors associated with positive eigenvalues. The macroscopic shear stress
is thus sensitive to both, in the case of the homogeneous mesostructure with
incompressible cardiomyocytes.
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Eigenvalues
] 0.96 \ 0.16 \
Eigenvectors
+0.26 | -0.97 | Ef
-0.97 | +0.26 | Gy

Table 14: Eigenvalues and associated eigenvectors of the Hessian computing the
sensitivity of the shear stress to microscopic parameters in the isotropic quasi-
incompressible mesostructure. Red indicates the parameter corresponding to the prin-
ciple direction relative to the eigenvalue.

Eigenvalues
] 0.62 \ 0.03 \ 0.00 \ 0.00 \
Eigenvectors
0.00 | -1.00 | 0.00 0.00 Ey
-1.00 | 0.00 | -0.00 | 0.00 | Gy
0.00 | -0.00 | -1.00 | 0.00 E,
0.00 | +0.01 | 0.00 | +1.00 | vgp

Table 15: Eigenvalues and associated eigenvectors of the Hessian computing the sen-
sitivity of the shear stress to microscopic parameters in mesostructure L with incom-
pressible cardiomyocytes. Red indicates the parameter corresponding to the principle
direction relative to the eigenvalue.

Eigenvalues
] 0.54 \ 0.02 \ 0.00 \ 0.00 \
Eigenvectors
-0.08 | -0.98 | +0.18 | +0.01 | Eyf
-1.00 | 40.07 | -0.05 0.00 | Gy
+0.03 | -0.18 | -0.98 | +0.04 | E.
0.00 | +0.01 | +0.04 | +1.00 | vep

Table 16: Eigenvalues and associated eigenvectors of the Hessian computing the sen-
sitivity of the shear stress to microscopic parameters in mesostructure E with incom-
pressible cardiomyocytes. Red indicates the parameter corresponding to the principle
direction relative to the eigenvalue.
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At the macroscale, in the case of mesostructures (L) and (E) with incom-
pressible transversely isotropic cardiomyocytes and isotropic collagen layer, Ta-
bles 15 and 16 show that only the cardiomyocyte parameters ¢y and Gy; can be
identified with macroscopic mechanical tests, . and 1., being associated with
quasi-null eigenvalues.
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