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Abstract: We consider the class of resolvent estimators of the corrélation operator rul-
ing the functional autoregressive processes introduced by Mas, A. ( [10] [11]). Under mild
conditions on smoothing parameter, we establish exponential bounds and almost sure con-
vergence of the resolvent estimators as well as convergence rates improving the existing
results. As a conséquence we dérivé asymptotic results on the resolvent predictors. Numer-
ical studies illustrate the performance of the resolvent predictors giving a comparison with
other existing prédiction methods both on simulated and real functional data sets showing
compétitive results.

1. Introduction

In common many fields such as economy, finance, industry, biology, medicine..., data acquisition
(measurements at several consecutive tirne points or during a continuons time interval) and
Processing techniques hâve lead to a continuons flow of data putting statisticians to consider
them as ”high dimensional” vectors. Such data are conveniently described as realizations of
random curves and seen as a sample of a valued function space random variable.

Functional Autoregressive Processes has been largely investigated by many authors for mod-
eling and predicting continuous time random processes. Applications in a variety of domains
bave been successfully performed. Examples range from prédiction of electricity consumption,
road traffic, El-Nino température to concentration levels in air pollution (see the monograph
by Bosq [5]). An application to environmental data processing was given by Omatu [15] pre-
dicting the concentration levels of pollutants in air pollution analyzed through a Bucy-Kalman
filter System. These generalizations lead to a growing demand for developing statistical meth-
ods which are carried out through the Functional Data Analysis (FDA). The latter is now
fairly well understood and has yet reached a unified form and several functional models hâve
been covered. For a fairly recent account on statistical inference with various generalizations to
functional models with interesting nonparametric issues we mention but a few ([5][8][16]) and
references therein).

In this paper, we are interested by the class of resolvent estimators studied by Mas [10] [11]
in the framework of Functional Autoregressive Processes. The estimation methods are related
to the well known linear ill-posed inverse problem and on a very basic facts of perturbation
theory (see [9] or [7]). Mas in [10] provides asymptotic distribution and deduces convergence in
probability for this class of estimators. In this work we investigate the asymptotic results of this
class of resolvent estimators at the light on techniques martingale giving exponential bounds
and recent results on empirical covariance operator of this class of processes ([5] Chap. 2). This
allows us to obtain exponential bounds and almost sure convergence of the class of resolvent
estimators as well as convergence rate depending on smoothing parameter. Then we provide
similar results on resolvent predictors. Numerical simulations and practical use of these results
are handled to show the ability of these estimators and their performance on the base of two
errors. Some perspectives could be investigated on the choice of optimal smoothing parameter.

This paper is organized as follows. Section 2 introduces notations and définitions. Section
3 deals with main results. Section 4 contains numerical simulations and examples . Proofs are

Keywords and phrases: Functional Autoregressive Processes, Resolvent Estimators, Covariance, Operator,
Exponential Bounds, Rate of Convergence
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postponed to Section 5.

2. Définitions and Notations

Let (Cl, A. P) be a complété probability space and {H, 71) a real separable Hilbert space equipped
with the inner product the associate norm ||.|| and endowed with its Borel u-field 71.
We dénoté by C (H) the separable space of bounded linear operators defined on H into H, and
by ||.||£ the usual norm of bounded linear operators. A strong LT-valued white noise (en, n € Z)
defined on (0, A, P) with values in H, is a sequence of jH-valued i.i.d. rv’s with zéro mean and
£||en||2 := cr2 > 0. Let p be a bounded linear operator in C (H) endowed with its Borel cr-field.
We consider a H—valued sequence (An, n € Z) of random variables defined on (O, A, P) whicb
vérifiés the équation

(2.1) Xn p — p(An_i h) "b n G Z,

where (en, n G Z) is a iï-valued white noise, p G £ (H) and p G H.
The sequence (Xn, n G Z) is then called Hilbert space valued Autoregressive Process (we ab-

breviate it by ARH). We study general model defined by (2.1) under a condition ensuring a
unique strictly stationary solution of (2.1) ([5] Chap. 2) :

Condition C:

(O \\p\\c < 1 for 3 > 30,
(ii) E||A0||4 < oo.

Under Condition C the strictly stationary solution of (2.1) is such that E(Xn) = p and is
given by

OO

(2.2) Xn - p = pl£n-i, ne Z,
i=o

where the sériés converges a.s. and in L2H.
We consider the space of Hilbert-Schmidt operators

S (H) = < s G C(H) : Y, Ws(ep)W2 < 00
pGN

where (ej)i€N is any complété orthonormal basis in H. The space S becomes a separable Hilbert
space with the scalar product on S defined by: (see [7])
< Ti,T2 >s= Yaj=i < TiUùifj >H< T2{fi),fj >h and norm ||.||5. The covariance and cross
covariance operators are respectively defined by

Cx0(x) = E(< X0,x > Xo), Rx0,xi(^) = E(< Xo,x > Ai).

Cx0 is a bounded symmetric, compact, positif and nuclear operator. Their eigenvalues (A,:)f>o are
ranked in decreasing order associated to the eigenvectors (hj)j>o- From a sample (Xi)i<i<n of (1).
empirical covariance and cross covariance operators associated to C’x0 and Rx0,xi respectively
are defined by

-t n i n

Cn(•) = — < Xi,. > Xi, Rn(.) = - V < Ai,. > Ai+1.
1=1 1=1

Estimation problem of the operator p, parameter of interest in the model (1), deeply relies on
inverse problem in the moment équation: Rx0,xx = pCx0 or equivalently

^*x0,x1 — Cx0P*
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Mas in [10] [11] defined the class of resolvent estimators of the adjoint of the parameter p. It is
well known that the inverse operator of Cx0 exists whenever ker Cx0 — 0 but it is unbounded
(or not continuons) ([5] [7]). Hence in the sequel we will assume that that ail the eigenvalues
are strictly positive and that Ai > À2 > ... > 0. The estimate of the inverse of Cx0 is based
on empirical covariance operator Cn (which hâve the rank less than n thus it is no invertible
on H). As it discussed in many books ([7][9][5][11]...), classical techniques carry out in inverse
problems theory lead to regularize via spectral décomposition to define such continuons inverse.
Firstly a regularized inverse of Cn is chosen as follows :

(Cn + anI)-^Ci
where p G N* and an is a smoothing parameter that is a decreasing sequence and positive reals.
Let the sequence of functions fnjJ : R+ -> R+, (p integer indexing the function) defined by:

xP
fn-p(x) = (x + an)P+l

here an is a deterministic decreasing sequence and strictly positive. Functional calculus for
bounded operators allows us to write fn,p(Cn) (as well as fn,p{Cx0)) which give

fnACn) = (Cn + anI)-^CP
Mas in [10] [11] defined the resolvent estimators of the adjoint of the parameter p by setting

(2-3) pnp = fn^p(Cn)Rn
Their name cornes from the fact that the application Rc(A) on R (or C) defined by
Rc{A) = (C + A/)-1 is the resolvent of the operator C.

In the case of symmetric operator p, the resolvent estimators are simply defined by pn,p.

Remark 1.

• The supremum norm of the operator fn,p{Cn) is equal to a”1 (almost surely).
• Since the operators Cn and Cx0 are positive, this implies that operators (Cn + anI)p and
(C + anI)p are invertible with continuons inverse for ail p.
• For p > 1, fn,p{Cn) is a compact operator since fn,p(0) = 0.

Mas, A. in [10] [11] provides the limit law of the resolvent estimators defined in (3) and de-
duced the convergence in probability under Condition C and ker C\0 = 0 :

Theorem 2.1. ([11] Th.3 Chap.3). If -4- 00 and E\\Cx^£o||2 < 00, then we hâve for
the uniform norm

- f„,P(cXo)cxy) ^n—>00 Gp

where Gp is a zéro mean Gaussian random operator.
Furthermore

\Kp-fn.P(Cx,)CXy\\c~f^0n—>00

IK,PW-p*MIU

for ail x £ H.
We provide exponential bounds and almost sure convergence for this class of estimators

as well as convergence rate depending on smoothing parameter. Then we give similar results
on resolvent predictors. Numerical simulations illustrate their performance on the base of two
errors. Some perspectives could be investigated on the choice of optimal smoothing parameter
value.
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3. Main results

With the help of the notations of Section 2, our aim is to give additional conditions to obtain
exponential bounds and the almost surely convergence of the resolvent estimators as well as
rate of convergence.

Theorem 3.1. Assume Condition C (i) and ||Ao|| < c for some c > 0. Then for ail g > 0,

F(IK,P - fnACXo)Cx0P*\\c >V)< 4exp

where p,\, p2 are positive constants.
Moreover we hâve,

na2nP+1\2 \
Ail + P2 Ctn+1ii )

IKp - U.p(Oxo)Cx,i>% = O II -^ÎT)
(.

\\Pn,p ~ fn,p{Cx0)Cx0P*\\c 4 0 a.S.

For the resolvent predictors p*.,pix) we hâve the following almost sure convergence.

Proposition 3.2. Assume Condition C (i) and ||Ao|| < c for some c > 0.

//«n+1 (î^) 2 n_>oQ> oo, then for ail x G H:
\\p*n,p(x) - fn,p(Cx0)Cx0P*(x)\\c > 0 a.s.r

71-400

Remark 2. Exponential bounds and almost sure convergence of resolvent estimators are

obtained from condition a^+1 ( r-£- )2 > oo which is stronger than the condition dnft?+1 -4

oo of Th. 3 Chap.3 in [10] giving the weak convergence.
Also our results are under the bound condition ||Xo|| < c for some c > 0 making the statistical
proofs of estimators more tractable. Other weak conditions are possible, but this leads to making
the proofs more technical and will be the subject of a forthcoming work.

4. Numerical Simulations and Example

f.l. Simulation of ARH processes

In this part we simulate trajectories of Hilbert space valued AR process given by (1) where
H = L2[0,1] and Resolvent Predictors using R-package far developed by J. Damon and S.
Guillas [6]. The incréments of Brownian Motion are given by Karhunen Loève décomposition
and generate a strong white noise and p is a bounded linear operator.

Figure 1 shows a trajectory of ARH process for n = 80 observations over successive unit
intervals calculated at m = 30 discretization points.

Resolvent Predictors.
To predict the trajectory Xn+1 we observe a sample X\,...,Xn of (1). Resolvent predictor

Xn+i (in symmetric case) is calculated at discrète points (tj), j = 1, ..,m by :

Xn+l{tj) = Pn,p(Xn(tj))
where pniP is defined by (3) and we take an — ïqo i(/g n - To evaluate the performance of the
predictors, we calculate Mean Square Error (MSE) and Relative Mean Absolute Error (RMAE)
defined respectively by (for m\ = 20 réplications):
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Figure 1.

USE = i ES l-Wti) - ^.,+i(i.)l2, RMAE = iES (l^+£):,wt‘(,‘)l)'-
The following figures display resolvent predictor Xn+\ (in red) and actual trajectory Xn+i

(in black) for values: n = 50,100,150, p = 2,p = 7 and m = 20, m = 30 (discretization points).
In each case we give both errors (MSE) and (RMAE).

Numerical simulations indicate both errors (MSE) and (RMAE) are stabilized from on
n = 50 as well as convergence rate of estimators. Also the choices of smoothing parameter p — 2
and p = 7 hâve a small effect on the performance of resolvent estimators.

However this leads only to draw some partial conclusions and it is difficult to indicate optimal
values for the smoothing parameter p .

We may observe a marginal influence of the number m of discretization points.

- rVIA 2.676- IV1S 0.058

Figure 2. n=50,m=20,p=2

- 2.222- rvis 0.052

Figure 3. n=50,m=20,p=7
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- IV1A. 1 .7-29- IVIS 0.053

Figure 4. n=50,m=30,p=:2

- IVIA 1 .454- IVIS 0.034

Figure 5. n=50,m=30.p=7

- (VIA 1 .632- IVIS 0.069

Figure 6. n=100,m=20,p=2

In conclusion numerical simulations show that the resolvent predictors perform well and give
stable MSE and RMAE errors.

4-2. Examples

4-2.1. Atmosphère Carbon Dioxide Concentration

We consider data of C02 concentration measure (unit: ppm = parts per million) in the atmo-
sphere during the period from 1959 until 2015 available at web site :

http://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2. Figure 14 shows the growth of C02
émissions in the atmosphère showing a clear sign of global warming.
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- MA 1 .439- MS 0.066

Figure 7. n=100,m=20,p=1

Figure 8. n=100,m=30,p=2

- (VIA 1 .725- MS 0.030

Figure 9. n-100,m=30,p-7

Figures 15 displays Resolvent Predictor (in red) of Atmosphère C02 Concentration (in black)
for 1975 respectively 2015.

As we observe, resolvent predictors of Atmosphère C02 Concentration give small RMAE
errors of 1.67% and 2.32 % respectively. So they perform well and show a good trend of the
actual trajectory as the graphies display.

4-2.2. Nottingham Castle Température

We consider historical data of températures in Nottingham Castle during the period frorn Jan-
uary lst, 1920 to December 31,1939. This sériés lias been analyzed by many authors. To compare
the performance of resolvent predictors with others existing prédiction methods ( [2] [1] [3] [6] [13]),



0.0 0.2 0.4- 0.6 0.8

- MA 1 .4-23- IV1S 0.061

Figure 10. n-150,m=20,p=2

- MA 1 .346- rVIS 0.057

Figure 11. n=150,m=20,p=7

- fVIA 2.121- MS 0.038

Figure 12. n-150,m=30,p=2

we calculate RMAE errors of prédiction of the reference year 1939.
Figure 16 displays température values in Nottingham Castle during the period: 1920 - 1939.
Figure 17 displays Resolvent Predictor (in red) of Nottingham Castle températures (in black)

for 1939.

Table 1 displays RMAE errors for different available prédiction methods.
We remark that in the case of Castle Nottingham températures we hâve only 19 observations

which is very little.
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- IV1A 1 .~7~7- rvis 0.03

Figure 13. n=150,m=30,p=7

Carbon dioxide concentration between 1959—2015

Figure 15.

Prédiction methods RMAE errors

Wavelet-Kernel 3%
Spline Smoothing 2.8%
SARIMA 3.1%
Sieves Predictor 2.95%
Continuons BLUP 2.96%
Resolvent Predictor 7.07%

Table 1

Prédiction RMAE errors of Castle Nottingham températures for 1939
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iS

S

S%

Figure 16. Nottingham Castle Températures (1920 - 1939)

Figure 17. MSE=9.65,RMAE=0.0707

4-2.3. Climatological sériés ENSO

We consider historical data of El Nino 3 (ENSO) Océan surface températures during the period
from January 1950 until December 2015 where monthly average values are recorded available
at web site : Climate Prédiction Center - Monitoring and Data: ENSO Impacts on the U.S. -

Previous Events. There is a growing interest to predict this sériés because its effect on worldwide
climate change. It has been analyzed by many authors. We compare the performance of resolvent
predictors class with others existing prédiction methods in the literature ([2] [1] [5] [14] [13]) on
the base of MSE and RMAE errors of prédiction for the référencé years 1986 and 2006.

Following figure shows El Nino 3 températures with monthly observations during the period:
January 1950 - December 2015.

Figure 18.

Figure 19 shows resolvent predictor (in red) and Océan surface température (in black) for
1986 respectively 2006.

Tables 2 and 3 display RMAE errors values of known prédiction methods ( [1] [2] [3][6][13])
for 1986 respectively 2006.

Conclusion. In ail datasets analyzed in this part, we may observe that resolvent predictors
perform well and exhibit good prédictions. They give good compétitive results on the base on
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Figure 19.

Prédiction methods RMAE errors

Wavelet II 0.89%
Wavelet III 1.20%
ARHD a=0.4,/3=0.8 1.33%
ARHD a=0.1,/3=0.4 1.25%
SARIMA 3.72%
FAR 0.89%
Discrète BLUP 1.25%
Continuons BLUP 1.31%
Sieves Predictor 1.31%
Resolvent Predictor 1.78%

Table 2

Prédiction RMAE errors of Océan surface températures for 1986

Prédiction methods RMAE errors

Climatologie 2.5%
SARIMA 3.7%
Kernel 2.3%
Functional kernel 2.2%
Smooth FAR(l) 2.3%
Smooth FAR(l),p=q=l 2.4%
Local FAR(l) 2.2%
Discrète BLUP 1.4%
Sieves Predictor 2.46%
Resolvent Predictor 1.99%

Table 3

Prédiction RMAE errors of Océan surface température for 2006

both errors MSE and RMAE. Their performance give new insights on prédiction perspectives
with respect to other well-known parametric and nonparametric techniques existing in the
literature.

5. Proofs

Proof of Theorem 3.1. Introduce the random operators Un = ^ Ti, where
T; =< £j+i,. > Xi with Ti G S. We can write

f’n,V ~ fn,P(Cx0)CXy = (înACn)C„ - /„,p(Cx0)CX>- + /„,p(C„)U,
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Then for some 77 > 0, we hâve

P (I\Pn,p ~ fn,p{CXo)Cx0P*\\c >V) < X>||,s> nrj

-\\fn.p(Cn)\\c

+ P ( \\fn,P{Cn)Cn ~ fn,p(CXo)Cx0\\c > 2||p*

But \\fn,p{Cn)\\c < and p is bounded, then

(5-1P {\\Pn,p ~ fn,p(Cx0)CXoP*l\c > v) < P ( I! £ T‘ H« > ^
i= 1

+ P || fn,p(Cn)Cn - fnACx0)CXo\\c > 2||p*lk

The first term in (5.1):
The rv’s T) is a martingale différence with respect to the filtration = a{£j,j < i), moreover

irniu <11^11 nei+1|i<c(i+iM£)

Hence EBi~1 ||T2|j5 < c2cr2. So by Theorem 2.14 in [5] we hâve

E .. TlCXfiTI \> 7. I < 2exp
2 2

ncçjr( 8c2cr2 + |c(l+||p||£)an77

The second term in (5.1):
We hâve

fn,r(Cn)Cn - f„,v{CXo)Cxo = (C„ + a„/r(’’+1)K+1 - Cj+'j
An,p

+ (Cn + an/)_(p+1) [{Cx0 + an/)p+1 - (Cn + an/)p+1] <7■p+i
*0 '

We can easily verify that

||-4n,p||jC 5; p+iKp,n\\Cn C'.VqIIcS

and

BnJci-fâKJCn-Cxoh
(%n

where KP)ïl := ]Pp=o Ag>n*AJ and Kp n = EÎ=o(Ao,n + an)p *(Ao + an)1.
Then for ail 77 > 0, we obtain

P || fnACn)Cn - fn,p{CXo)CXo\\C > 2|| P*\\c <v[(Kr,rl + K')\\Cn-Cx<,\\s>
Va%i+1
2||P*IU

Consider the event En defined by En — |Ao,n > ^ j = {Ao,n — Aq > j where Aq > 0.
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We hâve

P {En) < P (jA0,n - Aol > y) < P (||C„ - CXo\\s > y
Hence from Theorem 2.4 [5], we imply

P(B„)<4exp (-2(2a;^iAo))
where a\ et fi\ are constants depending only on p et Peo.

Note that on the event En we hâve Kv.n + Kpn < 2(p + 1)Aq a.s.
So

p+i
mn

(K„,n + K^n)\\Cn-CxAs>~^

We will deduce from Theorem 2.4 [5]

fl Er

rUyP+1
+ K'pn)\\C„ - Cxolls >

< P ( \\Cn - Cx0;||5 >

n En

T](Â+1

4(p + l)Agl|p*|L

< 4exp
2 (p+1) 2nany V( 4(p + l)Àg||p*||£[4ai(p + l)Ag||p%o:i + Pi(Z+1rj\J

Therefore

i,p(Cn)Cn ~ fn,p(CXo)CX0\\jC > 2||p*]j~^)
(Kp,n+K')\\Cn-CxAs>

p+1
mn

2|| P*\\c
fl En 1 + P(En)

< 4exp —

2(p+l) 2
nan V

4(p + l)Aol|p*lk[4ai(p + l)Ag||p* lirai + Pia^+1p]
+ 4exp

< 4exp

n\20( 2(2ai + /3iAo)
nanP+l\2

i o-j— X
Pl + p2Oin V

where pi = max(16(p+ l)2AqP||p*||^., 2(2«i + /3iA0)) et p2 — 4(p + l)\vQ\\p*\\cPi.
Finally regrouping the latter results and from (5.1) we arrive at

S(llPn,p - fn,p(CX0)CX0P*\\c > ??)
< 2 exp I —

na2np2
24c2 a2 + |c(l + ||p||£)û!nr?

+ 4 exp
na^p+1\2 \

pi + p2a^+1r] J

< 4 exp

J2(p+l)^2\f nan1 ' ’rp

^ P3 + PïCtn

where Pz,Pa are positive constants.
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Choosing now rj = A (—^ry) ' ,A\ nan J
> 0, we obtain

P (nal^y2
y log n J IIPn,p fn,V{Cx0)Cx0P*\\c > A < qexp

/ A2 log n \
V P3 + P4AJ

< 'yiîi ^3+v4a .

By A2 > /n3 + p4A, we may conclude by Borel-Cantelli Lemma. This ends the proof of the
theorem.

Proof of Proposition 3.2.
Direct so omitted.
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