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Abstract: This article deals with the development of a simple model to evaluate the first natural
frequencies of over-constrained parallel kinematic machines (PKMs). The simplest elasto-dynamic
models are based on multi-body approaches. However, these approaches require an expression of the
Jacobian matrices that may be difficult to obtain for complex PKMs. Therefore, this paper focuses on
the determination of the global mass and stiffness matrices of an over-constrained PKM in stationary
configurations without the use of Jacobian matrices. The PKM legs are modeled by beams. Because
the legs are connected to a moving platform and the mechanism is over-constrained, constraint
equations between the parameters that model the deformation of each leg are determined according
to screw theory. The first natural frequencies and associated modes can then be determined. It should
be noted that the proposed method can be easily used at the conceptual design stage of PKMs. The
Tripteor X7 machine is used as an illustrative example and is characterized experimentally.

Keywords: parallel kinematic machine tool; over-constrained system; elasto-dynamic model; screw theory

1. Introduction

Parallel Kinematic Robots are used in many fields such as medicinal, aerospace,
rehabilitation, and astronomy [1]. In industry, parallel kinematic robots are mainly used for
pick-and-place operations [2]. However, a few Parallel Kinematic Machine Tools (PKMs)
are used in the automotive or aeronautical industries for High-Speed Machining (HSM)
operations [3]. Their dynamic performances, in terms of acceleration, are better for an
equivalent motorization than Serial Kinematic Machine Tools (SKMs) due their closed-loop
architecture [4]. However, the design of these closed-loop architectures imposes to control
leg size that reduces mobile masses and leads to a loss of stiffness compared to SKM [5,6].

One way to improve PKM stiffness behavior is to use an over-constrained architecture.
To this aim, an over-constrained PKM, named Exechon, was designed by Neumann [7],
and the PCI-SCEMM company chose to integrate an Exechon robot into the design of
Tripteor X7 machine tool (Figure 1). An over-constrained system is considered to be a
hyperstatic system which is defined by the IFToMM terminology as a system in which
the distribution of internal forces depends on the material properties of the members of
the system [8]. Thus, an over-constrained PKM is defined as a PKM with common or
redundant constraints that can be removed without changing the kinematic properties of
the mechanism [9]. Thus, the study of an over-constrained mechanism behavior can be
complex due to the generation of static indeterminacy and geometric constraints [10].

Previous work highlights the impact on part quality of PKM vibrations during ma-
chining [11]. Depending on the machined part position, marks appear on the machined
surfaces. To minimize these vibrations, it is of prime importance to express a parameterized
elasto-dynamic model for over-constrained PKMs. Such a model enables the prediction
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of static and vibration behavior during the conceptual design stage. Moreover, as PKM
behavior is anisotropic and changes regarding the tool pose, the elasto-dynamic model of
the PKM should be fast to compute to quickly obtain its stiffness, its first natural frequencies
and associated modes throughout the manipulator workspace.

Figure 1. Tripteor X7 Parallel Kinematic Machine Tools.

Two main methods are classically used in the literature to express the elasto-dynamic
model of an over-constrained PKM:

1. Finite Element Analysis (FEA): this method is the most accurate one, but it requires
the exact definition of the mechanism components. It is usually used for validation
purposes at the final design stage since it is time-consuming [12–15].

2. Multi-body approaches: PKM legs can be modeled, for example, using beam the-
ory and their joint behavior relies on Virtual Joint Method (VJM) [16,17]. In the
literature, the simplest elasto-dynamic models are based on multi-body approaches.
This method can only be applied for robot architectures whose hypotheses are valid.
Other formulations are introduced to consider large deformations of flexible manip-
ulators [18] or to decrease simulation time for complex mechanisms such as Matrix
Structural Analysis (MSA) [19]. The decreasing of the time simulation is generally
based on the development of a methodology to merge stiffness and mass matrices of
all elements of the mechanism [19,20].

In this article, multi-body approach, a robust but simple approach to obtain a param-
eterized elasto-dynamic model, is preferred to the use of complex and time-consuming
FEA. The prediction of vibration phenomena requires the determination of the first natural
frequencies and their associated modes. In [16,17], this is performed by computing the
global mass matrix and the global stiffness matrix. However, the computation of mass and
stiffness matrices is complex in the case of over-constrained mechanisms such as Exechon
PKM. Indeed, the complex coupling between displacement vector components due to
over-constrained properties must be considered during the sub-systems matrix assembly
stage. Thus, the application of this approach to over-constrained PKMs requires the deter-
mination of Jacobian matrices to characterize kinematic dependencies due to closed-loop
over-constrained mechanisms [16,21] or the definition of a complex methodology to merge
stiffness matrices of each PKM element [19]. Those Jacobian matrices describe the kine-
matic behavior of PKMs by derivation of the geometric model as in Germain’s [16] and
Zhang’s [17] works. Geometric model or closed-loop constraints of complex PKM, such
as Exechon robot, can sometimes not be computed in a systematic and straightforward
way [16,22]. For example, the expression of the geometric model of an Exechon robot is
based on a system of nonlinear equations that are not easy to establish [23]. Moreover, its
solving requires a numerical optimization with the Newton-Raphson method.

This paper aims to introduce a reliable and simple method to compute global mass and
stiffness matrices for over-constrained PKMs, under the assumption of small displacements
and using screw theory. This methodology is relevant for high-stiffness architectures such
as machine tools and industrial robots where flexibility generates only small displacements.
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These mathematical tools allow defining geometric dependencies of leg movements without
the computation of Jacobian matrices [24]. Screw theory is used both:

1. To express the kinematic behavior of each PKM leg using the theory of Timoshenko
beams [25] and

2. To determine the displacement constraints applied to each leg extremity due to over-
constrained mechanism closed-loops [26].

There are different ways to parameterize the orientation of a rigid body such as
quaternion [27]. The choice of screw theory ensures use of the same representation for the
actuation and constraint wrenches applied to the moving platform by the actuators and the
geometry of the mechanism.

This second point is the main contribution of our work and allows us to take into
account stress due to over-constrained with geometric constraint equations extracted only
from the screw theory application to the passive joints. With this method, the computation
of global mass and stiffness matrices is easy to implement. It assumes only geometrical
constraints between displacement vector components without the introduction of the
Jacobian matrices. Global mass and stiffness matrices are then computed to estimate PKM
Cartesian stiffness, the first natural frequencies and their associated modes. This work is
relevant at the embodiment design stage of the robot when only a parameterized CAD
modeling of the PKM under study is available. Indeed, at this stage, a fast computation
time is required to assess the capability of the PKM in terms of vibration behavior and to
determine the optimal architecture and dimensions of the robot under design. During the
next design stages, when accurate simulation results are needed, FEA can be preferred
although it is more computation intensive.

It should be noted that the revolute joints of the Tripteor legs are stiff; their stiffness
is larger than 1.04× 109 N·m−1 [28]. Moreover, the stiffness of the spherical wrist of the
Tripteor is even more important. As a consequence, and for the sake of clarity, only the
deflection of Tripteor X7 PKM legs is considered in what remains. The joint deflection can
be taken into account by adding local stiffness such as with the Virtual Joint Method [29].

The paper is organized as follows: Section 2 presents the Tripteor X7 PKM and its
parametrization. Section 3 describes the proposed method to express the elasto-dynamic
model of PKMs and to compute their natural frequencies. As an illustrative example, the
stiffness matrix, the natural frequencies and associated modes of the Tripteor X7 PKM are
computed in Section 4. Finally, conclusions and future work are drawn in Section 5.

2. Tripteor X7 PKM

Tripteor X7 PKM is manufactured by the PCI-SCEMM company in France. It is a
hybrid PKM. Its architecture is a combination of a parallel mechanism and a serial wrist
mounted in series. Such a hybrid manipulator ensures the decoupling of translational and
rotational motion of the end-effector. Moreover, hybrid manipulators usually have a better
dexterity than fully parallel manipulators as explained in [30].

Tripteor X7 PKM is a six-axis PKM with the following actuated joint variables (q1, q2,
q3, q4, q5) shown in Figure 2 and one-DoF rotary table represented in Figure 1. The revolute
joint variable of this rotary table is denoted as q6. A parallel mechanism provides three
Degrees of Freedom (DoFs) from the actuation of three ball screw systems (q1, q2 and q3)
and a serial wrist with two DoFs from the actuation of two revolute joints with direct and
belt drives (q4 and q5). The elongations q1, q2 and q3 of Leg 1, Leg 2 and Leg 3 provide
translational motions of the moving platform along axis xb, yb and axis zb with induced
rotational motions about axis xb and axis ym. The serial wrist ensures rotational motions of
the end-effector.

The paper aims to introduce a new methodology to compute natural frequencies of
over-constrained closed-loop mechanism in the case of PKM. Thus, only the vibration
behavior of the parallel mechanism composed of Leg 1, Leg 2, Leg 3 and the mobile
platform (4) is studied in this paper (Figure 2). If a study of the complete PKM should be
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carried, a simple assembly of global mass and stiffness matrices of the parallel mechanism
and the serial wrist can then be carried out.

Figure 2. Kinematic model of Tripteor X7 PKM.

Each leg is connected to the mobile platform (4) by a revolute joint and to the fixed
platform (0) by two revolute joints which form a universal joint (Figure 2). It is worth noting
that Leg 2 has a supplementary revolute joint around its principal axis. Consequently,
bending and traction-compression loads are prescribed to Leg 2 whereas Legs 1 and 3
are loaded in bending, traction-compression, and torsion [28]. The mobile platform is
supposed to be rigid. Because stiffness and low frequencies are of primal importance
in machining [11], an efficient and fast way to compute those frequencies is described
in this paper. For this purpose, a local model of a PKM leg under bending, traction-
compression, and torsion loads is introduced before the definition of constraint equations
due to mechanism assembly.

3. Elasto-Dynamic Modeling of PKMs

This section introduces the novel elasto-dynamic modeling approach and its applica-
tion to PKMs. For the sake of pedagogy, we introduce our method for PKMs with telescopic
legs such as the Tripteor X7 (Figure 3). Ai and Bi are the leg extremities. Ai is attached to
the PKM base and Bi is fixed to the mobile platform. The coordinate system associated
with the fixed base is denoted as Rb = (O, xb, yb, zb) and with the mobile platform as
Rm = (P, xm, ym, zm). zi is the unit vector along leg i direction.

This method can be applied to any PKMs whose legs can be modeled by beams.

Figure 3. Definition of used parameters for PKM with telescopic legs.
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3.1. Local Modeling of PKM Leg

First, each leg is modeled assuming the usual Euler-Bernoulli beam theory. It is worth
noting that this model considers the usual mechanical loads, which are bending, traction-
compression, and torsion conditions. Each leg is considered to be being connected at one of
its ends via a given joint to a fixed part (Figure 4). This boundary condition depends on the
joint type used for connecting the leg to the fixed base. In this sub-section, we first study
the modeling and the parameter definition of a leg assuming generic boundary conditions
to elaborate a leg stiffness matrix Ke and a leg mass matrix Me in the leg coordinate system.
With a generic beam model, leg kinematics are defined through six displacement functions,
which correspond to the displacement of the neutral axis. u(x) is the vector that collects
those displacement functions:

u(x)T =
[
u(x) v(x) w(x) θα(x) θβ(x) θγ(x)

]T (1)

u(x) is the displacement along the neutral axis, v(x) and w(x) are the displacements along
fi-direction and fl-direction. θα(x), θβ(x), and θγ(x) correspond to the small rotations about
ff-axis, fi-axis and fl-axis, respectively. Using a Bernoulli beam theory, cross-sectional
displacements and rotations satisfy the following equations:

θγ(x) =
dv
dx

(x), θβ(x) = −dw
dx

(x) (2)

Figure 4. Local leg model and displacement parameters.

Each kinematic function corresponds to a force function. In the following, fbeam denotes
the force vector and mbeam is the moment vector such that:{

fbeam(x) = N(x)ff + Tβ(x)fi + Tγ(x)fl
mbeam(x) = Mt(x)ff + Mβ(x)fi + Mγ(x)fl

(3)

where N(x) is the axial force, Tβ(x) and Tγ(x) are the shear forces, Mt(x) is the torsion
moment, and Mβ(x) and Mγ(x) are the bending moments. As there is no distributed load,
the governing equilibrium equations give:

dN
dx

(x) = 0,
dTβ

dx
(x) = 0,

dTγ

dx
(x) = 0

dMt

dx
(x) = 0,

dMβ

dx
(x)− Tγ(x) = 0,

dMγ

dx
(x) + Tβ(x) = 0

(4)

In addition, the kinematic and force functions are related to each other as follows:

N(x) = ES
du
dx

(x), Mt(x) = GIG
dθα

dx
(x), Mβ(x) = EIβ

dθβ

dx
(x), Mγ(x) = EIγ

dθγ

dx
(x) (5)
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where E is the material Young’s modulus, S is the cross-sectional area, and IG, Iβ and Iγ are
moments of area about ff-axis, fi-axis and fl-axis.

Combining Equations (2), (4) and (5), we can conclude that u(x) and θα(x) are lin-
ear functions, whereas v(x) and w(x) are polynomial functions of order 3. In a generic
case, all kinematic functions can thus be defined through their nodal values expressed
in Equation (6).

u(x) =



u(0)+ x
q (u(q)−u(0))

v(0)+θγ(0)x−
(

2θγ(0)+θγ(q)
q − 3(v(q)−v(0))

q2

)
x2+

(
θγ(0)+θγ(q)

q2 − 2(v(q))−v(0))
q3

)
x3

w(0)−θβ(0)x+
(

2θβ(0)+θβ(q)
q +

3(w(q)−w(0))
q2

)
x2−

(
θβ(0)+θβ(q)

q2 +
2(w(q)−w(0))

q3

)
x3

θα(0)+ x
q (θα(q)−θα(0))

θβ(0)−2
(

2θβ(0)+θβ(q)
q +

3(w(q)−w(0))
q2

)
x+3

(
θβ(0)+θβ(q)

q2 +
2(w(q)−w(0))

q3

)
x2

θγ(0)−2
(

2θγ(0)+θγ(q)
q − 3(v(q)−v(0))

q2

)
x+3

(
θγ(0)+θγ(q)

q2 − 2(v(q)−v(0))
q3

)
x2


(6)

unod denotes the vector collecting the nodal values of the kinematic functions (Figure 4)
and is expressed as a 1 × 12 column vector:

unod =

[
u(0)
u(q)

]
(7)

Vectors Nu(x), Nv(x), Nw(x), Nθα(x), Nθβ
(x) and Nθγ(x) express the nodal values as

a function of x coordinate bounded between 0 and q, i.e., x ∈ [0, q]:

u(x) = Nu(x)Tunod
v(x) = Nv(x)Tunod
w(x) = Nw(x)Tunod
θα(x) = Nθα(x)Tunod
θβ(x) = Nθβ

(x)Tunod

θγ(x) = Nθγ(x)Tunod

(8)

From [31], the beam potential energy Ep is written as:

Ep =
1
2

∫ q

0

[
ES
(

du(x)
dx

)2

+ GIG

(
dθα(x)

dx

)2

+EIβ

(dθβ(x)
dx

)2

+ EIγ

(
dθγ(x)

dx

)2
]

dx (9)

From Equations (8) and (9), Ep can be expressed in a compact form as a function of the
beam stiffness matrix Ke and unod as follows:

Ep =
1
2

uT
nodKeunod (10)

With matrix Ke taking the form of Equation (11).
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Ke =



ES
q 0 0 0 0 0 − ES

q 0 0 0 0 0

0 12EIγ
q3 0 0 0 6EIγ

q2 0 − 12EIγ
q3 0 0 0 6EIγ

q2

0 0
12EIβ

q3 0 −
6EIβ

q2 0 0 0 −
12EIβ

q3 0 −
6EIβ

q2 0

0 0 0 GIG
q 0 0 0 0 0 − GIG

q 0 0

0 0 −
6EIβ

q2 0
4EIβ

q 0 0 0
6EIβ

q2 0
2EIβ

q 0

0 6EIγ
q2 0 0 0 4EIγ

q 0 − 6EIγ
q2 0 0 0 2EIγ

q

− ES
q 0 0 0 0 0 ES

q 0 0 0 0 0

0 − 12EIγ
q3 0 0 0 − 6EIγ

q2 0 12EIγ
q3 0 0 0 − 6EIγ

q2

0 0 −
12EIβ

q3 0
6EIβ

q2 0 0 0
12EIβ

q3 0
6EIβ

q2 0

0 0 0 − GIG
q 0 0 0 0 0 GIG

q 0 0

0 0 −
6EIβ

q2 0
2EIβ

q 0 0 0
6EIβ

q2 0
4EIβ

q 0

0 6EIγ
q2 0 0 0 2EIγ

q 0 − 6EIγ
q2 0 0 0 4EIγ

q



(11)

From [31], the beam kinetic energy Ek is defined as:

Ek =
1
2

ρ
∫ q

0

∫∫
S

vT
MvMdxdydz (12)

where ρ is the beam material density, and vM is the point velocity along the beam ex-
pressed as:

vM =
(
u̇(x) + zθ̇β(x)− yθ̇γ(x)

)
ff +

(
v̇(x)− zθ̇α(x)

)
fi +

(
ẇ(x) + yθ̇α(x)

)
fl (13)

Combining Equations (12) and (13) with the hypothesis that fi-axis and fl-axis are
principal axes of inertia, the kinematic energy Ek writes:

Ek =
1
2

ρS
∫ q

0

(
u̇(x)2 + v̇(x)2 + ẇ(x)2

)
dx +

1
2

ρIββ

∫ q

0

(
θ̇α(x)2 + θ̇β(x)2

)
dx

+
1
2

ρIγγ

∫ q

0

(
θ̇α(x)2 + θ̇γ(x)2

)
dx (14)

with Iββ and Iγγ the beam inertia about fi-axis and fl-axis. Equation (14) takes the following
compact form:

Ek =
1
2

u̇T
nodMeu̇nod (15)

with u̇nod the time derivative of vector unod and Me the mass matrix of beam expressed
in Equation (16).

Me =



b
3 0 0 0 0 0 b

6 0 0 0 0 0

0 13
35 b+ 6ρIγγ

5q 0 0 0 ρIγγ
10 + 11c

210 0 9b
70−

6ρIγγ
5q 0 0 0 ρIγγ

10 −
13c
420

0 0
6ρIββ

5q + 13
35 b 0 −

ρIββ
10 −

11c
210 0 0 0 9b

70−
6ρIββ

5q 0 −
ρIββ

10 + 13c
420 0

0 0 0 a 0 0 0 0 0 a
2 0 0

0 0 −
ρIββ

10 −
11c
210 0

2ρIββq
15 + d

105 0 0 0
ρIββ

10 −
13c
420 0 −

ρIββq
30 −

d
140 0

0 ρIγγ
10 + 11c

210 0 0 0 2ρIγγq
15 + d

105 0 − ρIγγ
10 + 13c

420 0 0 0 − ρIγγq
30 −

d
140

b
6 0 0 0 0 0 b

3 0 0 0 0 0

0 9b
70−

6ρIγγ
5q 0 0 0 − ρIγγ

10 + 13c
420 0 13

35 b+ 6ρIγγ
5q 0 0 0 − ρIγγ

10 −
11c
210

0 0 9b
70−

6ρIββ
5q 0

ρIββ
10 −

13c
420 0 0 0

6ρIββ
5q + 13

35 b 0
ρIββ

10 + 11c
210 0

0 0 0 a
2 0 0 0 0 0 a 0 0

0 0 −
ρIββ

10 + 13c
420 0 −

ρIββq
30 −

d
140 0 0 0

ρIββ
10 + 11c

210 0
2ρIββq

15 + d
105 0

0 ρIγγ
10 −

13c
420 0 0 0 − ρIγγq

30 −
d

140 0 − ρIzz
10 −

11c
210 0 0 0 2ρIγγq

15 + d
105



(16)

with a =
ρ(Iββ+Iγγ)q

3 , b = ρSq, c = ρSq2 and d = ρSq3.
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To compute the global mass and stiffness matrices, the constraints between the dis-
placements of the leg extremities are determined in the next section.

3.2. Constraint Equations

The mobile platform is considered to be rigid for the elaboration of the constraint
equations between the leg extremities. We therefore express the movement of the mobile
platform due to leg flexibility in stationary configurations of the PKM architecture using
screw theory [26] (Figure 5).

Figure 5. Parametrization of mobile platform small displacement.

The small displacement screw Tm of the mobile platform is influenced by displacement
and rotation ui(qi) of the leg i at point Bi regarding the movements of passive joints between
leg i and mobile platform. A normalized screw is used to model passive joint movement [32].
Each movement between leg i and mobile platform is model with a one-DoF motion-screw:

Sik =

[
SFik
SSik

]
=



[
sik

sik × rik

]
if it is a rotational movement

[
0

sik

]
if it is a prismatic movement

(17)

where k = 1 to ni (ni is the number of equivalent one-DoF joints between leg i and mobile
platform, ni = 1 for the case study), sik is a unit vector along the axis of the screw Sik, rik is
a vector directed from any point on the screw axis to point Bi.

The computation of the movement transmitted by the leg to the mobile platform or
vice versa can be done using the reciprocal screws of the motion-screws Sik. There is a
unique normalized reciprocal screw system T ⊥ik of order 5 of Sik [32]. For a rotational joint,
the reciprocal system is a 5-system which includes all rotational screws whose axes intersect
the joint axis and all prismatic screws whose axes are perpendicular to joint axes and all
the combinations of the above reciprocal screw [32]. The relation between screw Sik and
the five one-DoF reciprocal screws S⊥ijk is:

([
0 I3
I3 0

]
Sik

)T

S⊥ijk = 0 (18)

where I3 is the 3 × 3 identity matrix, 0 is the 3 × 3 zero matrix, j = 1 to 5. Then,
T ⊥ik = (S⊥ijk with j = 1 to 5).

The small displacement screw is defined as Tm =

[
!

dBi

]
with ! the rotation vector of

the mobile platform and dBi the small displacement vector of point Bi (dBj = dBi + bij × !
with bji the vector from Bj to Bi). For leg i, the relation between Tm and ui(qi) is written:

ni

∏
k=1

(
5

∑
j=1
S⊥ijk

) (
ui(qi)−

[
Rlegi→beamRRm→legi

dBi

Rlegi→beamRRm→legi
!

])
= 0 (19)
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where Rlegi→beam is the rotational matrix between the beam coordinate system and the leg
i coordinate system, and RRm→legi

is the rotational matrix between the leg i coordinate
system and the mobile platform coordinate system.

Constraint equations are defined by expressing Equation (19) for each leg and using
small displacement screw properties.

In the same way, the nodal displacement ui(0) is limited due to passive joints between
the leg i and the fixed base. We note S ′ik the movement-screws between leg i and fixed base.
Thus, the null nodal parameter is computed from: n

′
i

∏
k=1

(
5

∑
j=1
S ′ijk
⊥
)ui(0) = 0 (20)

where n
′
i is the number of equivalent one DoF joints between leg i and fixed base. For the

case study, n
′
1 = n

′
3 = 2, n

′
2 = 3.

From Equations (19) and (20), constraint equations are grouped together as:

LDuD + LIuI = 0⇒ uD = −L−1
D LIuI (21)

where uD is a vector composed of the set of beam nodal dependent parameters extracted
from all ui(qi). Its size is equal to the rank of the equation system (19) for all legs. uI is a
vector composed of the set of beam nodal independent parameters, which is not included
in uD. The choice of uD and uI is not unique. The components of matrices LD and LI are
the factor of vectors uD and uI components in Equations (19) and (20).

Equation (21) corresponds to a simple formulation of the closed-loop geometric con-
straints for over-constrained PKM and is the major contribution of the paper. The determi-
nation of stiffness and vibratory behavior of a PKM is based on the definition of its global
mass and stiffness matrices. These matrices are defined in the following section.

3.3. Mass Matrix Computation of Mobile Platform

The mobile platform and the serial wrist are considered to be a point-mass m located
at its center of mass G. Thus, kinematic energy Ekm writes:

Ekm =
1
2

mvT
GvG (22)

vG being the linear velocity of point G. Under the assumption of small displacement vG is
expressed as:

vG = ḋG = ḋB1 + g1 × !̇ (23)

where dG is the small displacement of point G, ḋG is its time derivative and g1 is the vector
from G to B1.

Equation (23) allows defining Ekm according to beam nodal parameters:

Ekm =
1
2

(
u̇D
u̇I

)T

Mem

(
u̇D
u̇I

)
(24)

where Mem is the mobile platform mass matrix. To compute natural frequency of the system,
this mass matrix is added to the legs mass matrix.

3.4. Cartesian Stiffness Computation

K is the global stiffness matrix of the PKM. It is obtained from the assembly of stiffness
matrices Ke of the three legs such that:

K =

[
KD KDI
KT

DI KI

]
(25)
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where KD is the stiffness matrix corresponding to dependent beam nodal parameters uD,
and KI corresponds to the independent ones uI. KDI is the coupling matrix.

From Equation (21), a decomposition between dependent and independent beam
nodal parameters is used to express the potential energy Ep:

Ep =
1
2

uD

uI

TKD KDI

KT
DI KI

uD

uI

 =
1
2

uT
I K̃uI (26)

Consequently, this allows the introduction of the condensed matrix form K̃ of the
global stiffness matrix of the studied PKM, which now only depends on the independent
beam nodal parameters, such that:

K̃ = LT
I

(
L−1

D

)T
KDL−1

D LI −
(

KT
DIL

−1
D LI +

(
KT

DIL
−1
D LI

)T
)
+ KI (27)

The Cartesian stiffness matrix Kc can be introduced from the expression of the potential
energy Ep according to:

Ep =
1
2

uT
I K̃uI =

1
2

ffixTKcffix (28)

where ffix is the small displacement vector of point Om expressed in the base frame. Thus,
ffix = R−1

m
(
dBi + bmi × !

)
= LXIuI where Rm is the rotation matrix from the base frame

to the mobile platform frame and bmi is the vector from Om to Bi. Finally, the Cartesian
stiffness matrix of the PKM is computed from K̃:

Kc =
(

LXILT
XI

)−1
LXIK̃LT

XI

(
LXILT

XI

)−1
(29)

Note that Kc is a 3× 3 matrix and its components are the stiffness along the PKM base
frame vectors.

3.5. Natural Frequency Computation

The global stiffness matrix M of the PKM is obtained from the assembly of the mass
matrices Me and Mem of the three legs and mobile platform, respectively. It is expressed as:

M =

[
MD MDI
MT

DI MI

]
(30)

where MD is the mass matrix corresponding to dependent beam nodal parameters uD,
whereas MI corresponds to the independent ones uI. MDI is the coupling matrices.

The decomposition between dependent and independent parameters is used to express
the kinetic energy Ek as follows:

Ek =
1
2

[
uD
uI

]T[MD MDI
MT

DI MI

][
uD
uI

]
=

1
2

uT
I M̃uI (31)

Consequently, this allows the introduction of the condensed matrix form of the global
mass matrix M̃, which now only depends on the independent beam nodal parameters:

M̃ = LT
I

(
L−1

D

)T
MDL−1

D LI −
(

MT
DIL

−1
D LI +

(
MT

DIL
−1
D LI

)T
)
+ MI (32)

The eigenvalues λev and the associated eigenvector uev are determined from the spec-
tral decomposition of matrix M̃−1K̃. The eigenvalues are the solutions of the polynomial
det

(
M̃−1K̃− λevI

)
= 0. The ith natural frequency f0i is expressed as a function of the ith
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eignevalue λevi as follows: f0i =
√

λevi
2π . The natural modes are the eigenvectors associated

with those natural eigenvalues.

4. Natural Frequencies and Modes of Tripteor X7

The methodology described in Section 3 is applied in this section to calculate the
natural frequencies and associated modes of the Tripteor X7 PKM.

4.1. Identification of Null Legs Nodal Parameters

The null nodal parameters of ui(0) depend on the joint types between the legs and the
base as shown in Figure 6. The first joint of Legs 1 and 3 with the base is a revolute joint
about fl-axis, and the second joint is about fi-axis. Thus, for Legs 1 and 3, infinitesimal and
reciprocal screw motion are the following:

S ′i1 =



0
0
1
0
0
0

 and S ′i2 =



0
1
0
0
0
0

⇒
5

∑
j=1
S ′⊥ij1 =



1
1
1
1
1
0

 and
5

∑
j=1
S ′⊥ij2 =



1
1
1
1
0
1

 (33)

Figure 6. Local parameters for Tripteor X7 legs.

Thus, from Equation (20), only θβi(0) and θγi(0) are not null.
For Leg 2, with the same methodology, we obtain that only θα2(0), θβ2(0) and θγ2(0)

are not null (Figure 6b).
To compute the global mass and stiffness matrices, the motion constraints between the

extremities of the three legs are explained hereafter.

4.2. Constraint Equations

The joints between Legs 1 and 3 and the mobile platform are revolute joints about
ym-axis (fi-axis) and the joint between Legs 2 and the mobile platform is a revolute joint
about xm-axis (fl-axis) (Figure 7). Thus, the reciprocal motion-screws in the leg coordinate
system are:

5

∑
j=1
S⊥1j1 =

5

∑
j=1
S⊥3j1 =



1
1
1
1
0
1

 and
5

∑
j=1
S⊥2j1 =



1
1
1
1
1
0

 (34)
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Figure 7. Parametrization of Tripteor mobile platform movement.

From Equation (19), the equation associated with the motion constraints between the
mobile platform and the three legs of Tripteor X7 are the following:

5

∑
j=1
S⊥1j1

[
u1(q1)−

[
Rleg1→beamRRm→leg1dB1

Rleg1→beamRRm→leg1 !

]]
= 0 (35)

5

∑
j=1
S⊥2j1

[
u2(q2)−

[
Rleg2→beamRRm→leg2dB2

Rleg2→beamRRm→leg2 !

]]
= 0 (36)

5

∑
j=1
S⊥3j1

[
u3(q3)−

[
Rleg3→beamRRm→leg3dB3

Rleg3→beamRRm→leg3 !

]]
= 0 (37)

z1 (resp. z2 and z3) is the unit vector along the direction of the ith prismatic joint, i = 1, 2, 3
as shown in Figure 8. The rotation matrix between the beam coordinate system and the leg
coordinate system is expressed as:

Rbeam→leg =

 0 0 1
0 1 0
−1 0 0

 (38)

Figure 8. Leg and mobile platform coordinate systems and joint parametrization of Tripteor X7.
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The angles between the legs and the mobile platform are ϕ24 = (zm, z1), ϕ94 = (zm, z2)
and ϕ54 = (zm, z3) (Figure 8). These angles can be measured with a CAD model or
computed with the geometric model of the Tripteor PKM described in [33]. With this
notation, the rotation matrices between Legs 1, 2 and 3 and the mobile platform coordinate
systemRm are:

Tleg1→Rm =

 cos (ϕ24) 0 sin (ϕ24)
0 1 0

− sin (ϕ24) 0 cos (ϕ24)

 (39)

Tleg2→Rm =

1 0 0
0 cos (ϕ94) − sin (ϕ94)
0 sin (ϕ94) cos (ϕ94)

 (40)

Tleg399KRm =

 cos (ϕ54) 0 sin (ϕ54)
0 1 0

− sin (ϕ54) 0 cos (ϕ54)

 (41)

Consequently, in the case of Tripteor X7, by the application of a small-displacement
screw relation at point B1 and from Equations (35)–(37), nine constraint equations are
obtained. Nine dependent parameters are chosen:

uT
D =

(
u2(q2), v2(q2), w2(q2), θβ2(q2), u3(q3), v3(q3), w3(q3), θα3(q3), θγ3(q3)

)
(42)

Thus, 16 independent parameters are considered:

uT
I = (θβ1(0), θγ1(0), u1(q1), v1(q1), w1(q1), θα1(q1), θβ1(q1), θγ1(q1), θα2(0),

θβ2(0), θγ2(0), θα2(q2), θγ2(q2), θβ3(0), θγ3(0), θβ3(q3)) (43)

The (9× 9)-dimensional matrix LD and the (9× 16)-dimensional matrix LI, obtained from
Equations (35)–(37), and the chosen vectors uD and uI, are expressed in Equations (44) and (45).

LD =



0 0 0 0 0 0 0 sin(ϕ54) −cos(ϕ54)
0 0 0 0 0 0 0 cos(ϕ54) sin(ϕ54)
0 0 0 −sin(ϕ94) 0 0 0 0 0
0 0 −1 0 0 0 0 0

−sin(ϕ94) −cos(ϕ94) 0 0 0 0 0 0 0
cos(ϕ94) −sin(ϕ94) 0 −cos(ϕ94)b12·xm 0 0 0 0 0

0 0 0 0 sin(ϕ54) 0 −cos(ϕ54) 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 −cos(ϕ94)b13·xm cos(ϕ54) 0 sin(ϕ54) 0 0


(44)

LI =



0 0 0 0 0 −sin(ϕ24) 0 cos(ϕ24) 0 0 0 0 0 0 0 0
0 0 0 0 0 −cos(ϕ24) 0 −sin(ϕ24) 0 0 0 0 0 0 0 0
0 0 0 0 0 −cos(ϕ24) 0 −sin(ϕ24) 0 0 0 cos(ϕ94) 0 0 0 0
0 0 0 −sin(ϕ24) cos(ϕ24) cos(ϕ24)b12·ym 0 sin(ϕ24)b12·ym 0 0 0 0 0 0 0 0
0 0 0 1 0 −cos(ϕ24)b12·xm 0 −sin(ϕ24)b12·xMPS 0 0 0 0 0 0 0 0
0 0 0 −cos(ϕ24) −sin(ϕ24) −sin(ϕ24)b12·ym 0 cos(ϕ24)b12·ym 0 0 0 0 −sin(ϕ94)b12·xm 0 0 0
0 0 0 −sin(ϕ24) cos(ϕ24) 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −cos(ϕ24)b13·xm 0 −sin(ϕ24)b13·xm 0 0 0 0 0 0 0 0
0 0 0 −cos(ϕ24) −sin(ϕ24) 0 0 0 0 0 0 0 −sin(ϕ94)b13·xm 0 0 0


(45)

4.3. Cartesian Stiffness Matrix

As discussed in Section 2, Tripteor X7 is modeled as a structural assembly of three
legs, which link the rigid fixed platform to the rigid mobile platform. The three legs are
considered to be steel beams of rectangular cross-section of size consistent with Tripteor X7
legs (Figure 9).
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Figure 9. CAD model of the Tripteor X7 PKM and cross-section of its first leg.

To compute the Cartesian stiffness matrix of the robot at point Om, the issue is to
compute matrix LXI (Equation (29)). Finally, we can compute the stiffness map at a level
z = 1.18 m for example (Figure 10).

Figure 10. Principal stiffness coefficients of the Tripteor X7 along X, Y and Z axes in the XY−plane,
z = 1.18 m.

To plot Figure 11, the method was implemented in Matlab®. To emphasize the benefit
of this proposed approach, the calculation was performed on a tablet PC with a I5-7300U
processor. The time taken to compute this map is 128.72 s and is mainly due to the time
needed to calculate the Inverse Kinematic Model (IKM) of Tripteor X7.

The main advantage of the method is the fast calculation of the natural frequencies
and associated modes of over-constrained parallel robots.

4.4. Natural Frequencies

The proposed method is used for the calculation, with a low computational cost, of
the first natural frequencies and associated natural modes of the Tripteor X7 PKM.

For this first computation, the leg lengths are q1 = 1.212 m, q2 = 1.314 m and
q3 = 1.22 m, and the mass of the mobile platform is considered to be 8 kg. The approach
introduced in Section 3 is applied that gives the following estimations for the first natural
frequencies in 0.4 s:
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f0 =



46.37 Hz
51.26 Hz
52.35 Hz
90.20 Hz
140.11 Hz
249.16 Hz
297.70 Hz
328.35 Hz
350.00 Hz
389.74 Hz


(46)

The associated modes of the first three natural frequencies given in Equation (46) are
schematized in Figure 11. The variation of first natural frequency value at a level z = 1.18 m
is illustrated in Figure 12.

Figure 11. Modal shapes associated with the first tree natural frequencies of Tripteor X7.

Figure 12. Variation of the first natural frequency.
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4.5. Comparison with Experimental Results

In the literature, previous works studied the modal analysis of the Tripteor X7 PKM
architecture using a shaker in three configurations [34] (Figure 13). The displacements of
several points of the PKM architecture are measured with accelerometers located on the
legs, and on the spindle. Nine DoF are considered for each leg, eight about fi-axis or fl-axis
and one about ff-axis, and four DoF for the spindle (Figure 14). The obtained results show
four natural frequencies close to 40, 50, 70 and 90 Hz.

Figure 13. First natural frequency measurement.

Figure 14. Configuration of the Tripteor X7 for the experimental measurement.

The same configurations 1, 2 and 3 were considered with the proposed beam approach,
and the associated results are given in Table 1. Experimental and simulated results are close
for the first mode. For the other modes, the simplification of the legs modeling and the
difference of mass distribution between the model and the real machine tool can explain the
gap between estimated and measured natural frequencies. Indeed, the modeling of the leg
under the assumption that their cross-section area is constant affects the leg stiffness, inertia
and the position of its gravity center. This impact is different regarding the leg lengths
and so to the studied configuration. It should be noted that this method is dedicated to
the embodiment design of parallel manipulators. Therefore, such an error is acceptable,
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and the simplification of the leg shape allows the reduction of the calculation time of the
elasto-dynamic model.

Table 1. Comparison of measured natural frequencies and calculated ones with the proposed method.

Config. 1 Config. 2 Config. 3

Beam Model Measure Error Beam Model Measure Error Beam Model Measure Error

Mode 1 46.45 Hz 46.2 Hz 0.5% 34.84 Hz 39.6 Hz 12% 55.40 Hz 49.4 Hz 12.1%
Mode 2 50.98 Hz 55.3 Hz 7.8% 36.51 Hz 51.6 Hz 29.2% 66.66 Hz 50.2 Hz 32.8%
Mode 3 52.33 Hz 71.3 Hz 26.6% 44.46 Hz 58.4 Hz 23.9% 77.66 Hz 71.3 Hz 8.9%

5. Conclusions

This paper described a new methodology to compute the first natural frequencies of
over-constrained PKMs based on the application of screw theory under the assumption
of small displacements. Specifically designed to require few computing resources, the
obtained model enables the estimation of stiffness maps, first natural frequencies and
associated modes in a simple way without computing any Jacobian matrix. The proposed
methodology was validated by comparing the obtained theoretical natural frequencies and
associated modes of the Tripteor X7 to the measured experimental values. Errors between
experimental and simulated results are less than 13% for the first mode and 33% for the
second and third modes.

As a conclusion, the proposed methodology allows the mathematical expression of the
simplified elasto-dynamic model of over-constrained parallel robots to reduce considerably
the computation time of their natural frequencies. This low computation time allows the
designer of over-constrained parallel robots to quickly estimate the natural frequencies
of candidate robot architectures at the conceptual design stage and thus make the right
choices of robot architecture with respect to required elasto-dynamic performance and a
given task.

Later, variations in leg cross-sections will be implemented and joint stiffness will be
added as an additional stiffness at beam extremities.
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Abbreviations
The following abbreviations are used in this manuscript:

qi ith joint variable
x Beam abscissa
u(x) Displacement vector of the beam neutral axis
unod Vector collecting the nodal values of the kinematic functions
u(x) Beam displacement along the neutral axis
v(x) Beam displacement along fi-axis
w(x) Beam displacement along fl-axis
θα(x) Beam section rotation about neutral axis
θβ(x) Beam section rotation about fi-axis
θγ(x) Beam section rotation about fl-axis
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fbeam(x) Beam force vector at a given abscissa
mbeam(x) Beam moment vector at a given abscissa
Ke Beam stiffness matrix
Me Beam mass matrix
dBi Vector of small displacements of point Bi
! Rotation vector of the mobile platform
uD Vector of dependent parameters
uI Vector of independent parameters
K̃ Global stiffness matrix
M̃ Global mass matrix
f0 First natural frequency vector
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