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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and
deadliest cancer worldwide, with an overall survival (OS) rate, all stages combined, of still <10% at
5 years. For most patients with unresectable or recurrent PDAC, few therapeutic options are available
with limited efficacy (median OS ≤ 12 months). Moreover, immune checkpoint inhibitors that have
been tested so far in PDAC failed to improve patient survival. This resistance of PDAC to therapies is,
in part, related to the dense tumor stroma, which creates a mechanical barrier around the tumor cells
and generates high interstitial pressure, preventing appropriate vascularization and thus limiting
exposure to treatments. In that PDAC tumoral microenvironment, the inflammatory cell infiltrates
are unbalanced toward an immunosuppressive over pro-inflammatory phenotype. Therefore, there
is an urgent need to better define the composition of PDAC stroma and key immune players in order
to identify new therapeutic targets and strategies.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest
cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The
poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection,
limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover,
pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible
for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune
cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune
defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers
to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells
such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an
immunosuppressive tumor microenvironment (TME). Although recent studies have brought new
insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies
are required for a better understanding of human PDAC immune TME, which might help to develop
potent new therapeutic strategies by correcting these immune defects with the hope to unlock the
resistance to (immune) therapy. In this review, we describe the main effector immune cells and
immunosuppressive actors involved in human PDAC TME, as well as their implications as potential
biomarkers and therapeutic targets.

Keywords: pancreatic ductal adenocarcinoma; tumoral microenvironment; immune cells; desmo-
plastic stroma
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and dead-
liest cancer worldwide, with a steadily increasing incidence, especially in industrialized
countries [1,2]. Projections indicate that PDAC will be a leading cause of cancer mortality
in Europe [1] and the United States [3] by 2030–2040. This increase in incidence is not fully
explained by “classical” PDAC risk factors (i.e., age, tobacco smoking, diabetes mellitus,
obesity/overweight, chronic pancreatitis, and genetics/family history). It also remains
a major challenge in digestive oncology due to its high lethality despite many explored
therapeutic strategies, with overall survival (OS) rate, all stages combined, of still <10%
at 5 years [4]. Several well-established factors may account for this poor prognosis. First,
curative surgical management of PDAC is not possible at the time of diagnosis for 85% of
patients, owing to vascular invasion (locally advanced disease) or distant metastases [5].
Moreover, even when resectable, PDAC recurrence is often observed within the first two
years after complete resection due to micrometastatic disease (present in 90% of patients),
justifying systematic administration of adjuvant therapy in all resected patients [6]. For
patients with unresectable or recurrent PDAC, therapeutic options are mainly based on
combined chemotherapy regimens (FOLFIRINOX or Gemcitabine + nab-paclitaxel as first-
line therapies) with limited efficacy (median OS ≤ 12 months) [6,7]. Finally, all immune
therapies that have been tested so far in PDAC failed to improve patient survival. This
resistance of PDAC to conventional therapies is, in part, related to the desmoplastic reaction,
also known as stroma, that characterizes these tumors [8]. Indeed, this histopathological
hallmark of PDAC is found in both primary PDAC and its metastases [9]. PDAC stroma is
composed of extracellular matrix (ECM) and several cell types including cancer-associated
fibroblasts (CAFs, which are responsible for ECM production) and inflammatory immune
cells [10]. The dense ECM deposits create a mechanical barrier around the tumor cells and
generate high interstitial pressure, preventing appropriate vascularization and thus limiting
exposure to chemotherapy, leading to a hypoxic tumor microenvironment (TME) [11]. In
this hypoxic TME, the inflammatory cell infiltrates are unbalanced toward an immunosup-
pressive over pro-inflammatory phenotype, with a high prevalence of myeloid-derived
suppressor cells (MDSCs), M2 polarized macrophages, and regulatory T cells (Tregs), over
M1 macrophages, dendritic cells, and effector CD4+ and CD8+ T lymphocytes [12].

Overall, PDACs are immune deserts or immune-excluded tumors, which can explain
why immune checkpoint inhibitors (ICIs) and other immune approaches still did not show
efficacy in PDAC [13].

In this review, we summarize current acquired knowledge about the immune land-
scape in human PDAC and its impact on survival and therapy in patients with PDAC.

2. The Key Role of Cancer-Associated Fibroblasts in PDAC Immune
Macroenvironment

CAFs, through their ECM production and interactions with tumor and other stromal
cells, play the central role of “orchestrators” of the PDAC microenvironment. Several cells
of origin for CAFs have been proposed, including pancreatic stellate cells (PSCs). PSCs
are a unique type of resident pancreatic cells that exist in normal pancreatic tissue in a
quiescent form [14]. PSCs are engaged in several homeostatic roles under physiological
conditions [15] (i.e., vitamin A storage, phagocytosis, immunity, and stimulation of amylase
secretion from the exocrine pancreas) and also under pathological states as pancreatitis or
PDAC in which they become activated [16,17]. Upon activation, they acquire a myofibrob-
lastic, contractile phenotype (expressing alpha-smooth actin) and produce soluble factors
(growth factors, cytokines) and ECM components [18].

PDAC has a unique fibrotic TME, also known as desmoplastic stroma, illustrated
in Figure 1 hereafter. This stroma is abundant (often representing the majority of tumor
volume) and mainly composed of ECM proteins produced by CAFs (e.g., collagen, laminin,
fibronectin) along with non-collagenous molecules (e.g., glycoprotein, proteoglycans, gly-
cosaminoglycans, hyaluronic acid) [19]. This ECM enclosed various cell types, including
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different immune cells such as lymphocytes (rare), macrophages, mast cells, and myeloid-
derived suppressor cells (MDSCs), along with endothelial and neuronal cells, to set up a
growth permissive and immunotolerant microenvironment for pre-neoplastic pancreatic
cells [20] (PanINs) and for pancreatic tumor cells [21]. The ECM is a dense meshwork
of structural proteins, adaptor proteins, proteoglycans, and enzymes found in all tissues,
where it provides biochemical and structural support for tissue homeostasis. In PDAC,
there is a marked increase in the deposition of ECM [22]. Specifically, type I, III, and IV
collagens are the main structural proteins constituting PDAC ECM. Pancreatic cancer cells
induce desmoplastic responses within the tumor stroma by stimulating stromal fibroblasts
to upregulate the expression of collagen family proteins and fibronectin in a paracrine
manner [23]. Despite the hypoxia and hyaluronan-induced development of desmoplastic
stroma, PDAC TME is composed of several immune cell populations that we will describe
hereinafter. At early stages, effector cells such as natural killer (NK) cells, CD8+ T cells, and
CD4+ T cells can be present and activated. Nevertheless, during the selection of resistant
tumor cells and the development of the escape mechanism, PDAC TME induces the re-
cruitment of monocytes and neutrophils, which then have acquired an anti-inflammatory
phenotype [24]. The transformation of pro-inflammatory to anti-inflammatory in the TME
increases the tumor growth and angiogenesis and correlates with poor survival, as well as
systemic immunosuppression and malnutrition in patients.
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Figure 1. Extracellular matrix in pancreatic ductal adenocarcinoma and tumor growth promotion.
Abundant stroma is mainly composed of cancer-associated fibroblasts (CAFs) and collagenous
proteins leading to hypoxia, immune evasion, and immunotolerant state through recruitment of
immunosuppressive cells (MDSCs, Tregs) and suppressive effect on effector immune cells (CD8+ T
cells, dendritic cells). MDSCs: myeloid-derived suppressor cells; Tregs: regulatory T cells.

In PDAC, CAFs are strongly involved in the mechanism of immune evasion and the
immunotolerant state toward pancreatic tumor cells through the cytokine-induced (IL-6,
IL-11, TGF-β signaling) recruitment of immunosuppressive cells such as regulatory T cells
(Treg cells) [21], myeloid-derived suppressor cells (MDSCs) [25,26] or programed death 1
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ligand (PD-L1) mainly expressed on T cells [27]. CAFs and the hypoxia that they generate
are also associated with a suppressive effect on effector immune cells as CD8+ T cells [28] or
dendritic cells [29,30], hampering their infiltration into PDAC tumor areas. However, recent
studies have highlighted that PDAC CAFs are heterogeneous, some of them being pro- and
other anti-tumoral [31,32]. Several classifications have been proposed [33]. Therefore, a
better understanding of CAF molecular and functional heterogeneity is required.

CAFs are involved in a growth-supportive TME in PDAC, especially through their com-
plex interactions with immune cells, leading to an immunotolerant and unique immuno-
suppressive state. From a therapeutic perspective, despite the preclinical success of several
agents targeting ECM (e.g., metalloproteinases inhibitors, hyaluronidase (PEGPH20)), this
strategy failed to show any clinical activity in patients with advanced-stage PDAC [11].
A better understanding of those complex interactions might be useful to develop more
effective immunotherapies against PDAC. Targeting the ECM alone is not effective in
pancreatic cancer.

3. Effector Immune Cells in PDAC

Figure 2 presented afterward summarizes the key effector immune cells and immuno-
suppressive actors in human PDAC.

3.1. Tumor-Infiltrating Lymphocytes: CD8+ T and CD4+ T Cells

Tumor-infiltrating lymphocytes (TILs) are often observed in resected cancer tissue and
are believed to participate in the host immune response against cancer [34,35]. They can
be organized in tertiary lymphoid structures, which have been shown to have a positive
prognostic impact [36].

Some TILs might be involved in restraining tumor development and progression.
Intratumoral T cell infiltrates were shown to form an independent positive prognostic
marker in colorectal cancer (CRC) [37] and also PDAC [38]. It could predict patients’
survival more efficiently than the TNM staging system (Immunoscore staging system) [37].
The most studied TILs are CD8+ T cells and CD4+ T cells, presented in Figure 2.

CD8+ T cells (cytotoxic T cells) are believed to identify cancer as a foreign body in a
major histocompatibility complex class I-restricted manner [39]. Activated CD8+ T cells
attack tumor cells presenting tumor-associated antigens peptides on their surface [39,40].
High levels of tumor infiltration with especially CD8+ lymphocytes are a characteristic of
an immunogenically hot tumor, which better respond to immune checkpoint inhibitors [41].

CD4+ T cells play major roles in the host immune response against cancer and are
required for efficacious antitumor immunity [42]. CD4+ T cells can target tumor cells in
various ways, either directly by eliminating tumor cells through cytolytic mechanisms
(perforin/granzyme B-dependent manner) or indirectly by modulating the TME [43].
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Figure 2. Effector immune cells and immunosuppressive cells in human pancreatic cancer. Activated
CD8+ T cells attack tumor cells presenting tumor-associated antigens peptides on their surface, as
dendritic cells. CD4+ T cells target tumor cells either directly by eliminating tumor cells through
cytolytic mechanisms or indirectly by modulating the TME. Tregs and MDSCs cells play immuno-
suppressive roles in inhibiting the immune response against PDAC cells by directly inhibiting the
anti-tumor functions of T and NK cells. The TAM phenotype is a consequence of the continuous
presence of growth factors such as colony-stimulating factor-1 (CSF1) and its receptor (CSF-1R). TAMs
release various growth factors and cytokines and promote tumor cell invasion, induce angiogenesis,
suppress antitumor immunity, and facilitate tumor cell metastasis. CSF-1R: colony-stimulating factor-
1 receptor; MDSC: myeloid-derived suppressor cells; NK: natural killer; TAMs = tumor-associated
macrophages; Treg = regulatory T cell.

In PDAC, total T lymphocytes (CD3) have been investigated in several studies [44–60].
It is estimated that >80% of the CD3+ T cells are either CD4+ or CD8+ in tumoral pancreatic
tissues [55]. Among those studies, CD3+ TIL rate was correlated to patient survival in 10 of
them. High CD3+ TIL rate was significantly associated with better disease-free survival
(DFS) and/or OS in 6 studies [45,46,51,53,58,59]. A summary of the described studies
assessing CD3+ cells in PDAC is reported in Table 1.
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Table 1. Studies assessing CD3+ T cells expression in pancreatic ductal adenocarcinoma and the
correlation with survival data.

Reference Number of Patients Statistical Significance

Ryschich et al. 2005 [44] 46 NS

Tewari et al. 2013 [45] 81 Significantly associated with
improved OS

Chen et al. 2014 [46] 63 Significantly associated with
improved OS

Helm et al. 2014 [47] 42 NS

Zhou et al. 2015 [51] 158 Significantly associated with
improved OS (RR = 0.611)

Hwang et al. 2016 [52] 30 NS

Lundgren et al. 2016 [53] 175 Significantly associated with
improved OS (HR = 0.42)

Lohneis et al. 2017 [56] 165 NS

Ino et al. 2019 [58] 241 Significantly associated with
improved OS and DFS

Miksch et al. 2019 [59] 57 Significantly associated with
improved OS and DFS

DFS: disease-free survival; HR: hazard ratio; NS: not significant; OS: overall survival; RR: relative risk.

CD4+ and/or CD8+ TILs assessment have also been the topic of several studies in
PDAC [35,39,44–46,48,50,52,54,56–59,61–71]. Indeed, CD8+ T cells are the most studied
T effectors in PDAC. Considerable lines of evidence suggest that a high CD8+ T cells
infiltration in PDAC tumoral tissue is significantly associated with a better DFS and/or
OS [39,50,54,56,58,59,62,63,65,67–71]. In the largest series of 165 patients operated on for
PDAC [56], a high number of CD8+ lymphocytes was significantly and independently
associated with longer DFS and OS in the overall study population. Median DFS/OS
were 7.4/18.1 months for patients with a low number of CD8+ intratumoral lymphocytes
(defined as ≤ 42 per 1 mm tissue core) and 12.7/25.2 months for patients with high CD8+

TILs numbers [56]. A summary of the described studies assessing CD4+ and/or CD8+ cells
is reported in Table 2.

Those data suggest that TILs, especially CD4+ and CD8+ T cells effectors, are interest-
ing and easily measurable indicators of PDAC immune TME. However, most PDACs are not
infiltrated by cytotoxic CD8+ T cells. Several factors may be involved: low immunogenicity,
T cell exclusion by other immune cells (immunosuppressive Treg, MDSCs). Moreover, most
“hot” PDAC tumors in terms of CD8+ T cells are also infiltrated by macrophages, which are
able to inhibit their cytotoxic activity [13].
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Table 2. Studies assessing CD4 and CD8 T-cell expression in pancreatic ductal adenocarcinoma and
the correlation with survival data.

Reference TILs Number of
Patients Statistical Significance

Fukunaga et al. 2004 [39] CD4 + CD8 80 CD4/8 (+/+) significantly associated with better OS 5 years OS
CD4/8 (+/+) = 48.4% versus 4.6% in CD4/8 (−/−) patients

Ryschich et al. 2005 [44] CD4 + CD8 46 NS

Tewari et al. 2013 [45] CD8 81 NS

Chen et al. 2014 [46] CD8 63 NS

Tang et al. 2014 [68] CD8 160 CD8+ cells significantly associated with better OS (HR = 0.56)

Castino et al. 2015 [48] CD8 104 NS

Karakhanova et al. 2015 [69] CD4 + CD8 92 CD4/8 (+/+) significantly associated with better DFS and OS

Liu et al. 2015 [71] CD8 92 CD8+ cells significantly associated with better OS (low versus
high CD8: mean 14.2 months versus 31.0 months)

Wartenberg et al. 2015 [50] CD8 110 Reduce CD8+ cells are significantly associated with worse
prognoses

Diana A et al. 2016 [62] CD8 145 CD8+ cells significantly associated with better PFS (low versus
high CD8: mean OS = 23.7 versus 33.8 months)

Hwang et al. 2016 [52] CD4 + CD8 30 NS

Balachandran et al. 2017 [54] CD8 166 CD8+ cells significantly associated with better OS

Carstens et al. 2013 [55] CD4 + CD8 132 NS

Knudsen et al. 2017 [64] CD8 109 NS

Lohneis et al. 2017 [56] CD8 165 CD8+ cells significantly associated with better OS and DFS

Wang Z et al. 2017 [70] CD4 + CD8 90
CD4/8 (+/+) significantly associated with better OSmedian OS
CD4/8 (+/+) = 28 months versus 15 months in CD4/8 (−/−)

patients

Nizri et al. 2018 [65] CD8 66 CD8+ cells significantly associated with better OS(low versus
high CD8: mean OS = 24.3 versus 36.8 months)

Pu et al. 2018 [66] CD8 90 NS

Sideras et al. 2018 [67] CD8 148 CD8+ cells significantly associated with better OS

Tahkola et al. 2018 [57] CD8 108 NS

Danilova et al. 2019 [61] CD8 33 NS

Hou et al. 2019 [63] CD8 86 CD8+ cells significantly associated with better OS(low versus
high CD8: median OS = 10.9 versus 25.8 months)

Ino et al. 2019 [57] CD4 + CD8 241 CD4/8 (+/+) significantly associated with better OS

Miksch et al. 2019 [58] CD8 57 CD8+ cells significantly associated with better OS and DFS

DFS: disease-free survival; NS: not significant; OS: overall survival; PFS: progression-free survival; TILs: tumor-
infiltrating lymphocytes.

3.2. Dendritic Cells

Dendritic cells (DCs, S100+ cells) are a diverse group of specialized antigen-presenting
cells (APCs) [72]. DCs are able to induce antigen-specific immune responses and play major
roles in tumor immunity, especially myeloid DCs (mDCs, CD11b+ cells). They are able to
recognize tumor-associated antigens in tumor tissue and generate tumor-specific immunity,
as described in Figure 2 [73]. DCs are rare in PDAC TME and are mainly located in the
stroma peripheral to the tumor [74]. For the last decade, DCs have been a subject of interest
in the study of PDAC immune TME [75] and have emerged as the immune cells of choice
for the development of a vaccine against PDAC [76]. It was shown that circulating DCs
or high-level DCs in PDAC tissues were significantly associated with better OS, whatever
PDAC stage at diagnosis (resectable or metastatic disease) [77–79]. In a group of 42 patients
with resected PDAC, Yamamoto et al. revealed that the OS rate in the high tissue-DCs
group (DCs ≥ 3.5) was significantly longer than that in the low tissue-DCs group (p = 0.038,
1/2/3 year OS: 91%/70%/35% versus 67%/41%/27%) [79]. It was also demonstrated that
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the number of PDAC-infiltrating DCs was significantly higher in PDAC with CD4+ and
CD8+ TILs infiltration [39]. These data suggest that if both CD4+ and CD8+ TILs are found
in PDAC tissue, all key components of an antitumor immune response are present, from
the presentation of tumor-associated antigens by DCs to the interaction of helper T cells
and cytotoxic T cells to attack PDAC tumor cells [39].

PDAC is characterized by the reduced number and function of DCs, which impact
antigen presentation and contribute to immune tolerance. As DCs are the most potent
professional antigen-presenting cells, several ongoing studies use DC-based vaccines or
agents promoting DC maturation (e.g., CD40 agonists) as potential immune therapies in
PDAC.

3.3. Innate Lymphoid Cells

Innate lymphoid cells (ILCs) represent a heterogeneous group of cells that derive
from common lymphoid progenitors in the bone marrow [80]. Five major groups of ILCs
have been defined on the basis of their cytokine production patterns and developmental
transcription factor requirements: natural killer (NK) cells, group 1 ILCs (ILC1s), group 2
ILCs (ILC2s), group 3 ILCs (ILC3s), and lymphoid tissue-inducer (LTi) cells [80].

Natural killer cells (NK cells, CD56+, CD3−) are large granular lymphocytes that are
key components of the innate immune system [81]. The role of NK cells remains poorly
understood, compared with other lymphocytes, especially T and B cells. Activation of NK
cells mainly relies on the balance of signals received from inhibitory and activating cell
surface receptors. In different cancer types, NK cells demonstrated potent antitumoral
cytotoxicity, even if they appear to be highly heterogeneous between cancer types [82–84].
In human PDAC, few data are available but suggest antitumor activity. Indeed, to our
knowledge, only one positive correlation was demonstrated between the percentage of
NK cells in peripheral blood and recurrence-free survival in a few patients (n = 19) with
resectable PDAC [85]. Patients who exhibited high NK levels before surgery significantly
had later disease recurrence.

ILC1s, ILC2s, and ILC3s resemble the corresponding T helper cell subsets (T helper 1
(TH1), TH2, and TH17 cells, respectively) and produce cytokines that shape both innate
and adaptive immune responses [80]. Recently, it was demonstrated that ILC2s infiltrate
human PDAC to activate tissue-specific tumor immunity [86]. Using microarrays from
formalin-fixed, paraffin-embedded from 45 PDAC short-term survivors (OS < 3 years) and
from formalin-fixed, paraffin-embedded from 51 PDAC long-term survivors (OS ≥ 3 years),
authors highlighted the fact that tumor ICL2 (TILC2s) were enriched in rare long-term
PDAC survivors with “hot” tumors (activated CD8+ T-cell-enriched types) when compared
with short-term survivors with “cold” tumors [86]. Moreover, higher TILC2 frequencies
correlated with longer survival [86].

Although ILC (and more specifically ILC2s) could emerge as novel anticancer immune
cells and potential targets for PDAC immunotherapy, their prognostic and predictive
potential remains to be determined. Further investigations are needed to better understand
ILC(2) role in PDAC and to confirm ILC2s as potential anticancer immune cells for PDAC
immunotherapy.

From a therapeutic perspective, enhancing T-cell effector functions could be a promis-
ing therapeutic approach against human PDAC. Recent advances in the field of antigen
identification, T-cell biology, and gene therapy have enabled the development of promising
strategies such as chimeric antigen receptor T-cell (CAR-T cell) therapy and T-cell receptor
T-cell (TCR-T) therapy to redirect T-cell antigen specificity and enhance T-cell function
(adoptive T-cell therapy (ATCT)). However, ATCT remains unproven in human PDAC.

4. Immunosuppressive TME in PDAC

Figure 2 summarizes the key effector immune cells and immunosuppressive actors in
human PDAC.
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4.1. Regulatory T Cells

Regulatory T cells (Tregs) are major players in tumor immune suppression in PDAC.
They can be identified based on forkhead box protein 3 (FOXP3) protein expression and
high levels of interleukin-2 receptor alpha chain CD25 through immunohistochemistry
in tumor tissues. There is abundant evidence to suggest that Tregs represent the main
obstacle to successful tumor immunotherapy [87]. Indeed, Tregs accumulate in tumors
and the peripheral blood of patients with cancer. Tregs are recruited to tumors sites where
they suppress antitumor cytotoxic response by binding to DCs and preventing them from
activating CD8+ T cells [88], as summarized in Figure 2. It has been demonstrated that Tregs
contribute to inhibiting the immune response against PDAC cells, from the premalignant
stage to invasive PDAC [89]. Moreover, in PDAC, a high prevalence of Tregs seems to
be associated with poor prognosis and poor PDAC differentiation [68]. Treg infiltration
in PDAC has been well studied since the 2000s. Several studies demonstrated that Tregs
FOXP3+ immunostaining could be used as a prognostic biomarker and that it could be a
crucial determinant of immunosuppressive TME in PDAC [90]. High Treg infiltrates in
PDAC tissues were significantly associated with worse survival rates in PDAC [50,91] and
conversely, low Tregs infiltrate rates were associated with better survival [68,70,71].

Increased peritumoral FOXP3+T-cell (Tregs cells) density is identified as an indepen-
dent adverse prognostic factor in PDAC [50].

4.2. Myeloid-Derived Suppressor Cells

Myeloid-derived suppressor cells (MDSCs) are defined as a heterogeneous population
of immature myeloid cells (CD15+, CD11b+) that accumulate during chronic inflammatory
conditions such as cancer [92]. They have critical roles in the TME through immunosuppres-
sion [93], as they can directly inhibit the antitumor functions of T and NK cells (Figure 2).
Their critical implication in different cancer types has been demonstrated [94–96]. MDSCs
can be characterized into two major types—monocytic MDSCs (M-MDSCs, CD66b−) and
granulocytic MDSCs (G-MDSCs, CD15+, CD66b+). Several CXC families of chemokines
have been attributed major roles in MDSC recruitment. In human PDAC, it was demon-
strated that high levels of CXCL5 correlate with both tumor-infiltrating CD15+ granulocytes
and worse prognosis in patients with PDAC [97,98]. Indeed, in a cohort of 153 patients
with resected PDAC, mean OS was significantly higher in the low CXCL5 expression
group (immunostaining ≤ 50%) in comparison with the high CXCL5-expression group
(immunostaining > 50%) (64.0 months versus 38.5 months, respectively) [97].

Moreover, interleukin-6 (IL-6) has been associated with the enrichment of immuno-
suppressive MDSCs in several tumor types [92]. The role of MDSCs in human pancreatic
TME has also been recently explored [99,100]. In patients with PDAC, it was shown that
the plasmatic level of circulating MDSCs was correlated with the stage of the patient’s
disease [100,101]. Comparing cancer-free controls and patients with PDAC, Porembka et al.
demonstrated that normal pancreatic tissue was free of MDSC infiltration, whereas patients
with PDAC have significantly increased levels of MDSCs in the bone marrow and periph-
eral blood, which are avidly recruited to the primary PDAC sites [100]. MDSC mobilization
was significantly most notable in patients with metastatic disease when compared with
both normal controls and patients with resectable pancreatic cancer (respectively, 68.2% ±
3.6% versus 37.6% ± 3.6% versus 57.3% ± 3.5; p < 0.05 %) [100].

In addition to their main role in the antitumor response, MDSCs might be able to
influence the production of Tregs, leading to cancer immunotolerance [102].

Although further studies are needed to confirm those data, MDSCs might be useful
markers for PDAC detection and/or progression. They also represent potential therapeutic
targets in PDAC oncogenesis.

4.3. B Cells

B cells (CD20+) are among important components of the immune infiltrate in solid
tumors and are emerging as critical regulators of cancer progression [103]. B cells are
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known to critically regulate T-cell immune responses, but their role in cancer remains
controversial.

One study investigated the role of B cells in the tumoral microenvironment of human
PDAC [48]. In that study, the authors demonstrated first of all that human PDAC tissues
showed considerable infiltration of CD20+ B lymphocytes, unlike normal pancreatic tissue.
Moreover, B cells’ location in PDAC seems to display distinct spatial organization in
two histologically distinct compartments: either in ectopic lymph node-like structures
(or tertiary lymphoid tissue, B-TLT) [104] or interspersed at the tumor–stroma interface
(B-TIL) [48]. Among the 104 PDAC tissue specimens they studied, they revealed that B cells
were independently associated with prognosis. However, their prognostic value diverged
according to their spatial distribution in the tissue [48]. Indeed, B-TLT were associated with
better prognosis (OR = 0.24; 95% CI (0.08–0.71); p = 0.010), while B-TIL were associated to
worse prognosis (OR = 2.56; 95% CI (0.91–7.23); p = 0.07) [48]. This result highlights B cells
as prognostic variables in human PDAC and suggests that the influence of B cells on tumor
progression changes whether they are confined within lymphoid tissue or are scattered at
the tumor–stroma interface.

In PDAC, B cell behaviors seem to be tightly linked to their topological organization
within the microenvironment. Further research is needed to better understand their role in
PDAC oncogenesis and pancreatic cancer progression.

4.4. Tumor-Associated Macrophages

Macrophages are among the most prominent tumor-associated noncancer cell type in
the TME, known as tumor-associated macrophages (TAMs). Current evidence suggests
that TAMs engage in complex network interactions with cancer stem cells, cancer cells,
endothelial cells, fibroblasts, T cells, B cells, and NK cells, as presented in Figure 2 [105].
TAMs receive signals from diverse cells within the tumor microenvironment and release
various growth factors and cytokines and promote tumor cell invasion, induce angiogen-
esis, suppress antitumor immunity, and facilitate tumor cell metastasis [106]. TAMs are
classically classified into two subtypes: M1-polarized macrophages and M2-polarized
macrophages, even though this classification is debated. M1-polarized macrophages are
characterized by a pro-inflammatory phenotype [106] (i.e., enhanced expression and release
of IL-1β, TNF-α, IL-6, or IL-12), whereas M2-polarized macrophages (CD204/206; CD163)
exhibit anti-inflammatory properties [106] (i.e., enhanced expression and secretion of im-
munosuppressive cytokines such as TGF-β1 and IL-10). TAM expression has been studied
in three different studies in human PDAC. Kurahara et al. first described an elevated
incidence of TAMs, in particular with an M2-polarized phenotype in human PDAC tissues,
correlating with increased nodal lymphangiogenesis and poor prognosis [23,107]. Based on
tissue specimens from 40 patients with resected PDAC, the authors showed that the nodal
lymphatic vessel density had a strong association with the M2-polarized TAM density
in the regional lymph nodes (p < 0.0001) [23]. They also demonstrated that the 5-year
survival rate in the low CD163/204 group and the high CD163/204 group was 28.8% and
5.0%, respectively, with the prognosis significantly poorer in the high CD163/204 group,
compared with the low CD163/204 group [107]. More recently, the same observation was
made based on 112 cases of surgically resected PDACs [108]. Long-term survival patients
(OS ≥ 60 months) display significantly lower densities CD68+ cells (total macrophages) and
CD163+ (M2) macrophages than short-term survival cases (OS < 60 months; p = < 0.0001,
and < 0.0001, respectively) [108].

From a therapeutic perspective, neutralizing immunosuppressive cells, which are
major components of human PDAC TME, could be a potential therapeutic strategy by
removing inhibitory factors that constrain T-cell responses. Unfortunately, a phase II
clinical study evaluating the inhibition of colony-stimulating factor-1 receptor (CSF-1R,
cabiralizumab, M2-like macrophage/TAMs inhibition) with nivolumab and chemotherapy
in advanced PDAC patients did not improve progression-free survival, compared with
chemotherapy alone (NCT03336216).
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Those results highlight the crucial role of tumor-associated macrophages (TAMs) in
human PDAC. Such observations could bring new therapeutic hopes, especially in tumors
with high infiltration of immunosuppressive TAMs, owing to macrophage targeted drugs
(e.g., anti-CSF1R, anti-CXCR2/CCR2), but their activity is hampered by “rescue” secretion
of overlapping cytokines.

5. Discussion

PDAC TME is a complex network that is still being actively explored. At the immune
level, it corresponds to the interactions between different effectors whose functions are still
poorly understood, although several studies have been carried out to demystify it, in order
to find new therapeutic approaches.

In addition to tumor cell-intrinsic mechanisms, different extrinsic factors may impact
the human PDAC TME through immunomodulation. One of the most studied factors
and rapidly evolving fields is the microbiome, which also drives the tolerogenic innate
and adaptive immune programs in PDAC [109]. The species of bacteria found in human
PDAC are distinct from those in the gut, with a greater relative abundance of Proteobacteria
and reduced α-diversity and richness [109]. Lower intratumoral microbial diversity has
been linked to reduced survival, whereas high bacterial diversity correlates with long-
term survival in PDAC [110]. Moreover, an intratumoral microbiome signature highly
predictive of long-term survival (>5 years) was developed and validated by Riquelme et al.
(Pseudoxanthomonas–Streptomyces–Saccharopolyspora–Bacillus clausii) [110]. The mi-
crobiome in primary PDAC may exert potent suppressive influences on the inflammatory
TME, establishing the tumor-promoting inflammatory program in PDAC by activating
the expansion of MDSCs and anti-inflammatory M2-like tumor-associated macrophages
(TAMs). These tolerogenic innate immune cells promote the differentiation of suppressive
populations of CD4+ T cells and prevent the expansion of cytotoxic CD8+ T cells [109]. This
suggests that microbiome manipulation might have an excellent potential to overcome the
current lack of an effective treatment for chemo-resistant PDAC. Additionally, microbiome
manipulation (e.g., fecal microbiota transplantation (FMT)) has been shown to favorably
affect the response of PDAC tumors to immunotherapy in animal models [111]. In those
animal models, FMT was able to differentially modulate the intratumor microbiome di-
versity and immune infiltration, with an increase in cytotoxic T cells and a decrease in
MDSCs with feces from long-term survivors [110]. Some studies have also linked fungi to
the development of PDAC and need further research [112].

Future research efforts are needed to better understand the function and phylogeny
of microbes in PDAC using more comprehensive approaches and develop innovative
therapeutic strategies. Further studies are also required to determine how microbiota
impacts chemotherapy and immunotherapy, in order to generate novel and personalized
therapeutic approaches for PDAC patients. Other extrinsic factors as PDAC virome are
still under exploration, as well as the role of antibiotics/fungal ablation, chemotherapies,
inflammatory pathologies (e.g., pancreatitis, obesity), and physical activity.

Another major difficulty is that human PDAC TME is dynamic and changes with the
different stages of pancreatic oncogenesis [113]. This immune landscape evolution has been
well described during the progression of intraductal papillary mucinous neoplasm (IPMN)
to invasive PDAC in humans [113]. Pancreatic immune TME evolves from a diverse T-cell
mixture, comprising CD8+ T cells, T helper 1 (Th1, involved in cellular immunity), and Th2
(involved in humoral immunity) as major players combined with Th17 (which produce
pro-inflammatory cytokine as IL-17) and Treg cells in low-grade IPMN, to a Treg dominated
immunosuppressive state in human invasive PDAC [113]. Moreover, the localization of T
cells drastically changes during the natural history of IPMN progression to human invasive
PDAC, but this last issue currently remains insufficiently documented [47,57,113]. PDAC
TME heterogeneity is currently the subject of intense research. The recently developed
method of combining immunity-related genes with clinical characteristics has been applied
to predict prognosis, recurrence, and response to gemcitabine-based therapy ± ICI in
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PDAC. This might be a practical predictive tool to identify PDAC subtype benefitting
from gemcitabine-based chemotherapy or potentially responding to PD1/PD-L1 blockade
therapy [114,115].

Multiple clinical trials concerning immune-based therapies in PDAC have recently
been conducted or are currently underway, so far with limited success. Mostly T-cell
effector functions have been targeted in the development of cancer immunotherapies, but
endogenous reactive T cells are limited, in quantity and quality, in pancreatic cancer. In
PDAC, different immunology-based therapies are under exploration, especially therapeutic
vaccines aimed to stimulate T- and B-cell production, and ICI targeting CTLA4, PD1, and
programmed death ligand (PDL1). However, ICI targeting these three molecules are mostly
ineffective in PDAC. A summary of the main studies assessing ICI in advanced PDAC
is reported in Table 3. One explanation for ICI resistance could be the composition of
immune cell infiltrate with a PDAC TME having potent immunosuppressive functions,
which might interfere with ICI [24]. Therefore, human PDAC is one of the most immune-
resistant tumor types, due to immunosuppression and T-cell exclusion from the earliest
stages of PDAC development, leading to primary resistance to ICI. Moreover, PDAC is
a complex and heterogeneous disease, with diverse clinical phenotypes. Another key
of PDAC development and promotion remains in genomics and epigenomics changes,
conferring distinct molecular, cellular, and clinical features that determine considerable
inter- and intratumoral heterogeneity.

In order to better consider PDAC immune TME as a potential therapeutic target, there
is an urgent need to better understand its evolution during PDAC oncogenesis and to
gain access to it. The main obstacle remains that desmoplastic reaction around pancreatic
tumor islets, which acts similarly to a major physical barrier, limiting access to treatments.
Recent treatment strategies focusing on that dense stroma to facilitate the distribution of
systemic agents within the tumor microenvironment failed to improve both overall survival
and progression-free survival [116]. Combined therapeutic approaches associating TME
remodeling with better immunogenicity (e.g., T-cell antigen specificity, enhancing T-cell
effector function, immunosuppressive actors’ inhibition), coupled with therapies adapted
to the (epi)genetic profile of the tumors, could present a promising perspective in human
PDAC.

Table 3. Studies assessing immune checkpoint inhibitors in advanced pancreatic ductal adenocarci-
noma.

References Trial Phase Therapy Number of Patients Clinical Outcomes

Laheru et al. 2008 [117] II GVAX +
cyclophosphamide 50 Median survival: 4.3 months

Royal et al. 2010 [118] II Anti CTLA4 antibody
(Ipilimumab) 27 No objective response

Brahmer et al. 2012 [119] I
(NCT00729664)

Anti PD-L1 antibody
(Nivolumab) 14 No objective response

Le et al. 2013 [120] Ib
(NCT00836407) Ipilimumab + GVAX 15 Median OS: 5.7 months

Le et al. 2015 [121] II
(NCT01417000)

GVAX +
cyclophosphamide 61 Median OS: 9.7 months

O’Reilly et al. 2019 [122] II
(NCT02558894)

Anti PD-L1 antibody
(Durvalumab) + Anti

CTLA4 antibody
(Tremelimumab)

65 No objective response

Renouf et al. 2020 [123] II
(NCT02879318)

Gembitabine +
Nabpaclitaxel ±
Durvalumab +
Tremelimumab

180 No objective response

GVAX: granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transfected tumor cell vaccine; OS:
overall survival.
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6. Conclusions

The immune landscape of human PDAC is inextricably linked to the abundant desmo-
plastic stroma. That dense extracellular matrix contributes to the poor immunogenicity of
PDAC, which impedes effector T-cell infiltration and thus promotes an immunosuppressive
microenvironment.

Moreover, other extrinsic factors, especially the PDAC microbiome, may impact
immune TME in human PDAC through immunomodulation.

There is an urgent need to better understand the interactions between tumor cells,
immune cells, microbiome, and stromal components of pancreatic cancer. Further refining
our knowledge of those interactions will be crucial to improve therapeutic strategies for
human PDAC in the future.
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