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Abstract: In the context of an eco-responsible production and distribution of electrical energy at
the local scale of an urban territory, we consider a smart grid as a system interconnecting different
prosumers, which all retain their decision-making autonomy and defend their own interests in a
comprehensive system where the rules, accepted by all, encourage virtuous behavior. In this paper,
we present and analyze a model and a management method for smart grids that is shared between
different kinds of independent actors, who respect their own interests, and that encourages each actor
to behavior that allows, as much as possible, an energy independence of the smart grid from external
energy suppliers. We consider here a game theory model, in which each actor of the smart grid is a
player, and we investigate distributed machine-learning algorithms to allow decision-making, thus,
leading the game to converge to stable situations, in particular to a Nash equilibrium. We propose a
Linear Reward Inaction algorithm that achieves Nash equilibria most of the time, both for a single
time slot and across time, allowing the smart grid to maximize its energy independence from external
energy suppliers.

Keywords: reinforcement learning; game theory; Nash equilibria; smart grid; energy management;
energy optimization

1. Introduction

The eco-responsible production and distribution of electrical energy at the local scale of
an urban territory (a district—an activity zone for example) is today an environmental and
economic key objective in the development or the planning of such territories [1,2]. Indeed,
the trend of governance of urban territories, which often wish to keep or gradually regain
control of their infrastructure networks (water, energy, mobility, and waste), is to deploy,
in the energy sector, smart grids interconnecting private and public actors (companies,
administrations, and residential buildings, for example) [1,3], each potentially having a
green electricity production and storage capacity; they act as prosumer actors [4,5].

In this context of a smart grid interconnecting different prosumers, two operating
paradigms can be considered. On the one hand, a totally collaborative operating mode
in which each actor leaves its autonomy of decision to a centralized system, which acts
towards global optimization and distributes the final costs to each actor (for example
through a mechanism using Shapley values [6]). On the other hand, a more selfish mode of
operation in which each actor retains its decision-making autonomy and defends its own
interests in a comprehensive system with rules, which are accepted by all, that encourage
virtuous behavior. It is this second paradigm that we consider here. Indeed, as it is unlikely
that an actor, in particular an industrial actor, would agree to leave, to an independent
operator, the control of the use of its own means of production and storage of energy, this
second paradigm seems more realistic.

Energies 2022, 15, 1440. https://doi.org/10.3390/en15041440 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15041440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7051-8436
https://doi.org/10.3390/en15041440
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15041440?type=check_update&version=2


Energies 2022, 15, 1440 2 of 19

To be accepted by all, a strategy must be able to guarantee to each actor that it will
be more advantageous than a situation of pure selfishness, which is the objective of this
article. Thus, our objective is to propose and analyze a model and a management method
for a smart grid that is shared between different independent actors, who respect their
own interests, and that encourages each to a behavior allowing as much as possible an
energy independence of the smart grid from external energy suppliers. This respect for the
interests and independence of each actor naturally leads us to consider not the search for a
global optimum between the actors, but more of a virtuous balance of their politics that is
beneficial to all.

This is why we consider here a game theory model, in which each actor of the smart
grid is a player, and we investigate distributed machine-learning algorithms to allow
decision-making, thus, leading the game to converge to a stable situation, in particular
Nash equilibria if they exist (see [7] for a definition). From a control systems engineering
perspective, reinforcement learning (RL) can be considered a closed-loop process [8,9],
which means that, at each learning step, the control system is feedback-regulated (as
opposed to open-loop controllers, which do not consider process output and only calculate
commands using internal or external parameters).

In our context of using RL, the feedback resides in the reward values of each step that
are used to calculate new probabilities of actions vis-à-vis of the smart grid, actions to be
selected by each prosumer at the next step. The closed-loop process is therefore considered
here at the level of granularity of the set of prosumers and their decisions across time,
and not at that of the management of electrical devices for which closed-loop processes
are also proposed [10,11]. At the level of granularity we consider here, we make no fixed
assumptions about the type of control used for real-time management of electrical devices,
closed-loop or open-loop.

Some early works (as of the 2010s) focused mainly on the use of game theory for
energy supply to end consumers [12–14]. As renewable local energy production capa-
bilities became increasingly available, some work focused on considering those energy
production capabilities in smart grid models, leading to including prosumers (i.e., produc-
ers/consumers) in those models. In [15], the authors proposed a game theory approach to
model the interactions among prosumers and distribution system operators for the control
of electricity flows in real-time.

The authors in [16] proposed a game theory energy management based on the Stack-
elberg leadership model system, which seeks for social optimality when each energy
consumer focuses only on its own energy efficiency; the existence of a Nash equilibrium
for any instance of the game model that is proposed in the paper was proven (we will see
that this is not the case for the game model that we consider, see Lemma 1), and an optimal
distributed deterministic algorithm is proposed that reaches this equilibrium.

Some other works seek to propose pricing policies for energy suppliers, considering
various optimization objectives. In [17], the authors considered a smart power infrastruc-
ture where several subscribers share a common energy source, and proposed a distributed
algorithm that automatically manages the interactions among subscribers and the energy
provider. The authors in [18] presented an equilibrium Selection Multi-Agent Reinforce-
ment Learning for consumer energy scheduling of a residential microgrid, based on private
negotiation between each consumer and the energy provider, and the work of [19] include
reliability parameters and energy fluctuations and propose a Deep Reinforcement Learning
algorithm based on Q-Learning and Deep Neural Networks to determine a pricing policy
for a power supplier that balances those two parameters.

The authors in [20] also proposed a Vickrey–Clarke–Groves (VCG)-based auction
mechanism aiming to maximize the aggregate utility functions of all users minus the
total energy cost. In [21], the authors proposed a game theory approach for selecting
the best power subscription when several power suppliers are available, based on a two-
stage process.
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Taking into account the availability of several power suppliers leads to various De-
mand Response Management (DRM) problems. The results of [22] focused on the real-time
interactions among multiple utility companies and multiple users, and they proposed a
distributed real-time demand response algorithm to determine each user’s demand and
each utility company’s supply simultaneously.

The contributions of [23] also focused on DRM but solved electricity pricing questions
using a reinforcement learning-based decision system. The goal in this approach is to
minimize the electricity payment and consumption dissatisfaction for end users. Some
works focused on more distributed models with autonomy goals. The authors in [24]
proposed a coalition game between a number of micro-grids (energy producers) that are
each servicing a group of consumers (or an area), and [25] also considered autonomy goals
for a distributed set of micro-grids without support from a traditional centralized grid and
proposed a distributed algorithm based on a cooperative game theory approach. In [26],
a Q-learning method was proposed in a multi-agent model where each consumer (and
more particularly each smart meter) adapts its consumption and the control of its electrical
equipment to the state of the grid and to the prices of electricity.

This synthetic review on related works leads to one observation: very few works
focused on a general smart grid model, in which consumers may or may not have power
production capabilities and power storage facilities, and considered learning approaches.
To our knowledge, only [27] proposed a multi-agent reinforcement-learning approach to
controlling a smart grid composed of production resources, battery storage, electricity
self-supply, and short-term market trading. Event though the proposed algorithm offers
a significantly high computation speed, it has local optima issues that cause it to be out-
performed by the use of a simulated annealing in terms of energy costs.

We propose here a new game theory model for a smart grid interconnecting different
prosumers. This game theory model is based on the proposal of a virtual economic model
between the players, which has an impact on the amount of energy that the smart grid has
to buy from an external supplier. In a discrete time context, in order to allow the smart
grids to obtain an operation that is as little dependent as possible on such an external
energy supplier, while respecting the constraints and interests of each actor, we develop
and experiment on different scenarios a distributed reinforcement-learning approach aimed
at achieving each time period of use of the smart grid. Indeed, the objective here is to
propose a decision algorithm that, on the one hand, respects the choices and the interests of
each actor and, on the other hand, does not require a large data history. This is why we
decided to use a reinforcement-learning approach distributed between the actors and not a
centralized supervised or unsupervised learning approach (see for example [28,29]).

The remainder of the article is structured as follows: first, in Section 2—Materials and
Methods, we define the architecture of the considered system, i.e., the various actors, their
interactions, and their actions. This section then specifies the game model considered, as
well as the internal economic model that this game implements. In Section 2.2—Distributed
Reinforcement Learning for the Game in Each Period, the distributed reinforcement-
learning model that will be used for the simulations is defined. In Section 3—Results,
the performance evaluation of the proposed reinforcement learning executed at each period
is analyzed. The behavior of this approach over a series of periods is then analyzed in
Section 3.2—Multi-Period Simulation.

2. Materials and Methods
2.1. Smart Grid Model

In this section, we define the actors of the smart grid, their interactions, the associated
multi-agent game model, and the virtual economic model that governs it. The main
parameters and notations of the proposed model are given in Table 1—a list of the main
notations defining the components of the smart grid model and their interactions.
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Table 1. List of main notations defining the components of the smart grid model and their interactions.

ai 1 ≤ i ≤ N, ith actor in the smart grid.

Smax
i maximum quantity of electricity stocked by ai at any period.

Pt
i quantity of electricity produced by ai at period t.

Ct
i quantity of electricity consumed by ai at period t.

St
i quantity of electricity stored by ai at beginning of period t.

Rt
i residual capacity of the battery storage.

prodt
i quantity of electricity inserted by ai in SG at period t.

const
i quantity of electricity consumed from SG by ai at period t.

Outt
SG the sum of the agents’ consumption.

Int
SG the sum of the agents’ production.

Statet
i state of ai in De f icit, Sel f , Surplus at period t.

modet
i mode of ai in {CONS−, CONS+, DIS, PROD} at period t.

γt
i value of the incentive to store or preserve electricity of ai at period t.

rt
i the amount of energy preserved by ai for the next period t + 1.

π+,t
0 unitary benefit of electricity sold by an actor to SG (independently from EPO) at period t.

π−,t
0 unitary cost of electricity bought by an actor from SG (independently from EPO) at period t.

bt
0 unitary benefit of an actor selling electricity to SG (possibly partially to EPO) at period t.

ct
0 unitary cost of an actor buying electricity (possibly partially from EPO) to SG at period t.

bent
i virtual benefit of ai at period t.

cstt
i virtual cost of ai at period t.

Vt
i learning utility function of player ai at period t.

π+
EPO,t unitary price of electricity purchased by EPO at period t.

π−EPO,t unitary price of electricity sold by EPO at period t.

φ+
EPO benefit function of electricity sold by SG to EPO.

φ−EPO cost function of electricity bought by SG to EPO.

BBi whole benefit of ai during the T periods.

CCi whole cost for ai during the T periods.

IBi the internal benefit of ai during the T periods.

ICi the internal cost of ai during the T periods.

2.1.1. Smart Grid Actors Model

Our model assumes that each day is divided into homogeneous consecutive periods of
a few hours. We make two assumptions here. First, that the consumption and production
values of each actor in each period can be considered as a fixed value. Secondly, that it is
possible at each period and for each actor to sufficiently predict precisely these consumption
and production values for the following period. In [30], it is shown that such a model
is realistic considering half-day periods, but it is important to note that our model is
independent of the choice of periods—the execution of the method requires a short time in
each one.

In this discrete time context, each energy indicator of each actor can be considered
as a fixed value in each period. For each period, the system representing the smart grid
is considered here as a multi-agent system. Let AG = {a1, ..., aN} be the set of N actors
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connected by the smart grid (SG), each actor ai:1≤i≤N being potentially able to produce
electricity, in particular with renewable energies, and to store it. Each actor’s production
and storage capacities are limited. Production varies over periods.

Each actor ai, with 1 ≤ i ≤ N, at each period t is characterized by

• Pt
i is the production of electricity by the actor during the period.

• Ct
i is the electricity consumption of the actor during the period.

• St
i is the quantity of electricity stored by the actor at the beginning of the period. We

denote by Smax
i the maximal storage capacity, and we define the residual capacity of

battery storage Rt
i = Smax

i − St
i , i.e., the maximum quantity of energy that the actor

can store during the period. Note that, during a period, an actor cannot both use and
provide storage.

As has been done in different game models applied to Smart Grids [31–33], at the
level of granularity corresponding to the model we use here, where a single prosumer
can be a micro-grid, we consider at a first approach that the values of consumption and
production are inelastic in each period, which thus makes it possible to assess the relevance
of algorithmic game theory to arbitrate the choices of the various independent actors. This
relevance established, taking into account inelastic data at a finer granularity could then be
considered [34–36], in game models that are likely to be more complex to handle.

The smart grid is also connected to an external energy production operator (EPO),
who can supply it with electricity if necessary and to which the smart grid can sell unused
electricity produced by the actors. Note that the actors do not directly interact with this EPO.

Thus, the smart grid itself can be considered as an energy container connecting all the
actors ai:1≤i≤N ; each actor ai at each period t provides a quantity of electricity prodt

i to SG
and uses a quantity of electricity const

i from SG (note that prodt
i and const

i cannot be both

greater than 0). We denote Int
SG =

N
∑

i=1
prodt

i and Outt
SG =

N
∑

i=1
const

i . Then, if Int
SG < Outt

SG,

the energy production operator EPO provides a quantity of energy q = Int
SG −Outt

SG to SG
from a given linear increasing cost function φ−EPO(q) (see Section 3.1—Learning Performance
Analysis); else if Outt

SG ≤ Int
SG, SG sells a quantity of energy q′ = Outt

SG − Int
SG from a

given linear increasing benefit function φ+
EPO(q

′). Definitions of φ−EPO and φ+
EPO are inputs

of the model.

2.1.2. Action Modes of Each Actor

At each period t, each actor ai:1≤i≤N chooses one of four possible modes of action
modet

i ∈ M = {CONS+, CONS−, DIS, PROD}. Modes CONS− and CONS+ mean that
the actor requires energy from SG for its consumption, i.e., const

i > 0 and its production
is not sufficient to cover its consumption (the two modes differ on whether the actor
uses its storage or not, as detailed below). Mode DIS means that the actor decides to
be independent of SG (i.e., prodt

i = const
i = 0). Finally, mode PROD means that the

actor chooses to provide energy to SG (i.e., prodt
i > 0, and it is autonomous for its own

consumption). The conditions to choose one mode in M respect the following rules
considering three disjoint states for an actor depending only on Pt

i , St
i , Ct

i .

• State Deficit: Pt
i + St

i ≤ Ct
i . In this state, actor ai needs energy from SG for its consump-

tion, then prodt
i = 0; it can also choose to use its storage or not. Thus, in this state, the

chosen mode can be modet
i = CONS+, in which case const

i = Ct
i − (Pt

i + St
i ) and thus

St+1
i = 0, or modet

i = CONS−, in which case const
i = Ct

i − Pt
i and thus St+1

i = St
i .

• State Self : Pt
i + St

i > Ct
i and Pt

i ≤ Ci. In this state, two modes can be chosen by ai. First,
modet

i = CONS−, where const
i = Ct

i − Pt
i : the actor does not use its storage, St+1

i = St
i .

Secondly modet
i = DIS, where const

i = 0 and St+1
i = St

i − (Ct
i − Pt

i ). In both cases,
prodt

i = 0.
• State Surplus: Pt

i > Ct
i . Two modes can be chosen by ai. First, modet

i = PROD, where
prodt

i = Pt
i − Ct

i : the actor provides all its overall produced energy to SG and St
i

remains the same. Secondly, modet
i = DIS in which St+1

i = Min(SMax
i , St

i + (Pt
i − Ct

i ))
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and prodt
i = |Pt

i − Ct
i − Rt

i |+: the actor favors the storage of its remaining produced
energy. In both cases, const

i = 0.

The logical architecture of the system thus proposed is synthesized in Figure 1.

Figure 1. Logical architecture of the whole considered system.

Thus, in State Deficit, each actor ai can choose at each period t its mode modet
i in

{CONS+, CONS−}. In State Self, an actor ai can choose its mode in {CONS−, DIS}.
Finally, in State Surplus, an actor ai can choose its mode in {PROD, DIS}. Thus, in any
case, an actor has always two possible strategies.

These modes ensure that the production of the actor ai is intended primarily for its
consumption, and the stored energy of ai is never imported from SG but is only filled by
its own production. In fact, each actor ai consumes the total amount of production (and
eventually its current storage) before importing electricity from SG. The choice of actors
therefore only concerns the policy of supply or use of the stock.

Let us now define two parameters qt,− and qt,+ such as qt,− =∣∣∣∣∑
i
|Ct

i − Pt
i |+ − |Pt

i − (Ct
i + Smax

i − St
i )|+

∣∣∣∣+ and qt,+ =

∣∣∣∣∑
i
|Pt

i − Ct
i |+ − |Ct

i − (Pt
i + St

i )|+
∣∣∣∣+.

Note that qt,− is an upper bound of the energy quantity bought by SG to EPO at period t
and that qt,+ is an upper bound of the energy quantity sold by SG to EPO at period t. We

then also define π−EPO,t =
φ−EPO(qt,−)

qt,− and π+
EPO,t =

φ+
EPO(qt,+)

qt,+ (in fact, we consider that way a

kind of linearization of functions φ−EPO and φ+
EPO).

We define two other parameters, πt,−
0 ≤ π−EPO and πt,+

0 ≤ π+
EPO. First, πt,−

0 is a cost
each actor has to pay for one unit of energy provided to it by SG. Secondly, πt,+

0 is a benefit
each actor makes for one unit of energy sold to SG (see Figure 2 Unitary prices in the
model used for learning process). This guaranties that, for any 0 ≤ x ≤ qt,−, we have
φ−EPO(x) ≥ x × πt,−

0 . These two parameters are not input data but rather parameters of
the virtual economic internal model of SG, needed for its management; the way to choose
values for πt,−

0 and πt,+
0 will be discussed in Section 2.1.2—Action Modes of Each Actor.
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The direction of the arrows represent the flow 
of energy between the actors, SG and EPO.

Figure 2. Unitary prices in the model used for the learning process.

Then, the internal cost and benefits of each actor ai defined in the model depend on
the value of prodt

i , const
i , Int

SG and Outt
SG. We first define a unitary cost ct

0 Equation (1) and
a unitary benefit bt

0 Equation (2) of a unit of energy in SG as follows:

ct
0 =

πt,−
0 i f Int

SG ≥ Outt
SG

φ−EPO(Outt
SG−Int

SG)+Int
SG×πt,−

0
Outt

SG
else

(1)

bt
0 =

πt,+
0 i f Outt

SG > Int
SG

Outt
SG∗π

t,+
0 +φ+

EPO(Int
SG−Outt

SG)

Int
SG

else
(2)

These definitions are based on choices relating to the proposed model. If Int
SG >

Outt
SG, then we consider that each actor in state Deficit, or in state Self with mode CONS−,

receives the same percentage (Int
SG −Outt

SG)/Int
SG of energy supplied globally by EPO.

This percentage is then reflected on the unit cost ct
0. On the contrary, if Outt

SG > Int
SG,

then we consider that each actor in state Surplus sells the same percentage (Outt
SG −

Int
SG)/Outt

SG of energy to EPO, which is reflected in the unit benefit bt
0.

To finally define the cost and benefit functions of each actor at each period t, we
consider a given parameter γt

i which indicates the importance given by each actor ai of
storing energy for the next period, with γt

i ∈ {0, πt,−
0 + 1, πt,+

0 + 1}. Each actor at each
period t knows Ct+1

i and Pt+1
i . The way to determine the value of each γt

i will be considered
in Section 2.2.1—Learning strategies.

The (virtual) whole cost of ai at period t is cstt
i = ct

0 × const
i and its whole benefit is

bent
i = (bt

0 × prodt
i) + (γt

i × rt
i ), with the additional or preserved stock rt

i indicating the
amount of energy stored or preserved by the actor for the next period defined as follows:

• If modet
i = CONS+ then rt

i = 0.
• If modet

i = CONS− then rt
i = St

i .
• If modet

i = DIS then rt
i = 0 in State Self and rt

i = Min(Smax
i − St

i , Pt
i − Ct

i ) in State Sur-
plus.

• If modet
i = PROD then rt

i = 0.

Thus, we denote by Vt
i = bent

i − cstt
i the value of actor ai at period t. We also consider

IBi =
T
∑

t=1
bt

0 × prodt
i and ICi =

T
∑

t=1
ct

0 × const
i being respectively the internal benefit and

cost of actor ai for all the periods in the virtual economic model we propose inside SG.

2.1.3. Game Model

From the definitions of the previous section, we consider, in each period, a simulta-
neous game model [7], called SGGame, in which players are the actors {a1, . . . , aN} and
where the set of strategies of player ai is Sti = {CONS−, CONS+} if ai is in State Deficit,
Sti = {CONS−, DIS} if ai is in State Self and Sti = {DIS, PROD} if ai is in State Surplus.
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Given a strategy profile µ = s1 . . . sN , with si ∈ Sti a strategy for each player ai, we
define the utility of player ai by Vi = (beni − csti). Note that, since π−EPO and π+

EPO can be
different from the other and different from π+

0 and π−0 , this game called SGGame is not a
zero-sum game [7].

Let us recall that a Nash equilibrium is a strategic profile in which the unilateral
modification of the strategy of any actor degrades its utility [7] (thus, no actor has any
interest in changing its strategy alone). As shown in Section 3.1—Learning performance
analysis, non-trivial instances of the game admit pure Nash equilibria. The following result
proves that this is not always the case.

Lemma 1. SGGame does not admit a pure Nash equilibrium for all instances.

Proof. We consider an instance of SGGame with two players a1 in State Deficit and a2 in
State Surplus, with

• C1 − P1 = 2 and S1 = 1.
• P2 − C2 = 2 and Smax

2 = S2 + 1.
• γ1 = π−0 + 1 < π−EPO = φ−EPO(1) and γ2 = π+

0 + 1 < π+
EPO = φ+

EPO(1).

Note that these values of γ1 and γ2 are compatible with what will be defined in
Section 3.1.

Then, we can have four possible strategy profiles depending on strategies
{CONS+, CONS−} for a1 and {DIS, PROD} for a2, and the utilities are given in Table 2.

Table 2. Utilities for each possible strategy profile.

mode2 = PROD mode2 = DIS
(then rt

2 = 0) (then rt
2 = 1)

mode1 = CONS− Int
SG = 2, Outt

SG = 2 Int
SG = 1, Outt

SG = 2
(then rt

1 = 1) bent
1 = γ1, cstt

1 = 2× π−0 bent
1 = γ1, cstt

1 = π−EPO + π−0
V1 = γ1 − 2× π−0 V1 = γ1 − π−EPO − π−0
bent

2 = 2× π+
0 , cstt

2 = −0 bent
2 = π+

0 + γ2, cstt
2 = 0

V2 = 2× π+
0 V2 = π+

0 + γ2

mode1 = CONS+ Int
SG = 2, Outt

SG = 1 Int
SG = 1, Outt

SG = 1
(then rt

1 = 0) bent
1 = 0, cstt

1 = π−0 bent
1 = 0, cstt

1 = π−0
V1 = −π−0 V1 = −π−0
bent

2 = π+
0 + π+

EPO, cstt
2 = 0 bent

2 = π+
0 + γ2, cstt

2 = 0
V2 = π+

0 + π+
EPO V2 = π+

0 + γ2

The definition of rt
1 and rt

2 is given at the end of Section 2.1.2—Action modes of each actor. Concerning a1, line
1 dominates line 2 in column 1, and line 2 dominates line 1 in column 2. Concerning a2, column 2 dominates
column 1 in line 1, and column 1 dominates column 2 in line 2. Thus, there is no PNE.

Note that this lemma is a consequence of the differences between the values of π−EPO,
π+

EPO, π+
0 and π−0 .

As we have seen, we consider the time of the smart grid as a sequence of T ho-
mogeneous periods of the same duration. Each actor ai is in a chosen mode modet

i in
{CONS−, CONS+, PROD, DIS} for each period (modes determined by running the game
considering the state of each actor). Thus, the system can be seen as a non-stationary
repeated game. It is non-stationary because the values of Ci and of Pi at each step do not
depend (only) on the strategies chosen during the previous steps. Moreover, since the
choice of strategies for each period, apart from the value of the stock of each actor, does not
depend on the strategies chosen during previous periods, we cannot here directly consider
concepts of the theory of repeated games [37].
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2.1.4. A Pricing Model for a Smart Grid

As we have seen, the model proposed here is an internal and virtual economic model
between SG actors to be used as a cost allocation key for the real payment of electricity
purchased from EPO by all the actors.

The objective is thus here to propose a mechanism to compute a unit price of purchase
and sale of electricity to each actor for the whole periods, prices whose modifications
compared to the real price of EPO will depend on the choice of all the players during all
the periods. Thus, there is no real financial exchange here between the actors, or between
the actors and SG (again, the internal economic model is virtual). This model will be the
basis of how to fix πt,−

0 and πt,+
0 for each period t.

For each actor ai, let us denote CONSi =
t

∑
t=1

const
i and PRODi =

T
∑

t=1
prodt

i . It is clear

that PRODi, i.e., all of what is produced in SG by ai, is not sold to EPO, and that CONSi,
ie all of what is consumed from SG by ai, is not purchased from EPO. Thus, we propose
here that the real cost ai has to pay for the T periods is CCi = (β−SG,T × CONSi) and the
real benefit of ai is BBi = (β+

SG,T × PRODi) with

β−SG,T =

φ−EPO

(
T
∑

k=1

(
|

N
∑

i=1
consk

i −
N
∑

i=1
prodk

i |+
))

T
∑

k=1

N
∑

i=1
consk

i

and

β+
SG,T =

φ+
EPO

(
T
∑

k=1

(
|

N
∑

i=1
prodk

i −
N
∑

i=1
consk

i |+
))

T
∑

k=1

N
∑

i=1
prodk

i

Then, the real economic balance of actor ai for all the periods is EBi = BBi − CCi. Note
that the sum of the actors profits is equal to the benefit of SG on EPO, and that the sum of
the actors costs is equal to the overall price paid by SG to EPO.

It will therefore be a question of determining at each period t the values of πt,−
0 and

πt,+
0 , which offers the best compromise between the value β−SG,t and β+

SG,t that are implied
by π−,t

0 and π+,t
0 . Since the purpose of each actor of the game in each period t is to make the

best decision regarding the whole proposed economic model, we use definitions of β−SG,T

and β+
SG,T to set values of π+,t

0 and π−,t
0 at each period t as follows: π+,t

0 =
β−SG,t−1
π−EPO,t

× π+
EPO,t

and π−,t
0 = β−SG,t−1. Note that more β−SG,t−1 is close to φ−EPO(q)

q , with q =
t

∑
k=1

N
∑

i=1
consk

i , more

the fact that an actor in state Surplus provides electricity to the smart grid is required, which
is why πt

0 has to be close from β+
SG,t−1 in such cases.

We consider that initially β−SG,0 = π−EPO,1 − 1 and β+
SG,0 = π+

EPO,1 − 1. As said in
Section 2.1.3—Game model, due to the energy market rules, since π−,t

0 and π+,t
0 , π−EPO,t

and π+
EPO,t are not necessarily equal, each period t does not consist in a zero-sum game and

thus some situations could occur in which all actors utilities are positive (or negative).

2.2. Distributed Reinforcement Learning for the Game in Each Period

Based on the models given above, we propose here a distributed reinforcement-
learning approach which objective is to make it possible to converge towards situations
that are stable, i.e., in which a choice of strategy for each actor having a significant impact
on the state of the smart grid is on one hand clearly established with a high probability
and on the other hand optimized from the point of view of the cost for all the actors.
In particular, in the game model we are introducing, we observe experimentally on the
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instances we generate that Nash equilibria (see [7] for a definition) are, when they exist,
such stable situations.

2.2.1. Learning Strategies

We consider at each period t the game defined in Section 2.1.3—Game model. Note
that in a distributed reinforcement learning context, if some actors ai in state Deficit are such
that St

i = 0, then any strategy in Sti = {CONS−, CONS+} lets them in a same situation.
Thus, in the following, we do not consider such an actor as a player, even if we consider its
impact in the computation of the utilities for the other (real) players.

The objective of the learning strategy is to attempt to reach a good stable situation, or
even a Nash equilibrium, at each period, considering the benefit function Vt

i defined in
Section 2.1.3—Game model. The utility function we use in this learning strategy is based
on a benefit/cost parameter bgk(ai) for each player ai at each learning step k, depending on
the storage parameter γt

i computed as follows:
Given a period t ≤ T, whatever is the state of the actor ai, the two modes this actor

can choose to have different impact on the storage quantity at the end of the period. Let us
denote, by St,+

i , the maximum of these two values and St,−
i the minimum one.

• State Deficit: St,−
i = 0, considering modet

i = CONS+ and St,+
i = St

i , considering
modet

i = CONS−.
• State Self : St,−

i = St
i − (Ct

i − Pt
i ), considering modei = DIS, and St,+

i = St
i , considering

modet
i = CONS−.

• State Surplus: St,−
i = St

i , considering modet
i = PROD, and St,+

i = Max(SMax
i , St

i +
(Pt

i − Ct
i )), considering modei = DIS.

One can check that St,−
i ≤ St,+

i . Consider now the probability

ppt
i =

√√√√Min

(
||Ct+1

i − Pt+1
i |+ − St,−

i |+

St,+
i − St,−

i

, 1

)

|Ct+1
i − Pt+1

i |+ is the ideal quantity of energy that actor ai should have in stock for
period t + 1. Let ρt

i be a random variable where the value is 1 with probability ppt
i , else

ρt
i = 0. Then, we set γt

i = ρt
i × (X + 1) with X = π−,t

0 if ai is in State Deficit or Self, else
X = π+,t

0 if ai is in state Surplus.
We can now define the utility function we propose to use.
First, considering Section 2.1.3—Game model, we compute the following bounds of

InSG and OutSG (see end of Section 2.1.2—Action modes of each actor for definitions):

Im = ∑
ai : State(ai)t=Surplus

|Pt
i − (Ct

i +(Smax
i − St

i )|+ ≤ InSG ≤ IM = ∑
ai : State(ai)t=Surplus

Pt
i −Ct

i

Om = ∑
ai : State(ai)t=De f icit

Ct
i − (Pt

i + St
i ) ≤ OutSG ≤ OM = ∑

ai : State(ai)t∈{De f icit,Sel f }
Ct

i − Pt
i

Then, we can conclude that

c0 ≤ cM
0 = Min

(
(OM − Im)×Π−EPO + IM × π−,t

0
Om

, π−,t
0

)

Note that Im (resp. IM) is computed by considering that each actor ai in State Surplus
is in mode DIS (resp. PROD). The value of Om (resp OM) is computed by considering
that each actor ai in State Deficit is in mode CONS+ and that each actor ai in State Self is
in mode DIS; finally, OM is computed by considering that each actor ai in State Deficit
or Self is in mode CONS−. The game benefit of a player ai at step k is defined by bgk(ai) =
beni +

(
cM

0 × (|Ct
i − Pt

i |+)
)
− csti. cstt

i = ct
0 × const

i and bent
i = (bt

0 × prodt
i) + (γt

i × rt
i ).

Note also that cM
0 × (|Ct

i − Pt
i |+) is an upper bound of the cost actor ai could have to pay.
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We denote by bgmin(ai) and bgmax(ai) the minimum and maximum benefits obtained
by the player ai during learning step from 1 to k. Then, the utility of ai during step k of the

learning process of period t is equal to uk
i = 1− bgmax(ai)−bgk(ai)

bgmax(ai)−bgmin(ai)
.

2.2.2. Learning Process

Based on the strategy given above, we consider here a distributed Linear Reward
Inaction (LRI) reinforcement learning process (see [38]).

Each actor ai is characterized by two possible strategies si
1 and si

2. Let us denote by
pi

1,k the probability to choose strategy si
1 at step k and by pi

2,k = 1− pi
1,k the probability to

choose strategy si
2 at step k. Let si,k

j ∈ {s
i
1, si

2} the chosen strategy, with j ∈ {1, 2}. Then,

pi
j,k+1 = pi

j,k + b× uk
i × (1− pi

j,k),

with b < 1 a learning parameter called slowdown factor. The probability of the other
strategy at step k + 1 is of course 1− pi

j,k+1.

3. Results

We present in this section several experiments and performance evaluations of the LRI
reinforcement learning process presented above.

The performance evaluation of the approach proposed here is based on a set of data
generated as indicated in Sections 3.1 and 3.2, for about twenty actors. The purpose of this
generation is on the one hand to represent realistic situations in terms of heterogeneity of
actors’ behavior (production and consumption) and on the other hand to be sufficiently
complex in terms of learning process to evaluate the performances of the method (in
particular on the existence or not of pure Nash equilibria).

We start by studying the performances of the learning process during only one period.
We then extend our simulations to cases in which the learning process runs on several
successive periods.

3.1. Learning Performance Analysis

We first study here the performance of the learning strategies on only one period t. To
do this, considered data are generated as follows: Experiments are done on 50 independent
period instances. The values of Ci and Pi of actor ai is computed by:

• If State(ai) = De f icit, then Ci = 15 and Pi is uniformly chosen in {5, . . . , 10}; we
consider Si = 0.

• If Statet(ai) = Sel f , then with probability 1/2, we set Ci = 10 and Pi uniformly chosen
in {5, . . . , 8} and we consider Si = 6. Else, we set Ci = 31 and Pi uniformly chosen in
{21, . . . , 30}, and we consider Si = 8

• If State(ai) = Surplus, then Ci = 20 and Pi uniformly chosen in {21, . . . , 30}, and we
consider Si = 8.

We consider 15 actors in state Deficit, 10 actors in State Surplus and 10 actors in
State Self. For each actor ai, we set Smax

I = 20. Finally, we consider φ+
EPO(x) = 10× x,

φ−EPO(x) = 30× x, π+
0 = 4 and π−0 = 3. The value of each value γi is computed as defined

in Section 2.2.1—Learning strategies, considering that ppt
i = 0.8.

The 50 instances generated correspond each to a difficult context for SG, i.e., in which
SG is highly dependent on EPO. For each instance, we consider the average value of
Per ft = ∑

1≤i≤N
Vt

i over the 50 tested instances (see the end of Section 2.1.2—Action modes

of each actor for definition of Vt
i ).

We compare the performances of the reinforcement learning process (RL) described
above, with parameter b = 0.01, with a total exploration method (TEM) to find a strategy
profile maximizing Per ft (note that such method seems to be impracticable in real situations
because of computation time when N is not small), considering also the maximum value of
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Per ft over all Nash equilibria, if at least one exists. The learning algorithm RL is stopped
when, for each actor and before 50,000 learning steps (maximum number of learning
steps), the highest probability of the strategic of each actor is greater than or equal to
0.9; we refer to this situation as stabilization, and it is the strategy with such maximum
probability that is chosen for each actor. Otherwise, the learning process is stopped after
50,000 steps. The chosen strategic profile is made up for each player in the strategy with
the highest probability.

Experiments show first that the set of generated instances each admits a non-empty
set of Nash equilibria, which are all equivalent, i.e., where only variations concern the
strategies of certain actors in deficit mode, variations that do not change the utility of
any player. These Nash equilibria therefore all have the same Per ft value. This value is
minimum on all possible strategic profiles, and only these balances reach this value, as
indicated by the execution of TEM. The ratio between the best and the worst value of Per f
for a profile is on average 0.25 among all the instances, which shows the variability of the
set of strategic profiles for each instance in terms of performance.

The learning method stabilizes for 12 instances over 36, with an average of 18,000 learn-
ing steps for those 12 instances. Whether the method has stabilized or not, the strategic
profile provided is in all cases a Nash equilibrium. We can conclude that on this set of
instances, RL requires a relatively small number of steps to determine the Nash equilibrium,
whether it stabilizes or not. Moreover, the evolution of the strategy probabilities during the
learning process reveals two types of well-discriminated instances. By definition, actors
and instances for which learning stabilizers have a maximum probability greater than 0.9.
For each of the other instances, the mean value of the maximum probability is globally
comprised between 0.78 and 0.82.

Figure 3 Examples of stochastic vectors evolution for two instances compares the evo-
lution of the probabilities during RL execution on two instances from the set we generated,
instances 46 and 35. For instance 46, the RL process stabilizes after 9500 steps, while for
instance 35 it doesn’t achieve stabilization. The figure compares the evolution of the proba-
bilities during RL execution for three actors (one for each state in {De f icit, Sel f , Surplus})
chosen randomly, from those two instances. As for the majority of Deficit actors in stabi-
lizing instances, the evolution of the probabilities of such a player in instance 46 shows
that the number of learning steps is only due to time needed by such players to choose a
strategy, whereas the players in state Self or Surplus choose the right strategy very quickly.

The learning time is therefore mainly used by the players in Deficit to arbitrate between
the use of their stock and the use of SG. As illustrated by curves concerning Instance 35 in
the figure, the instances that do not stabilize see the probabilities of the actors in state Self
remaining at 0.5 during the training, which has a negative impact on the average of the
best probabilities of each actor (even if this situation does not prevent the instance from
finally choosing a Nash equilibrium). Indeed, in these instances, some actors ai in State Self
are such that Ct

i = Pt
i > 0 and St

i = 0; for these actors, the two strategies are equivalent,
with a utility equal to zero. These are the worst cases for the effectiveness of learning, but
RL still succeeds in determining the Nash equilibrium.

We consider also another type of instances with 10 actors for which there does not
systematically exist pure Nash equilibria.

• 4 actor ai in State Deficit with St
i = 0, Ct

i = 15, Pt
i = 0.

• 3 actor ai in State Self with two possible situations with probability 0.5 : one in which
St

i = 0, Ct
i = 10 and Pt

i uniformly chosen in {8, . . . , 12}; the other in which St
i = 0,

Ct
i = 31 and Pt

i uniformly chosen in {21, . . . , 30}.
• 3 actor ai in State Surplus with St

i = 0, Ct
i = 20, Pt

i = 26.
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Figure 3. Examples of stochastic vectors evolution for two instances.

We also consider Smax = 50 and ppt
i = 0, 3 for each actor ai. Note that φ+

EPO, φ−EPO, π+
0

and π−0 are the same as in the previous instance generation scenario.
In the simulation, we run at most 30,000 learning steps in each of the 50 period

instances. In this instance set, only 4 instances admit a Nash equilibrium, with the same
properties as the ones of stabilizing instances of the previous scenario. As regards the
6 other instances, there is no stabilization. The ratio of values of Per f t given by RL and the
one given by TEM varies between 0.85 and 0.92, knowing that the mean value of Pert by
RL is equal to −1466 for these six instances. The difference between the actor profiles given
by RL and TEM is that the values of Per f t is 3% less in TEM profiles than in RL ones, ie
that these actors in State Surplus are solicited by SG upon to contribute beyond their own
interest, which contradicts the objectives of the proposed model.

Finally, we focus on the evolution of the strategy probabilities during the execution
of RL for a two-player instance resulting from the proof of Lemma 1. This instance is
defined by

• S1 = 1, C1 = 3, P1 = 1 and γ1 = 2,
• S2 = 1, C2 = 1, P2 = 3 and γ2 = 3,
• Smax = 2, π−0 = 1, π+

0 = 2, Π−EPO = 6 and Π+
EPO = 3.

In this case where there is no Nash equilibrium, as shown in Figure 4 Evolution of
the probabilities of the strategies of the two actors during RL steps, at the beginning of
learning, actor 2 quickly confirms its choice of the DIS strategy, that is to say to favor its
stock. It is the consequence of actor 1 first favoring the CONS−, which leads it to use all
the energy that actor 2 overproduces. Therefore, actor 2 does not derive any benefit from a
sale of electricity to EPO.

When actor 1 eventually learns to prioritize its stock (strategy CONS+), actor 2’s
decision to choose DIS has reached a probability too high to be challenged by RL, even if it
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begins to decline again slightly. In this example, it is therefore the initial decision of the
actor in the Surplus state, which dominates the learning process.

0 500 1000 1500 2000 2500

k_steps

0

0.2

0.4

0.6

0.8

1

CONS+

CONS-

DIS

PROD

probabilities' evolution: Player_0 and Player_1

Figure 4. Evolution of the probabilities of the strategies of the two actors during RL steps.

Thus, to summarize all this RL performance evaluation, through all these experiments,
it appears that when a Nash equilibrium exists and corresponds to an optimal value of Per f ,
RL succeeds in determining it (note that it appears experimentally difficult to generate
instances having a Nash equilibrium but which is not an optimal). Among these instances,
those that do not stabilize are those in which the two strategies are equivalent for a certain
number of actors in state Self, without this preventing RL from determining the Nash
equilibrium. When a Nash equilibrium does not exist, RL determines a profile, which
remains efficient in terms of Per f t compare to the one provided by TEM, without sacrificing
the situation of actors in Surplus state in particular. This experimentation shows the interest
to use RL in this context, and it is now a question of evaluating the performance of RL for a
series of periods, which is studied in the next section.

3.2. Multi-Periods Simulation
3.2.1. Instances Generation

We consider the following scenario of instances generation over consecutive periods,
where the situation of each of these actors at any period t > 1 is determined from the one
at period t− 1 by considering one of the transition automata given in Figure 5 Transition
states automata for instances generation.

Data for each actor ai at each period t are generated as follows. Consider first that
each actor ai is in one of four situations defined as follows:

• Situation A: Ct
i = 10 and Pt

i is uniformly chosen in {2, . . . , 4}; Smax
i = 10.

• Situation B1: Ct
i = 10 and Pt

i is uniformly chosen in {8, . . . , 12}; Smax
i = 6.

• Situation B2: Ct
i = 22 and Pt

i is uniformly chosen in {18, . . . , 22}; Smax
i = 15.

• Situation C: Ct
i = 20, Pt

i = 26; Smax
i = 20.

Considering all the periods, the average electricity quantity that is consumed per
period by actors is equal to 400 and the average produced one is 380.

This instance generation tends to represent a situation in which a smart grid connects
two types of actors. On the one hand, players that are not very productive relatively to their
needs (situations A and B1), typically old collective housing or administrative buildings, on
the other hand players with high consumption but with significant production capacities
and energy storage (situations B2 and C), typically eco-responsible buildings or recent
industrial buildings.

For t = 1, we consider initially 8 actors in Situation A (with initial stock S1
i = 3),

5 actors in Situation B1 (with initial stock S1
i = 4), 5 actors in Situation B2 (with initial stock

S1
i = 10) and 8 actors in Situation C (with initial stock S1

i = 10).
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Figure 5. Transition states automata for instances generation.

Finally, as in Section 3.1—Learning performance analysis, we consider φ+
EPO(x) =

10× x, φ−EPO(x) = 20× x, π+,1
0 = 4 and π−,1

0 = 3.

3.2.2. Performances Evaluation

Considering each of the three scenario above, we generate, for each actor, values Ct
i and

Pt
i for 50 consecutive periods. On each of the such obtained three sequences of values, we

compare at each period the performances of RL, a Systematic algorithm (SyA) and a Selfish-
deterministic algorithm (SDA). It should be noted that since the methods we propose in this
article do not consist in constructing precise predictions of consummations and productions,
but rather in calculating actions that tend to optimize a controlled distributed system, based
on feedback from the environment of the system, we think that the performance of such
a system cannot be summed up in a single global indicator (as for example the accuracy
index of a predictive algorithm using statistical learning methods such as Deep Learning).
Several parameters must be considered together in order to decide which solution is the
best fit. We therefore propose here to take into account three indicators evaluating learning
performance (Aperf), effective revenue (ER) and virtual revenue (VR), as defined below.

Regarding RL, we consider a maximum number of 10,000 learning steps; indeed
Section 3.1—Learning performance analysis shows that even if there is no stabilization
before 10,000 steps, the obtained profile is the same as the one after 50,000 steps. The
purpose of these algorithms is to determine a strategy profile for actors at each period.

The Systematic algorithm fixes mode CONS+ for any actor in State Deficit and mode
DIS for any actor in States Self or Surplus; this algorithm consists of having each actor
systematically feeding or using its stock.

The Selfish-deterministic algorithm (SDA, Algorithm 1) is defined as follows:

Algorithm 1: SDA

for each agent ai at each period t do
if ai is in State Deficit then

if |Ct+1
i − Pt+1

i |+ < St,−
i then modet

i = CONS+ else modet
i = CONS− ;

if ai is in State Self then
if |Ct+1

i − Pt+1
i |+ ≥ St,−

i then modet
i = CONS− else modet

i = DIS ;

if ai is in State Surplus then
if |Ct+1

i − Pt+1
i |+ ≥ St,−

i then modet
i = DIS else modet

i = PROD ;

In this algorithm, at each period, each actor unilaterally manages its stock considering
its needs in the next period.



Energies 2022, 15, 1440 16 of 19

For each algorithm, we focus on the average value APer f =
∑

1≤t≤T

(
Per ft= ∑

1≤i≤N
Vt

i

)
T of

Per ft over all periods. Vt
i is the utility of actor ai at period t, considering its benefit bent

i ,
cost cstt

i and stock incentive γt
i (see Sections 2.2.1 and 3.1). Moreover, for each of the two

methods we focus on the values of the Effective Revenue ER =
N
∑

i=1
EBi, and the Virtual

Revenue VR =
N
∑

i=1
IBi − ICi, i.e., the one obtain by considering virtual prices π−,t

0 and π+,t
0

at each period t ≤ T; remind also that EBi is the real economic balance (see Section 2.1.4—A
pricing model for a smart grid) and that IBi and ICi are internal benefit and cost of actor ai
respectively (see Section 2.1.2—Action modes of each actor).

Finally, to evaluate if the situations obtained in each period by RL do not disadvantage
the actors in state Surplus, compared to situations obtained by SDA, we define two partial
metrics concerning ER. We thus also define experimentation parameters τI = ERI

RL −
ERI

SDA and τI I = ERI I
RL − ERI I

SDA, where ERI
RL and ERI I

RL are the values of ER restricted to
players initially in Situations A and B1 and the ones in Situations B2 and C, respectively,
and where similarly ERI

SDA and ERI I
SDA are the values when using SDA.

The experimentation provides the metric values presented in the following Table 3.

Table 3. Performance comparison of learning algorithms.

Metrics RL SDA SyA

Aper f −592 −782 −404

ER −9802 −12,790 −12,054

VR −1236 −15,652 −14,240

These results show first of all that the SyA method has slightly better performances
than those of SDA concerning ER, which seems to indicate that a selfish approach sys-
tematically favoring the current stock of each actor is more effective than a deterministic
approach aiming to keep into account needs of future stock and sharing within SG. This is
no longer the case when such a context is handled by RL, which gives the best performances
concerning ER. It should also be noted that the differences in values of V between on the
one hand RL and on the other hand SyA and SDA show that these two last methods provide
strategic profiles of very poor performances in the sense of the game defined within SG.

Finally, we note that concerning Aper f , which calculates the profit in the game virtual
economic model of SG, SyA is more efficient than RL because it converges towards profiles
that are not Nash equilibria and which, therefore, appear less efficient in terms of real profits
(ER). In all the periods generated on the basis of the instance generation scenario described
above, it therefore clearly appears that the use of a reinforcement learning method is
necessary to allow all the actors of the smart grid to converge towards a less costly situation
for all, while preserving the independence of decision of each.

Moreover, the couples of values (τI , τI I) are equal to (4509,−1521). This shows that
when considering the objective of keeping account for future stock needs and sharing
within the smart grid, with SDA, the overproduction of actors in Situations B2 and C
is totally solicited by SG to provide as much energy as possible to the actors in states
Situations A and Situations B1, which then have a very low cost to pay. With RL, we see
that the interest of each over-productive actor (states Situations B2 and C) is preserved,
which increases the cost of other actors. But overall the cost paid by SG to EPO is falling
with RL as seen previously. As indicated in Section 2.1.4—A pricing model for a smart grid,
a cost allocation solution between actors to globally distribute the cost of the smart grid on
each actor could also be considered from the result provided by RL.



Energies 2022, 15, 1440 17 of 19

3.3. Technical Implementation and Code Performance

Simulations and learning algorithms were implemented on a computer composed of
i7-10870H CPU @ 2.20GHz, 8 cores, 16 threads, 64Go RAM. Both are implemented using
Python 3.8, with libraries = NumPy (1.20.1) and Pandas (1.2.4).

Even though the system is distributed by nature, simulations for all agents are cen-
tralized, in order to compute values of the utility functions. On one period with 50 agents,
and 50,000 learning steps for each agent, one simulation takes between 30 min and 1 h. It
should be noted that what takes most computing time is the computation of all function
utility values.

4. Conclusions

In this article, we proposed a distributed and autonomous decision model based on
game theory of a smart grid interconnecting prosumers, associated with an internal eco-
nomic virtual model that must converge during the execution time towards a real economic
model imposed by an external energy supplier (EPO). We show that, by integrating a
forecast of the necessary energy stock, the use of learning techniques by reinforcement
allows convergence on economically relevant situations for the smart grid while respecting
the interests of each prosumer.

When considering a single period of time, these learning approaches proved to be
optimal in terms of the energy consumption for all the instances that we considered and
allowed for reducing energy costs for all actors of the smart grid. When learning is done
across several time periods, it was more efficient than both a simple deterministic algorithm
that feeds or uses its stock and a deterministic selfish algorithm that uses a consumption
forecast. Moreover, convergence time, which is often an issue with reinforcement learning,
remained low here.

As a first approach, the physical operation of smart grids was considered as being able
to respond to any set of actions by prosumers without problems in the distribution capacity.
Thus, we assumed that the smart grid is able to meet any demand for power distribution.
An extension of our approach will have to take into account the dynamic configuration of
the network, meaning that the capacity of its components must be able to adapt to each
set of prosumer demands. The proposed RL approach will then have to be coupled with
a dynamic configuration algorithm of the smart grid topologies, inspired, for example,
by [39].

We also assume that the smart grid does not experience any failures or malfunctions.
Such malfunctions would impact the actions chosen by each actor and would therefore
imply a change of strategic profile "on the fly" imposed by the control of the smart grid by
real-time processing when the energy distribution faults are perceived by prosumers. From
the point of view of the model to be considered, such failures could follow a stochastic
model (for example based on Bayesian networks).

Moreover, since, in this article, we wanted to demonstrate the relevance of an approach
using reinforcement learning based on a game model for the distributed management of a
smart grid interconnecting prosumers, production and consumption data were considered
certain. It would be interesting in future work to perform a sensitivity analysis in order to
study the robustness of this approach in the face of the uncertainty of the energy production
and consumption data. As already studied in other fields of application, it will be a question
in particular of developing RL methods capable of adapting to elastic data considering
production and consumption and modeled by stochastic processes.

Finally, in typical smart grids, some prosumers may include electric car charging
stations. These charging stations have a significant impact on the management of the
configuration of the smart grid, since the energy stored at one point of the network can be
relocated (minus a certain consumption made by the electric vehicle during its movement)
to another point of gate entrance. In addition, all the energy behaviors of these prosumers
depend on the road topology on the territory covered by the smart grid (or even wider),
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which must therefore be taken into account. Further work could be carried out in order to
learn about these types of profiles.
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