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ABSTRACT  14 

The Paris metropolitan area, the largest urban region in the European Union, has experienced 15 

two national COVID-19 confinements in 2020 with different levels of restrictions on mobility 16 

and economic activity, which caused reductions in CO2 emissions. To quantify the timing and 17 
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magnitude of daily emission reductions during the two lockdowns, we used continuous 18 

atmospheric CO2 monitoring, a new high-resolution near-real-time emission inventory and an 19 

atmospheric Bayesian inverse model. The atmospheric inversion estimated the changes in fossil 20 

fuel CO2 emissions over the Greater Paris region during the two lockdowns, in comparison with 21 

the same periods in 2018 and 2019. It shows decreases by 42~53% during the first lockdown 22 

with stringent measures, and by only 20% during the second lockdown when traffic reduction 23 

was weaker. Both lockdown emission reductions are mainly due to decreases in traffic. These 24 

results are consistent with independent estimates based on activity data made by the city 25 

environmental agency. We also show that unusual persistent anticyclonic weather patterns with 26 

north-easterly winds that prevailed at the start of the first lockdown period contributed a 27 

substantial drop in measured CO2 concentration enhancements over Paris, superimposed on the 28 

reduction of urban CO2 emissions. We conclude that atmospheric CO2 monitoring makes it 29 

possible to identify significant emission changes (>20%) at subannual time scales over an urban 30 

region. 31 

SYNOPSIS  32 

This study quantifies the impact of COVID-19 on CO2 emissions over Paris via an inverse 33 

modeling technique using in situ atmospheric CO2 observations. 34 

1 Introduction 35 

The world economy has been strongly impacted by the COVID-19 pandemic with many 36 

countries enforcing a wide range of measures to limit the spread of the virus. One side effect has 37 

been a strong reduction in fossil fuel use, which led to a reduction in global carbon emissions in 38 

the first half of 2020 as compared to the same period in 20191,2. Although the emissions 39 
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recovered later in the year, 2020 emissions were reported at several percent less than those of 40 

2019, i.e. 4% from Carbon Monitor (https://carbonmonitor.org/), 6.4% from Tollefson3, and 7% 41 

from Le Quéré et al.4. 42 

At the city scale, the reduction of human and economic activities during the lockdown periods 43 

led to measurable decreases in urban anthropogenic CO2 emissions. The COVID-19 lockdowns 44 

provide a testbed to assess the effectiveness of various methods that estimate city-scale CO2 45 

emissions. CO2 gridded emission maps at fine space and time scales are more informative than 46 

city-level inventories. However, these estimates are prone to large uncertainties5. To constrain 47 

spatial and temporal bottom-up emission estimates, independent information is needed, which 48 

motivates the use of atmospheric measurements. Ground-based in situ continuous urban CO2 49 

monitoring stations are usually equipped with high-precision cavity ring-down spectroscopy 50 

(CRDS) CO2 analyzers. Other complementary CO2 observing systems include low-cost but 51 

lower accuracy sensors6, localized eddy covariance flux towers7, carbon isotope measurements8, 52 

periodic automobile and aircraft campaigns9, as well as satellite and remote sensing10. 53 

Atmospheric measurements can be collected in near-real-time and assimilated with models to 54 

constrain emissions with low latency. This is an advantage insofar because most city emission 55 

inventories have a lag of at least 1 year. The statistical approach that combines atmospheric 56 

measurements with emission inventories and high-resolution transport modeling is called urban 57 

atmospheric inversion. Over the last few years, urban inversions mainly based on Bayesian 58 

methods, combined with either Lagrangian-based or Eulerian-based atmospheric transport 59 

models have been applied to quantify CO2 emissions on monthly time scales over several 60 

metropolitan areas, e.g., Paris, Boston, and Indianapolis11,12,13. However, few inversions have 61 

demonstrated the ability to detect and quantify short-term urban emission changes arising from a 62 
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sudden change in human activities like the COVID-19 pandemic14. Two recent studies have 63 

quantified the reductions of emissions in the San Francisco Bay area, Los Angeles and 64 

Washington DC/Baltimore metropolitan areas in the US6,15. These studies have used an inverse 65 

method based on the Lagrangian approach. In addition, few inversions have separated emissions 66 

from different districts or administrative units within a megacity, mostly because of scarce 67 

atmospheric measurements.  68 

In France, national authorities implemented two nationwide lockdown periods in 2020: March 69 

17th to May 11th (55 days) and October 30th to December 15th (46 days). These two periods were 70 

associated with reductions of mobility measures, although with marked differences, with the 71 

spring confinement being much stricter than the autumn one. They provide a unique opportunity 72 

to evaluate how a Eulerian-based atmospheric inversion system can quantify subannual changes 73 

in urban CO2 emissions from city centers to suburban areas in a timely manner. 74 

This study analyzes CO2 emission changes with Bayesian atmospheric inversions assimilating 75 

CO2 observations from six high-precision in situ stations located in and around the Paris 76 

metropolitan area with a high-resolution WRF-Chem transport model and a newly developed 77 

near-real-time emission inventory. These inversions are based on an updated version of the 78 

Parisian inversion system developed by Bréon et al.16 and Staufer et al.11, using a well-calibrated 79 

version of WRF-Chem intensely evaluated against meteorological and CO2 measurements by 80 

Lian et al.17,18,19. Meanwhile, compared to previous inversion studies over Paris, our observation 81 

network grew with two newly built urban stations and four suburban stations operated since 82 

2014. Only three suburban sites, operational during the period 2010-2011, were used by Staufer 83 

et al.11.  84 
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In the following, section 2 describes the fossil fuel CO2 emission inventory, the CO2 monitoring 85 

network, and the city-scale atmospheric inversion system deployed for Paris. Section 3 analyzes 86 

in detail the measured CO2 concentrations and the inversion results. A discussion is given in 87 

section 4. 88 

2 Methodology 89 

2.1 Fossil fuel CO2 emission inventory 90 

This study uses a novel near-real-time data set of fossil fuel CO2 emissions for the Paris region 91 

developed by Origins.earth (https://www.origins.earth). The Origins bottom-up inventory 92 

provides the Scope 1 hourly gridded CO2 emissions over Paris from 2018 until the present time 93 

for six activity sectors, namely transportation, residential, tertiary, industry (including cement), 94 

energy, and waste. CO2 emissions are available at the hourly time scale and at 1 km × 1 km 95 

spatial resolution (SI Appendix, Text S1).  96 

The spatial distribution of the total fossil fuel CO2 emissions from March 17th to May 10th for the 97 

years 2018, 2019 and 2020 shows that the emissions are highly concentrated over the city of 98 

Paris and its vicinity, mainly due to the high population density, various commercial activities 99 

and a high volume of traffic (Figure S1). With the implementation of lockdown measures in 100 

2020, a decrease in CO2 emissions is observed over the center of Paris and the location of 101 

highways when compared with the previous 2 years. Figure 1 shows the daily fossil fuel CO2 102 

emissions for 12 calendar months of the year 2020 with comparison to 2018 and 2019 over the 103 

entire domain shown in Figure S1. We group the Origins emissions into three main sectors: i) 104 

traffic which includes both on-road and nonroad transport, ii) building which includes residential 105 

and commercial activities, iii) all other emissions from the remaining sources including industry, 106 
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energy and waste. The emission budgets of the building sector are 3.43, 3.48 and 2.90 MtCO2, 107 

representing 39.9%, 41.6% and 47.0% of total emissions from March to May for 2018, 2019 and 108 

2020 respectively (Figure S2). The traffic sector emissions are of 3.30 MtCO2 (38.4% of the total 109 

emissions from March to May), 2.88 MtCO2 (34.5%) and 1.54 MtCO2 (25.0%) from 2018 to 110 

2020.  111 

The lockdown measures caused a clear decrease in the total CO2 emissions according to the 112 

Origins inventory, as well as in the diurnal and weekly variations (Figures 1 and S3). The most 113 

pronounced decline is for the traffic sector as a consequence of the mobility restrictions. A large 114 

and sudden decrease in traffic emissions was observed at the beginning of the first lockdown 115 

period, followed by a progressive increase over time. The traffic estimates remained below 116 

typical levels after the end of the first confinement until mid-June. Starting in July, the traffic 117 

emissions recovered to prepandemic levels and were at a comparable level to that of the previous 118 

years. The traffic emissions in summer showed a small reduction linked to the summer vacation 119 

period in July and August. The second lockdown period also led to a drop in CO2 emissions, but 120 

less pronounced than the first one. Less stringent measures were adopted such as keeping schools 121 

open and more tolerance to commute to work when needed20. The 2019-2020 emission changes 122 

in other sectors are of a smaller magnitude than those of the traffic. Figure 1 shows that CO2 123 

emissions from the building and industry sectors in April and May 2020 were lower than those of 124 

2019, which could be interpreted as a consequence of the lockdown. However, as the building 125 

emissions are very sensitive to the temperature, one must analyze the interannual temperature 126 

anomalies before reaching a causal relationship. Indeed, according to the Météo-France climate 127 

bulletin21, April and May 2020 were 2.7℃ and 2.2℃ warmer than 2019, respectively, so that 128 

lower emissions are expected, without a COVID-19 effect. Further analyses22 clearly show that, 129 
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after the correction for temperature anomalies, the daily gas consumption within the city of Paris 130 

was still lower in 2020 than it was in 2019. 131 

 132 

Figure 1. Comparison of the daily fossil fuel CO2 emissions for different sectors, namely total, 133 

traffic, building (residential and commercial), other (industry, energy and waste) for 12 calendar 134 

months of the year (a) 2019 and 2020, (b) 2018 and 2020. The yellow shaded areas indicate the 135 

lockdown periods. 136 

2.2 CO2 monitoring network and meteorological measurements 137 

Hourly CO2 measurements collected at six sites, including two urban and four suburban stations, 138 

were used in this study. The locations of the stations are shown in Figure 2. Two stations (JUS 139 

and CDS) are located within the center of Paris in a dense urban environment where the emission 140 
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density is the highest. The other four stations (AND, GNS, OVS, SAC) are located at the edges 141 

of the urban and built-up areas in mixed urban-rural environments. All of these stations are 142 

equipped with high-precision CRDS CO2 analyzers, with an accuracy that is on the order of a 143 

fraction of a ppm with reference to the World Meteorological Organization (WMO) international 144 

mole fraction scale23. The air sampling inlets are installed on rooftops or on towers to extend the 145 

footprint of the measurement and reduce the potential impact of local emissions. Apart from the 146 

CO2 measurements, the hourly wind speed and wind direction are measured at a height of 100 147 

meters above the ground level at the SAC station. The model-observation misfits for wind are 148 

used to filter the CO2 data to be assimilated in the inversion. 149 

2.3 City-scale atmospheric inversion system 150 

The CO2 atmospheric inversion system is Bayesian with priors and all error statistics being 151 

assumed to be Gaussian (SI Appendix, Text S2). The assimilation of downwind-upwind 152 

gradients in CO2 concentrations for city-scale inversion has been used in this study11,16,24. Using 153 

the concentration gradients, rather than the absolute concentrations, in the assimilation system is 154 

an effective way to decrease the uncertainties in biogenic and remote fluxes19. The principles of 155 

the inversion used here are similar to those of Bréon et al.16, Staufer et al.11 and Wu et al.24. 156 

However, it uses a specific partition of the emissions in the Île-de-France (IdF) region to support 157 

the focus on the emissions from the Greater Paris region. Furthermore, the system has been 158 

adapted to assimilate data from the current Parisian CO2 monitoring network, and to use the 1 159 

km-resolution WRF-Chem transport modeling framework developed by Lian et al.18,19 (SI 160 

Appendix, Text S3).  161 
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The inversion is applied to optimize fossil fuel emissions and biogenic fluxes from March 1st to 162 

May 31st and from October 21st to December 23rd for 2018, 2019 and 2020 respectively, which 163 

covers the two entire lockdown periods as well as the same periods in the prior 2 years. In the 164 

following, section 2.3.1 presents the reference inversion configuration. In section 2.3.2, a set of 165 

sensitivity experiments is designed to evaluate the impact of different inversion configurations 166 

on the retrieved estimates of fossil fuel CO2 emissions. 167 

2.3.1 Reference inversion setup 168 

The prior fossil fuel emissions within the IdF region, which includes Paris and its neighboring 169 

departments, covering an area of 12012 km² (Figure 2), are based on the Origins inventory. 170 

Fossil fuel CO2 emissions outside the IdF region (but included in the modeling domain, Figure 171 

S4) originate from the ODIAC Fossil Fuel CO2 Emissions Dataset (version name: ODIAC2020) 172 

for the year 2018, also at 1×1 km horizontal resolution25. The ODIAC monthly budget was also 173 

multiplied by the temporal profiles to account for the weekly and diurnal cycles of the 174 

emissions26. Biogenic CO2 fluxes were simulated with the diagnostic biosphere Vegetation 175 

Photosynthesis and Respiration Model (VPRM), coupled online to the WRF atmospheric model 176 

used for transporting CO2, thus ensuring a perfect consistency between the atmospheric physics 177 

and the variability in biogenic fluxes 27,28. 178 

The inversion controls CO2 emissions by different control vectors that correspond to a sector of 179 

activity over a given geographic area and for a given time window. Figure 2, together with Table 180 

S1 shows the spatial (i.e. within Paris and outside Paris) and temporal (i.e. 6-hourly windows) 181 

resolutions of the control vectors used for the fossil fuel and biogenic fluxes (SI Appendix, Text 182 

S4). Concerning the partitioning of fossil fuel emissions, we divided the WRF-Chem innermost 183 
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domain (Figure S4) into three emitting regions for which the emissions can be optimized: the 184 

Greater Paris region, the rest of the IdF region, and outside the IdF region (Figure 2b). The 185 

Origins inventory estimates that the Paris city, the Greater Paris area (excluding Paris city) and 186 

the rest of the IdF region emitted 4.33, 14.67 and 16.31 MtCO2, taking up 12.3%, 41.5% and 187 

46.2% of the total fossil fuel CO2 emissions over the whole IdF region in 2019, respectively. 188 

Note that the sizes of these three regions are significantly different, so that the emissions per unit 189 

area of Paris city is larger than those of the other two, even though its total emissions are smaller. 190 

The inversion system rescales prior estimates over 6-hour time windows (4 unknowns per day, 191 

namely 0:00-6:00, 6:00-12:00, 12:00-18:00, 18:00-0:00 UTC) of the fossil fuel emissions over 192 

the Greater Paris region (including Paris city) that is provided by the Origins inventory. In 193 

addition, we also attempt to further separate the city of Paris (red shaded area in Figure 2b) from 194 

the Greater Paris region (results shown in the discussion section). The inversion system also 195 

optimizes prior estimates of (i) 6 h fossil fuel emission budgets for the rest of the IdF region, (ii) 196 

daily fossil fuel emission budget outside the IdF region, and (iii) daily budget of biogenic fluxes 197 

(net ecosystem exchange - NEE) over the entire model innermost domain provided by the VPRM 198 

model (Table S1).  199 

 200 
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Figure 2. (a) Yellow shaded areas indicate the Corine urban and built-up land use. The city of 201 

Paris is located within the inner red line. The Greater Paris region (blue line) extends over a 202 

larger surface, following its administrative boundaries (including Paris city and the three 203 

administrative jurisdictions that are around Paris, called “Petite Couronne”). The Île-de-France 204 

region (black line) is made up of eight administrative jurisdictions, including the city of Paris, 205 

the three Petite Couronne jurisdictions and four other larger jurisdictions with a smaller 206 

population density (thin gray lines). (b) Map of the subregions whose fossil fuel emission 207 

budgets are controlled by the inversion. In the reference inversion configuration, emissions over 208 

three emitting regions are optimized independently: the Greater Paris region (red+blue shaded 209 

area), the rest of the IdF region (gray shaded area), and outside the IdF region. Data source: The 210 

Corine land cover data are available at https://land.copernicus.eu/pan-european/corine-land-211 

cover. 212 

The inversion system assimilates CO2 concentration gradients between pairs of stations aligned 213 

roughly along the wind direction and respectively upwind and downwind a significant area of the 214 

city. It is assumed that the signature of remote fluxes is relatively small in such gradients that are 215 

dominated by the signature of the city emissions11. The method for the selection of the 216 

assimilated CO2 downwind-upwind gradients was described in detail in Wu et al.24 and is 217 

outlined in the SI Appendix (Text S5). The assimilated hourly afternoon CO2 concentration 218 

gradients are given in the SI Appendix (Text S6). The inversion framework also requires 219 

prescribing the observation errors and the uncertainties in prior emissions. Assumptions 220 

regarding these error covariance matrices are similar to those of Bréon et al.16 and Wu et al.24, 221 

and are detailed in the SI Appendix (Text S7 and Text S8). 222 

2.3.2 Sensitivity tests 223 
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To analyze the sensitivity of the results to the inversion configuration, 19 additional inversions 224 

were conducted (NO. 2-20 in Table S3). These tests are further classified into three groups. First, 225 

three sensitivity tests (NO. 2-4) are designed to analyze the impact of using, or not, the 226 

measurements from the two urban stations (JUS and CDS) that lie within the core of the city. 227 

Another set of inversions (NO. 5-13) allows us to analyze the sensitivity of the results to the data 228 

selection criteria of the assimilated gradients. The third set of sensitivity tests (NO. 14-20) aims 229 

at investigating the impacts of uncertainties in prior fossil fuel and biogenic fluxes, as well as 230 

their temporal correlations. 231 

3 Results 232 

3.1 CO2 concentration measurements 233 

Figure 3a shows the time series of the afternoon (12-17 UTC) averages of the observed CO2 234 

concentrations at JUS, an urban station located in the center of Paris, from 2018 to 2020. It 235 

shows that the observed CO2 seasonal variability is mostly driven by the seasonality in regional-236 

scale biogenic fluxes, whereas meteorological conditions significantly impact the short-term 237 

variations (i.e. synoptic and daily time scales). During March 2020, low-pressure systems located 238 

north of the British Isles resulted in cloudy skies over the Paris region, a common synoptic 239 

regime during winter. In mid-March, the Paris region came under the increased influence of the 240 

Azores high-pressure anticyclonic system, favoring the predominance of warm and dry 241 

weather21. The first lockdown period started simultaneously with a change in meteorological 242 

conditions. In addition, the aforementioned warm spring in 2020 led to an early start of the 243 

vegetation by about 1 week. Consequently, atmospheric CO2 concentrations during the first 244 

lockdown are not only perturbed by emission reductions but are also influenced by unusual 245 
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meteorological conditions and early vegetation bloom. No anomalous weather regime nor 246 

unusual plant phenology was observed during the second lockdown.  247 

 248 

Figure 3. Two-day afternoon (12-17 UTC) mean of the observed: (a) CO2 concentrations at the 249 

JUS station, and (b) CO2 concentration gradients between JUS and SAC stations. The yellow 250 

shaded areas indicate the lockdown periods. 251 

The use of CO2 concentration gradients (downwind-upwind) reduces the impact of boundary 252 

CO2 conditions advected into the Paris area and from remote fluxes in the model domain outside 253 

the station’s network, facilitating our ability to track CO2 signals due to fossil fuel emissions 254 

from the Paris urban area. We thus computed the differences in CO2 concentrations between JUS 255 

and the SAC station which is located about 20 km southwest of the Paris center in a suburban 256 

area. Figure 3b shows that during the first lockdown period, a significant drop in JUS-SAC CO2 257 

concentration gradients is observed with a decrease of 65% when compared to the prelockdown 258 

period (SI Appendix, Text S9). However, because the synoptic weather conditions changed at the 259 
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start of the first lockdown period, analyzing the concentration gradients to determine lockdown-260 

induced fossil fuel CO2 signals is not possible without filtering specific conditions or using 261 

modeling tools, as noted by Ciais et al.29. We therefore show the JUS-SAC CO2 concentration 262 

gradients as a function of wind direction (Figure 4). The hourly afternoon data (12-17 UTC) 263 

were classified into different classes ranging from -10 to 12 ppm in steps of 2 ppm. The figure 264 

shows the frequency and mean CO2 difference per bin for the 16 wind direction sectors (22.5° 265 

each). For wind fields, we used wind measurements at 100 m above the ground level at the SAC 266 

station. The impact of the wind speed is presented in Figure S7, where the JUS-SAC CO2 267 

gradients are shown as a function of wind speed and direction. 268 

Figure 4a shows that relatively large CO2 concentration gradients (8~12 ppm) between JUS and 269 

SAC stations are observed during the prelockdown period with prevailing winds from the 270 

southwest. These large CO2 gradients are most likely attributed not only to the high emissions 271 

from household heating over Paris but also to the relatively weak vertical mixing in winter. 272 

However, the dominant winds changed from southwest to northeast in mid-March 2020, 273 

simultaneously with the start of the first lockdown (Figure 4b). The CO2 wind rose shows a small 274 

difference (0~2 ppm) between JUS and SAC in the 22.5-45° sector, which can be expected since 275 

the SAC station is downwind of Paris and thus the CO2 variability is most likely under the 276 

influence of the emissions coming from Paris. Moreover, the decrease in CO2 concentration 277 

gradients could also result from a deepening of the mixed layer as well as a reduced household 278 

heating demand with increasing temperature. All of these changes obscure the effect of 279 

restrictions on fossil fuel emissions during the lockdown.  280 

To resolve this question, we compared the CO2 wind rose during the first lockdown (Figure 4b) 281 

to those observed on average during the previous years for the same time interval (Figure 4c and 282 
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4d). In the 0-90° sector when the wind speeds are lower than 9m/s (Figure S7), the CO2 283 

concentration gradients between JUS and SAC are smaller in 2020 (< 2 ppm) than in 2018 and 284 

2019 (2~4 ppm). This analysis suggests that the observed drop in the CO2 concentration gradient 285 

in 2020 is associated with the corresponding reductions of emission sources due to the COVID-286 

19 lockdown and cannot only be explained by the coincident shift in wind direction. Quantitative 287 

estimation of emissions and biogenic fluxes nevertheless requires an inversion with observed 288 

atmospheric transport fields during the lockdown periods. 289 

 290 

Figure 4. CO2 concentration gradients between JUS and SAC stations as a function of wind 291 

direction over: (a) the prelockdown period from January 1st to March 16th 2020, (b)-(d) the first 292 

lockdown period from March 17th to May 11th 2020, and the same periods of the year in 2019 293 

and 2018. The percentages on the axes indicate the frequency of CO2 concentration differences 294 
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within each class interval when winds come from particular directions. Note that only the 295 

afternoon data (12-17 UTC) are used in the analysis. 296 

3.2 Inversion results 297 

We first analyze the fit between observed and simulated concentrations from prior and posterior 298 

fluxes, as an indication of the efficiency of the inversion in reducing the misfits to the 299 

observations. Figure S8 shows that the agreement between the posterior CO2 concentration 300 

gradients as compared to the observations is substantially better than those induced by the prior 301 

fluxes (SI Appendix, Text S10).  302 

3.2.1 Daily emission estimates 303 

We use here the reference inversion detailed in section 2.3.1 and focus on the fossil fuel CO2 304 

emissions over the Greater Paris region where most of the emissions are concentrated. The 305 

inversion has little impact on the estimate of the fossil fuel fluxes over the rest of the IdF region 306 

and the biogenic fluxes (Table S4 and Figure S9), and the reasons are given in the SI Appendix 307 

(Text S11).  308 
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 309 

Figure 5. Daily estimates of the fossil fuel emission for the (a) March 1st - May 31st and (b) 310 

October 21st - December 23rd periods for the years 2018, 2019 and 2020 respectively over the 311 

Greater Paris region. The grey shaded areas indicate the lockdown periods. The pink line and 312 

shading show the prior flux according to the Origins inventory together with its assumed 313 

uncertainty. The yellow and shading show the posterior estimates with their uncertainty ranges. 314 

The blue lines indicate the daily mean temperature measured at 100 m above the ground level at 315 

the SAC station. Numbers in blue at the bottom denote the monthly mean temperature. 316 

Figure 5 shows that the posterior emission estimates are generally larger than the prior ones and 317 

have larger temporal variations. Inverse emissions are mostly within the range of the prior 318 

uncertainty. The inversion leads to a reduction of the emission uncertainty by a factor of ~2. We 319 

also found a roughly inverse relationship between the daily mean temperature and daily CO2 320 

emissions (see the blue line in Figure 5). The highest emission increments are obtained in spring 321 

2019, presumably related to the fact that the monthly mean temperatures in April and May 2019 322 

were lower than those for the other 2 years, by around 2°C. 323 
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Figure 5 also illustrates modeling errors in the inversion procedure. First, the posterior estimates 324 

of the daily fluxes show deviations from the prior that might be caused by atmospheric transport 325 

model errors from day-to-day or synoptic scales. One example is the large (a factor of ~2) 326 

decrease of the a posteriori emissions from November 1st to 7th 2020. We investigated the 327 

atmospheric model behavior during this period and concluded that WRF poorly simulates stable 328 

atmospheric conditions, with an overestimate of the PBL height. We examined other periods 329 

(from May 1st to 15th 2018) when the posterior emissions are much larger than the prior, but the 330 

simulated meteorological fields (i.e. temperature, wind and PBL height) agree reasonably well 331 

with the observations and are not correlated with cold days, suggesting that some of the observed 332 

weekly changes might be due to activity changes. 333 

Second, it appears that day-to-day variations of the inverse emissions are also driven by the 334 

amount of atmospheric data used. Indeed, because of the selection criteria, the number of 335 

assimilated gradients varies considerably from one day to another (Figures S5 and S6). When 336 

few or no concentration gradients fit the assigned criteria on a given day, the temporal variations 337 

in the inverse emissions rely on observations over neighboring days. A typical example is the 338 

period around November 25th 2019. The inverse emissions show a gradual decrease with large 339 

posterior uncertainties up to this date, followed by a very sharp increase (factor of more than 2). 340 

Further analysis shows that the measured concentration gradients are smaller than those 341 

modelled on the 25th, and larger afterward, which explains the sharp increase. There are no valid 342 

observations for the period from November 16th to 24th, so the posterior estimates start from the 343 

prior, and decrease toward the estimates controlled by the observations of the 25th, because of the 344 

prescribed 7-day error correlation length for the fossil fuel emissions. 345 

3.2.2 CO2 emissions budgets during the lockdown 346 
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 347 

Figure 6.  Sensitivity results for the estimates of the total fossil fuel CO2 emission budgets 348 

during the (a) (c) first and (b) (d) second lockdown periods over the Greater Paris region 349 

(including Paris) for the years 2018, 2019 and 2020. Panels (c) and (d) present the distribution of 350 

the prior and posterior CO2 estimates, both for the absolute emission budgets and for the relative 351 

emission reduction ratio. The midpoint, the box and the whiskers represent the 0.5 quantile, 352 

0.25/0.75 quantiles, and 0.1/0.9 quantiles respectively. The medium values of the posterior 353 
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estimates among the sensitivity tests are shown in red. The prior estimates from the Origins 354 

inventory are shown in magenta. 355 

We then focus on the total fossil fuel CO2 emission budgets during the first (March 18th - May 356 

10th) and second (October 30th - December 15th) lockdown periods, in comparison to the same 357 

period in 2018 and 2019 over the Greater Paris region. To get an indication of the robustness of 358 

the inversion results, we also look at the total emission estimates obtained with the reference 359 

configuration together with the sensitivity tests of the inversion configuration. In Figures 6a and 360 

6b, the first column on the left (Prior) shows the prior emissions from the Origins inventory. The 361 

second one (REF) shows the posterior estimates derived from the reference inversion. The other 362 

columns show the posterior values based on different sensitivity tests described in Table S3, each 363 

corresponding to a different set of assumptions. 364 

Overall, the results for the emissions over the two lockdown periods show limited sensitivity to 365 

the inversion setup. Most of the configurations tend to increase the fossil fuel CO2 emissions 366 

with respect to the prior estimates, which gives us a certain degree of confidence that our prior 367 

emissions were underestimated. For the first lockdown period, the inversion increases the total 368 

fossil fuel emissions from 2.83 to 3.44 MtCO2 for 2018, from 2.79 to 4.25 MtCO2 for 2019, and 369 

from 1.79 to 2.02 MtCO2 for 2020 (the ensemble medians of the posterior estimates from the 370 

sensitivity tests are given here). The optimized CO2 emissions during the first lockdown in 2020 371 

show a decrease of around 42% and 53% in fossil fuel CO2 emissions when compared to the 372 

same periods in 2018 and 2019 respectively. For the second lockdown, the changes from prior to 373 

posterior total fossil fuel emissions are from 3.13 to 3.33 MtCO2 for 2018, from 3.15 to 3.53 374 

MtCO2 for 2019, and from 2.71 to 2.70 MtCO2 for 2020. The total emissions decrease by 19% 375 

and 23% in 2020 with respect to 2018 and 2019. In addition, compared to the prior uncertainties, 376 
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the inverse emissions reach an uncertainty reduction of about 8~10% for the total emissions. 377 

Note that the uncertainties discussed here are relative uncertainties, dependent on the prior 378 

emission uncertainties assigned to the Origins inventory. 379 

We examined the full ensemble of inverse emission estimates to identify the most critical 380 

assumptions made in the system. First, the sensitivity tests indicate that the inversion 381 

with/without assimilating data from the two urban stations (JUS and CDS) produces similar 382 

results (NO. 2-4 in Table S3 with respect to the reference). This could be linked to the large 383 

model error that was assigned to the urban stations in the inversion system (SI Appendix, Text 384 

S7). Regarding the data selection criteria, when assimilating data during the late morning and 385 

afternoon (8-17 UTC) (NO. 10 in Table S3, denoted as “day” in Figure 6), we note that the 386 

inversion produces lower fossil fuel emission estimates than the reference (which only uses the 387 

afternoon data, i.e. 12-17 UTC). This might be due to biases in modeled PBL heights, or to the 388 

inadequate depiction of the near-surface vertical mixing, or incorrect diurnal cycles in prior 389 

emissions. The inversion solution is also sensitive to the target distance (NO. 12-13 in Table S3, 390 

denoted as “tdis20” and “tdis40” in Figure 6) used in the selection of the assimilated CO2 391 

gradients between pairs of upwind and downwind stations. By filtering out pairs of stations close 392 

to each other with a minimum station-to-station distance, we eliminated downwind-upwind 393 

gradients that are not representative of a large portion of the urban area. The target distance plays 394 

a critical role in determining the number of the assimilated CO2 data both from the urban-suburb 395 

gradients and from the suburb-suburb ones that are representative of urban emissions and the 396 

cross-city emissions respectively. This configuration is therefore a primary parameter in our 397 

inversion system as the inverse solution is constrained by the selected atmospheric observations. 398 

The sensitivity to the temporal error correlations in the prior fossil fuel fluxes is also a critical 399 
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parameter, especially during weeks with limited observations filtered out following our criteria 400 

(NO. 14-16 in Table S3, denoted as “corr1”, “corr4” and “corr14” in Figure 6). The results show 401 

that the values of the relative uncertainty in the prior monthly budgets of fossil fuel emissions 402 

(NO. 17-18) and biogenic emissions (NO. 19) have little influence on the inverse solution.  403 

4 Discussions 404 

Our analyses show that the substantial drop in the measured CO2 concentration enhancements 405 

over Paris during the first lockdown in spring 2020 is partly due to a change in meteorological 406 

conditions that happened coincidentally with the lockdown measures. Nevertheless, inversion 407 

results show that the first lockdown in spring 2020 resulted in a large reduction of emissions, of 408 

about 53% and 42% for the Greater Paris region when compared to 2019 and 2018 respectively, 409 

while the reductions were estimated to be 37% and 36% based on the Origins inventory. This 410 

decrease results from both the large reduction in traffic emissions during the lockdown, and the 411 

milder temperature than normal, which has an influence on household emissions. The decrease in 412 

emissions during the second lockdown is less pronounced (~20%), due to the continuation of a 413 

larger share of economic activity and road traffic. Our inversion results are in line with a bottom-414 

up assessment for CO2 emissions over Paris communicated by the City of Paris (~50% reduction 415 

for March 2020)29, suggesting that our inversion system is able to quantify monthly city-scale 416 

CO2 variations. The initial assessments given by the AirParif local air quality agency indicate a 417 

decrease of about 30% in total CO2 emissions over the IdF region at the beginning of the first 418 

lockdown (March 17th-20th). It also claimed that traffic emissions decreased by 70% during the 419 

first lockdown and only about 20% at the beginning of the second lockdown.  420 
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Apart from these encouraging results, several challenges and potential improvements inherent to 421 

the city-scale atmospheric inversion should also be noted. Our atmospheric inversion retrieves 422 

larger fossil fuel CO2 emissions over the Greater Paris region than the prior estimates, especially 423 

for 2019. At this point, we cannot offer a definitive interpretation of this apparent discrepancy 424 

between the inventory and the atmospheric inversion estimate. Other socioeconomic data sets 425 

and inventory products may provide further insight when they become available in the future. 426 

Nevertheless, to provide an alternative evaluation of the capability of the inversion results, we 427 

performed an additional sensitivity test by multiplying the prior fossil fuel fluxes by a factor of 2. 428 

The results in Figure S10 show that the posterior estimates tend to converge with the reference 429 

inversion results, which suggests that our whole-city inverse solution is mostly constrained by 430 

atmospheric observations rather than by the prior emissions from the Origins inventory. 431 

Another important aspect of this approach is that the uncertainties in the posterior estimates of 432 

CO2 emissions are caused, to a certain extent, by errors in the spatial and temporal distribution of 433 

urban emissions at scales finer than the targeted ones. The configuration of the present inversion 434 

systems and the analysis of their outputs primarily target the city-scale monthly budgets rather 435 

than emissions at high spatiotemporal resolutions. We limited the spatial resolution of the 436 

inversion due to the current configuration of the city observation network with only two stations 437 

in the densest part of the urban area (JUS and CDS). Since Bréon et al.16 and Staufer et al.11 438 

focusing on the year 2011, the number of CO2 in situ stations has increased to seven since 2014. 439 

The present monitoring network used in this study, in particular the two urban sites, provides 440 

enough observations to constrain the whole urban area but additional sites will be needed to 441 

estimate the fossil fuel emissions over the Paris inner city (red shaded area in Figure 2). The 442 

inversion estimates of the total fossil fuel CO2 emissions over the city of Paris and the Greater 443 
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Paris region (excluding Paris) during the two lockdown periods are shown in Figure S11. Results 444 

indicate a larger reduction (in relative) of CO2 emissions for the city of Paris than that for the 445 

Greater Paris region (excluding Paris). It should be noted that there are only two stations within 446 

Paris to constrain the inversion, but the extension of the network will allow future inversion 447 

studies to separate the inner city from the large suburban area around Paris. 448 
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