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In this work, we consider a multivariate regression model with one-sided errors. We assume for the regression function to lie in a general Hölder class and estimate it via a nonparametric local polynomial approach that consists of minimization of the local integral of a polynomial approximation lying above the data points. While the consideration of multivariate covariates offers an undeniable opportunity from an application-oriented standpoint, it requires a new method of proof to replace the established ones for the univariate case.

The main purpose of this paper is to show the uniform consistency and to provide the rates of convergence of the considered nonparametric estimator for both multivariate random covariates and multivariate deterministic design points. To demonstrate the performance of the estimators, the small sample behavior is investigated in a simulation study in dimension two and three.

Introduction

We consider nonparametric regression models with one-sided errors that take the general form where Y i is the response variable, X i is the multivariate random or deterministic covariate, g is the unknown regression function corresponding to the upper boundary curve and ε i is a nonpositive random error term. The statistical issue of such boundary regression models (BRM) lies on the frontier estimation, in other words, on the estimation of g based on the observations (X i , Y i ), i = 1, . . . , n where n is the sample size of the available data.

Y i = g(X i ) + ε i , i = 1, . . . , n ( 
BRM have received an increasing attention in the last past years and are closely related to production frontier models (PFM): both share the objective of the estimation of the frontier -the boundary curve -and contribute to the same applications. PFM appeared in the seminal contribution of [START_REF] Farrell | The measurement of productive efficiency[END_REF] in data envelopment analysis (DEA) to answer the need of developing nonparametric methods to assess efficiency (i.e. production of the maximum output which is feasible for the given inputs) of a system. DEA and its extensions developed e.g. in [START_REF] Deprins | Measuring labor-efficiency in post offices[END_REF] and [START_REF] Lovell | Linear programming approaches to the measurement and analysis of productive efficiency[END_REF] are now recognized as powerful tools for evaluating the performance of a system and have countless applications, among others, in social sciences, health-care evaluation systems and banking sectors. We refer to the books Cooper, Seiford and Zhu (2011) and [START_REF] Ramanathan | An Introduction to Data Envelopment Analysis: a Tool for Performance Measurement[END_REF] for a comprehensive treatment of such methods and an exhaustive development of the applications. On the other hand, stochastic frontier analysis formulated independently by [START_REF] Aigner | Formulation and estimation of stochastic frontier production function models[END_REF] and [START_REF] Meeusen | Efficiency estimation from Cobb-Douglas production functions with composed error[END_REF] offers an interesting alternative with parametric estimations of the frontier; see also the books of [START_REF] Kumbhakar | Stochastic Frontier Analysis[END_REF] and [START_REF] Cornwell | Stochastic frontier analysis and efficiency estimation[END_REF] for more recent references.

There is vast literature on PFM dealing with the estimation of the boundary curve. Numerous parametric and non parametric techniques have been proposed, for instance using extreme-value based estimators [START_REF] Girard | Projection estimates of point processes boundaries[END_REF], [START_REF] De Haan | Estimating the home range[END_REF], [START_REF] Hall | On the estimation of a support curve of indeterminate sharpness[END_REF], [START_REF] Menneteau | Multidimensional limit theorems for smoothed extreme value estimates of point processes boundaries[END_REF], [START_REF] Girard | Extreme values and kernel estimates of point processes boundaries[END_REF], [START_REF] Gardes | Estimating the support of a poisson process via the faber-schauder basis and extreme values[END_REF] and [START_REF] Gijbels | Estimation of a support curve via order statistics[END_REF]), projections techniques [START_REF] Jacob | Estimating the edge of a Poisson process by orthogonal series[END_REF]), kernel based estimators [START_REF] Girard | Frontier estimation with kernel regression on high order moments[END_REF], [START_REF] Girard | Frontier estimation via kernel regression on high powertransformed data[END_REF]), maximum likelihood estimators [START_REF] Kumbhakar | Nonparametric stochastic frontiers: a local maximum likelihood approach[END_REF] and [START_REF] Simar | Stochastic FDH/DEA estimators for frontier analysis[END_REF]). Some estimators need the boundary curve to be monotone; see e.g. [START_REF] Daouia | Robust nonparametric estimators of monotone boundaries[END_REF], [START_REF] Daouia | Data envelope fitting with constrained polynomial splines[END_REF] and [START_REF] Gijbels | On estimation of monotone and concave frontier functions[END_REF].

In contrast to the aforementioned methods, we concentrate in this paper on an alternative approach that consists in approximating the regression function g locally by a polynomial lying above the data points. Polynomial estimators in frontier estimation have been widely studied in the literature and are employed in several works, for instance in [START_REF] Hall | On polynomial estimators of frontiers and boundaries[END_REF], [START_REF] Hall | Bandwidth choice for local polynomial estimation of smooth boundaries[END_REF], [START_REF] Girard | L1-optimal nonparametric frontier estimation via linear programming[END_REF], [START_REF] Knight | Limiting distributions of linear programming estimators[END_REF] and in [START_REF] Hall | Nonparametric "regression" when errors are positioned at end-points[END_REF]; see also the literature using the alternative method of piecewise polynomials (e.g. [START_REF] Korostelëv | Efficient estimation of monotone boundaries[END_REF], [START_REF] Härdle | Estimation of non-sharp support boundaries[END_REF] and Chapter 3 in [START_REF] Korostelëv | Minimax Theory of Image Reconstruction[END_REF], as well as [START_REF] Tsybakov | Multidimensional change-point problems and boundary estimation. Change-Point Problems[END_REF] and Chapter 5 in [START_REF] Korostelëv | Minimax Theory of Image Reconstruction[END_REF] for the multivariate case) in which the estimation of the boundary of sets of the form {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ g(x)} is considered.

In the context of BRM, local polynomial estimator of the frontier benefit from attractive properties. Under the assumptions of Hölder boundary curve and regularly varying errors, [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] suggested an adaptive estimator for the boundary curve g using a local polynomial estimation based on local extreme value statistics. An adaptive procedure -a fully data-driven estimation procedure -is constructed by applying a nested version of Lepski method which shows no loss in the convergence rates with respect to the general L q -risk. [START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF] estimated the regression function similarly to [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] via minimization of the local integral of a polynomial approximation in the context of equidistant design points. By showing uniform rates of convergence for the regression estimator they proposed distribution-free tests of error distributions where the test statistics are based on empirical processes of residuals. They also discussed asymptotically distribution-free hypotheses tests for independence of the error distribution from the points of measurement and for monotonicity of the boundary function as well. Relatedly, [START_REF] Neumeyer | Semi-parametric transformation boundary regression models[END_REF] showed consistency of such estimators under mild condition. However, while frontier estimators based on local polynomial approximations appears to be an interesting method, this procedure suffers from the fact the literature studies have only been carried out for univariate samples. For real data application, such a setup of a single covariate means that the output has to be explained by a single input which is not realistic and hence the current theoretical guarantees do not apply. For instance, in medicine, [START_REF] Narimatsu | Applying data envelopment analysis to preventive medicine: a novel method for constructing a personalized risk model of obesity[END_REF] focus on predicting obesity investigating the inverse of body mass index (the output) using two inputs, the number of calories expended and ingested. In agriculture, [START_REF] Kelly | Application of data envelopment analysis to measure technical efficiency on a sample of Irish dairy farms[END_REF] studied the efficiency of dairy farms thanks to several inputs: the land size, the cow numbers, the labour and different costs. More generally, in PFM, no matter what application field one is interested in, all the studies are conducted with several inputs. We refer the reader to the preceding paragraph dedicated to DEA for further applications and to the references within. As a consequence, until now this technique does not bring any concrete method from an application point of view and from this perspective, extending to the multivariate setup is important.

On the other hand, beyond the practical interest this generalization raises, investigating the asymptotic properties to higher dimensions is also interesting from a theoretical standpoint. Indeed, [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF]Dress et al. (2019) obtain asymptotic results on the univariate case by passing to the complex numbers and using the fundamental theorem of algebra. Since this technique is not available to us in the multivariate case, the extension is quite demanding and requires a new approach. Besides, the proposed approach in this paper provides new proofs for the univariate case and the results of [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF]Dress et al. (2019) follow as special cases. Further details are given in Remark 4.2.

More often than not, deterministic covariates and especially equidistant fixed design points are considered. In contrast in the paper at hand, we investigate the two cases of random and deterministic covariates which are both of particular interest. Deterministic covariates are often used in real-life applications when time is involved in the data set. For instance [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] studied the monthly sunspot observations and the annual best running times of 1500 meters; see also the plentiful applications in energy and environmental performance analysis provided in [START_REF] Mardani | Data envelopment analysis in energy and environmental economics: An overview of the state-of-the-art and recent development trends[END_REF]. Besides, deterministic design is met across a number of papers in regression models, see for instance [START_REF] Brown | Asymptotic equivalence of nonparametric regression and white noise[END_REF], [START_REF] Meister | Asymptotic equivalence for nonparametric regression with non-regular errors[END_REF] and the references within. The case of random covariates is obviously the most relevant and appears in essence in many applications, among other, in insurance and finance when analyzing optimality of portfolios and efficiency strategies; see also the extensive literature on modern portofolio theory (e.g. [START_REF] Francis | Modern Portfolio Theory: Foundations, Analysis, and New Developments[END_REF] and [START_REF] Goetzmann | Modern Portfolio Theory and Investment Analysis[END_REF]).

In light of these motivations, the main aim of this paper is to show uniform consistency and to provide rates of convergence of an estimator based on the minimization of the local integral of a polynomial lying above the data points for both multivariate random covariates and multivariate deterministic design points, under the main assumptions of regular variation of the nonpositive errors and β-Hölder class of the boundary curve.

The remaining part of the manuscript is organized as follows. In section 2 the model is explained, while in section 3 the estimation procedure is described. In section 4 we show uniform consistency and provide rates of convergence of the estimator of the regression function for both random and deterministic multivariate covariates. Section 5 is dedicated to a simulation study to investigate the small sample behavior in dimension two and three. The proofs are summed up in section 6.

Notation and shortcuts

Notation: B stands for Borelian sets; • and • are the floor and ceiling functions respectively; x means the largest natural number that is strictly smaller than x; F = 1-F denotes the survival function associated to a cdf F ; • ∞ denotes the supremum norm; X 1 d = X 2 means that two random variables X 1 , X 2 share the same distribution; a n ∼ n→∞ b n holds if lim n→∞ a n /b n = 1 for two sequences (a n ) n≥1 and (b n ) n≥1 of nonnegative numbers. Generally, vectors are highlighted in bold writing. For vectors x ∈ R q let x (r) denote the r-th component of x for r = 1, . . . , q. By x we mean the maximum norm that is x := max r∈{1,...,q} |x (r) |.

For multivariate polynomials we use the multiindex notation where for a vector x ∈ R q and a multiindex j = (j 1 , . . . , j q ) ∈ N q 0 we define |j| := j 1 + . . . + j q , j! := j 1 ! • . . . • j q ! and x j := x (1) j 1 • . . . • x (q) jq . Shortcuts: cdf stands for cumulative distribution function and iid for independent and identically distributed.

The model

We focus on nonparametric boundary regression models with univariate observations Y i and multivariate covariates X i of the form

Y i = g(X i ) + ε i , i = 1, . . . , n (2.1)
where the errors ε i are iid non-positive univariate random variables that are independent of the X i and n stands for the sample size. The unknown regression function g thus corresponds to the upper boundary curve. Independence of errors ε i and covariates X i is a typical assumption in regression models and is met among others in [START_REF] Müller | Estimation in nonparametric regression with nonregular errors[END_REF], [START_REF] Meister | Asymptotic equivalence for nonparametric regression with non-regular errors[END_REF], [START_REF] Reiß | Efficient estimation of functionals in nonparametric boundary models[END_REF] and [START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF]. Such assumption is crucial and often needed in the framework of frontier models when using statistical methods such as bootstrap procedures; see [START_REF] Wilson | Testing independence in models of productive efficiency[END_REF] and [START_REF] Simar | Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models[END_REF]. In the case this hypothesis does not hold, one may consider parametric transformations e.g. exponential, [START_REF] Box | An analysis of transformations[END_REF]), or sinh-arcsinh transformations [START_REF] Jones | Sinh-arcsinh distributions[END_REF]) of the response variable Y i in order to retreive the framework of independence between errors and covariates; see [START_REF] Neumeyer | Semi-parametric transformation boundary regression models[END_REF] for the univariate case and also [START_REF] Linton | Estimation on a semiparametric transformation model[END_REF].

In the paper at hand, we investigate both cases of random and fixed design points. The former means that the covariates X i are q-dimensional random variables while the latter assumes that X i are deterministically spread over [0, 1] q . Without loss of generality, we work for ease of reading with design points lying on [0, 1] q but results extend effortless to any cartesian product of one-dimensional closed intervals.

The random design case

In the random design case we consider the nonparametric boundary regression model with independent and identically distributed observations (X i , Y i ), i = 1, . . . , n defined by

Y i = g(X i ) + ε i (2.2)
corresponding to model (2.1), where the design points X i are multivariate random covariates distributed on [0, 1] q that fulfill assumption (K4). The errors ε i are assumed to be iid non-positive random variables that satisfy (K2). The precise statements of assumptions (K2) and (K4) are given in Section 3.1.

The fixed design case

In the fixed design case we consider a triangular array of independent observations Y i,n and deterministic design points x i,n in [0, 1] q for i = 1, . . . , n. Thus we conduct the nonparametric boundary regression model

Y i,n = g(x i,n ) + ε i,n , (2.3) 
corresponding to model (2.1) with errors ε i,n that are univariate non-positive independent and identically distributed random variables that satisfy assumption (K2).

We allow for fixed equidistant as well as fixed nonequidistant design. In the first case we consider x 1,n , . . . , x n,n that form a grid

       n -1 q n -1 q . . . n -1 q        ,        2n -1 q n -1 q . . . n -1 q        , . . . ,        1 . . . 1 (n 1 q -1)n -1 q        ,        1 . . . 1 1       
where we assume that n 1 q is an integer. Note that when q = 1 the univariate equidistant design simplifies to x i,n = i/n for i = 1, . . . , n. In the second case the points are not necessarily equidistant, but we assume that they are even enough distributed on [0, 1] q , see Assumption (K4') below.

Estimating the regression function

To estimate the boundary curve, we use an estimator that locally approximates the regression function g by a polynomial lying above the data points; see Theorem 2.2 in [START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF] for further details in the univariate case.

The random design case

For x ∈ [0, 1] q , we consider the regression function estimator ĝ defined as ĝn (x) := ĝ(x) := p(x)

(3.1)
where p is a multivariate polynomial of total degree β * ∈ N 0 and minimizes the local integral

[0,1] q p(t)I{ t -x ≤ h n }dt (3.2) under the constraints p(X i ) ≥ Y i for X i -x ≤ h n .
Here, h n > 0 is taken to satisfy assumption (K3) below.

Remark 3.1 The polynomial p is the solution to the linear optimization problem

minimize v T p (3.3) subject to Ap ≥ y,
where p is represented by its vector of coefficients, v is the vector representing the linear functional ||t-x||≤hn , the matrix A is the multivariate Vandermonde matrix whose i-th row has as its entries all the monomials of degree at most β * in the entries of X i , and y is the vector with y i = Y i . For the estimator ĝ to be well-defined, it is necessary that this problem is bounded from below, that is, that the objective is bounded from below on the polytope defined by the constraints. This need not always be the case, as the example in Jirak et al. ( 2014) with β * = 2 and two support points demonstrates. However, the alternate optimization problem proposed in [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] has the same problem of unboundedness. When q = 1, Problem (3.3) is bounded whenever we have at least β * + 1 points. This follows from the fact that the univariate Vandermonde matrix is totally positive when the support points X i are positive. However, for higher dimensions it is not as simple. There, the Vandermonde matrix with q+β * q rows needs not be invertible. As of now, we believe that for q > 1 the boundedness of (3.3) needs to be checked on a case-by-case basis using linear optimization algorithms. By duality theory we know that (3.3) is bounded if and only if there exists a vector g ≥ 0 with A T g = v. This linear program can become very large as q and β * grow. For instance, if q = β * and A has N = 2q q rows, then the interior point algorithm from [START_REF] Vaidya | Speeding-up linear programming using fast matrix multiplication[END_REF] runs in O(N 2.5 ) time in the worst case, which in terms of q grows faster than 4 2.5q • q -1.25 . Nevertheless, this is a theoretical worst case and the average case might be better, possibly using another algorithm. For implementations, the authors suggest using the Python module scipy.optimize.linprog, which by default uses an interior point algorithm based on the MOSEK interior point optimizer by [START_REF] Andersen | The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm[END_REF].

Remark 3.2 To illustrate the estimation procedure we take a look at the simplest case of β * = 0 which results in a local constant approximation. The estimator defined in (3.1)-(3.2) then simplifies to ĝ(x) = max{Y i | i = 1, . . . , n with X i -x ≤ h n }. In Figure 1 an example for q = 1 and uniformly distributed X i is shown. For each x-value a constant function is fitted to the data in the neighborhood.

We work under the following four assumptions (K1)-(K4). (K1) Regression function: g belongs to some Hölder class of order β ∈ (0, ∞) that is g is β -times differentiable on [0, 1] q and all partial derivatives of order β satisfy

|D j g(t) -D j g(x)| ≤ c g t -x β-β ∀x, t ∈ [0, 1] q , ∀j ∈ N q 0 with |j| = β (3.4)
for some c g < ∞ where

D j = ∂ j 1 +...+jq ∂x j 1 1 . . . ∂x jq q
.

(K2) Errors distribution: The errors ε i are independent and identically distributed on (-∞, 0] with common cdf F that satisfies

F (y) = c|y| α + r(y), y < 0,
with α, c > 0 and r(y) = o(|y| α ) when y 0.

(K3) Bandwidths: (h n ) n∈N is a sequence of positive bandwidths that satisfies lim n→∞ h n = 0 and lim n→∞ (log n)/(nh q n ) = 0.

(K4) Design points: The covariates X 1 , . . . , X n are iid random variables defined on a probability space (Ω, F, P) and valued on [0, 1] q with cdf F X and density f X that is bounded and bounded away from zero. Besides, they are independent of the errors ε 1 , . . . , ε n .

Remark 3.3 While consistency of estimators defined in (3.1)-(3.2) may be attained under mild assumptions of the boundary curve such as continuity of g (see [START_REF] Neumeyer | Semi-parametric transformation boundary regression models[END_REF] for the proof in the univariate case and local polynomial estimator of order 0), rates of convergence need stronger regularity assumption on g. Assumption (K1) is typical in such a framework and essentially means that g is β-times differentiable and moreover a Lipschitz condition holds for the β derivative. Further assumptions are also needed on the error distribution such as regular variation (K2), meaning that the distribution of the errors has polynomial tails. Assumptions (K1) and (K2) are common in the context of boundary models and are met in several papers, see for instance [START_REF] Meister | Asymptotic equivalence for nonparametric regression with non-regular errors[END_REF], [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF], [START_REF] Müller | Estimation in nonparametric regression with nonregular errors[END_REF], [START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF], [START_REF] Girard | Frontier estimation with kernel regression on high order moments[END_REF], [START_REF] Härdle | Estimation of non-sharp support boundaries[END_REF] and [START_REF] Hall | Nonparametric "regression" when errors are positioned at end-points[END_REF]; see also the book of de [START_REF] De Haan | Extreme Value Theory: an Introduction[END_REF] for the applications and the motivation of heavy-tailed errors.

The fixed design case

Similarly to the random design case, for x ∈ [0, 1] q , we consider the regression function estimator ĝ defined as

ĝn (x) := ĝ(x) := p(x) (3.5)
where p is a polynomial of total degree β * ∈ N 0 and minimizes the local integral

[0,1] q p(t)I{ t -x ≤ h n }dt (3.6) under the constraints p(x i,n ) ≥ Y i,n for x i,n -x ≤ h n .
Here, h n > 0 satisfies assumption (K3') below.

We work for the fixed design case under (K1)-(K2) and the following modified assumptions (K3') and (K4').

(K3') Bandwidths: Let (h n ) n≥0 be a sequence of positive bandwidths that satisfies lim n→∞ h n = 0 and lim n→∞ (log(n))/d n = 0 with d n = d n (1) from (K4').

(K4') Design points: Let I n ⊂ [0, 1] q be a q-dimensional interval which is the cartesian product of one-dimensional closed intervals of length dh n with d > 0. We assume that at least d n (d) design points lie in all such I n .

Remark 3.4 Assumptions (K3) and (K3') are common when analyzing the asymptotic behavior of such estimators of the form (3.1) or (3.5). In the equidistant fixed design framework we have d n (d) = nh q n d q and (K3') equals (K3). Then for the univariate case q = 1, we have d n = nh n d and assumption (K3') turns to be assumption (H1) in [START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF]; see also assumption (A4') in [START_REF] Neumeyer | Semi-parametric transformation boundary regression models[END_REF].

α = 0.5 α = 1 α = 2 α = 3 Figure 2: Scatter plots of ( i n , Y i,n ), i = 1, .
. . , n (fixed equidistant design for q = 1) and the true regression function g(x) = (x -0.5) 3 + 2. The errors are Weibull distributed, s. t.

F (y) = exp(-|y| α )I (-∞,0) (y) + I [0,∞) (y) for different values of α.
Remark 3.5 It is clear for assumption (K2) that the errors do not depend on the covariates in both cases of random and fixed design setups. Still, it has to be noticed that when dealing with the triangular scheme defined in (2.3), the errors depend on n too. This justifies the addition of the second index in ε i,n . Indeed, the i th design point x i,n may vary with the sample size; see the construction of the fixed multivariate equidistant design in Section 2.2 to be convinced.

Remark 3.6 The size of α in assumption (K2) is an important factor for the performance of the estimator defined in (3.1)-(3.2) and (3.5)-(3.6) respectively. Simply speaking the smaller α > 0, the better the estimator. For α < 2 the error distribution is irregular and in this case the rate of convergence for the estimator is faster than the typical nonparametric rate, see the considerations below Theorem 4.1. In Figure 2 we show some examples for different error distributions to highlight the effect of the size of α. To simplify the presentation we restrict the display to q = 1.

Main results

In this section we give the uniform consistency as well as the convergence rates of our estimator ĝ separated for the two considered cases.

The random design case

In the next theorem, we provide the uniform consistency as well as the rate of convergence of the estimator of the regression function defined in (3.1)-(3.2) for the random design case.

Theorem 4.1 Assume model (2.2) holds. If (K1) holds with β ∈ (0, β * + 1] and (K2)-(K4) are satisfied, then the estimator of the regression function defined in (3.1)-(3.2) is uniformly consistent on [0, 1] q and we have

sup x∈[0,1] q |ĝ(x) -g(x)| = O(h β n ) + O P log(n) nh q n 1/α
.

Proof: See section 6.

Note that the deterministic part O(h β n ) stems from the approximation of the regression function by a polynomial whereas the random part O P log(n) nh q n 1/α results from the observational error. Balancing the two error rates by setting

h n = (log(n)/n) 1 αβ+q gives sup x∈[0,1] q |ĝ(x) -g(x)| = O P ((log(n)/n) β αβ+q
). For the case of an irregular error distribution, i. e. α ∈ (0, 2), this rate improves upon the typical optimal rate O P ((log(n)/n) β 2β+q ) for the nonparametric estimation of mean regression functions in models with regular errors; see also the discussion in the simulation part. 

[h n , 1 -h n ].
The proof of the error rate that stems from the observational error follows along similar lines as the proof in [START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF] but major adaptions are needed to deal with the multivariate and random case. The proof of the deterministic error rate that is due to approximating the boundary curve g by a polynomial is based on the proof of Theorem 3.1 in [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF]. In the univariate equidistant fixed case that is treated in [START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF] this Theorem can be applied directly whereas in the multivariate, possibly random case that is treated in the paper at hand the proof has to be intensely modified. Indeed, the original proof in [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] fully relies on the fundamental theorem of algebra, which states that every polynomial equation in one variable with complex coefficients has at least one complex solution. As far as we know there is no possible extension of such a result for higher dimension hence moving to multidimensional covariates requires completely different arguments. This difficulty was already mentioned in [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF], Remark 1. See the proof of Proposition 6.1 and especially the proof of Lemma 6.2 for our modification. This also gives an alternative proof of Theorem 3.1 in [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] and extends it to the multivariate and possibly random case.

The fixed design case

We give in the next theorem the uniform consistency as well as the rate of convergence of the estimator of the regression function defined in (3.5)-(3.6) for deterministic design points.

Theorem 4.3 Assume model (2.3) holds. If (K1) holds with β ∈ (0, β * +1] and (K2), (K3') and (K4') are satisfied, then the estimator of the regression function defined in (3.5)-(3.6) is uniformly consistent on [0, 1] q and we have

sup x∈[0,1] q |ĝ(x) -g(x)| = O(h β n ) + O P log(n) d n 1/α
.

Proof: See section 6.

When β * = 0 the Hölder class defined in Assumption (K1) reduces to the so-called class of β-Hölder uniformly continuous functions with β ∈ (0, 1]. In this framework, the boundary curve g may be estimated by a local constant approximation

ĝ(x) = max{Y i,n |i = 1, . . . , n with x i,n -x ≤ h n }. (4.1)
This local constant approximation based estimator has been studied in [START_REF] Neumeyer | Semi-parametric transformation boundary regression models[END_REF] in the univariate setup for both random and fixed design points. Under the weaker assumption of continuity of the boundary curve g, they showed the uniform consistency of the estimator defined in (4.1) on the whole unit interval [0, 1]. Strengthening with the β-Hölder uniformly continuity assumption and iid regularly varying innovations, we obtain from Theorem 4.3 for the multivariate case, the uniform consistency as well as the rate of convergence for the deterministic design case on the whole unit interval [0, 1] q . We sum up in the following corollary.

Corollary 4.4 Assume (K2), (K3') and (K4') hold for model (2.3) with β-Hölder uniformly continuous function g. Then, the local constant approximation of the boundary curve g defined in (4.1) is uniformly consistent on [0, 1] q and we have

sup x∈[0,1] q |ĝ(x) -g(x)| = O(h β n ) + O P log(n) d n 1/α .
Remark 4.5 Corollary 4.4 extends Remark 2.5 in [START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF] to the multivariate setup and for non necessarily equidistant design points.

Simulations

To study the small sample behavior, we generate data according to the model

Y i = 0.5 • sin 2π(X (1) i + . . . + X (q) i ) + 4(X (1) i + . . . + X (q) i ) -ε i
with X 1 , . . . , X n iid ∼ Unif([0, 1] q ) and ε 1 , . . . , ε n iid ∼ Exp(1) for q = 2, 3 and sample sizes n = 10 q , 20 q , 30 q . Thus in the simulated model the error distribution fulfills α = 1 and we consider different values of β * = 0, 1, 2, 3 which means that we investigate local constant, local linear, local quadratic and local cubic approximation. Since our estimator is computed by minimizing an integral over a polynomial the estimation procedure consists of solving a linear programming problem (compare to Remark 3.1). The bandwidth is chosen as h n = n -1 β * +1+q which corresponds (up to a log term) to the theoretically optimal bandwidth for α = 1 that balances the two error rates, see the considerations below Theorem 4.1.

We run the same simulations with fixed equidistant design points x 1,n , . . . , x n,n as described in section 2.2. The results are very similar and thus we only present the results for the random design case. The discussion below also applies for the fixed design case.

In Table 1 the results for 1000 replications are shown where we display the estimated mean squared error of our estimator ĝ(0.5, 0.5) (ĝ(0.5, 0.5, 0.5) respectively). Except for the local constant approximation (β * = 0), the estimators perform well and become better as β * grows as well as n grows; see the discussion below.

In Figure 3 we show the true boundary curve and the estimated curve ĝ in comparison. Since in dimension one the presentation of two curves in one plot is clearer than in higher dimensions we display a cut through the two respectively three dimensional surface of the functions. To be precise we plot the functions x → 0.5 sin(2π(x + 0.5)) + 4(x + 0.5) and x → ĝ(x, 0.5) (x → 0.5 sin(2π(x + 1)) + 4(x + 1) and x → ĝ(x, 0.5, 0.5) respectively). It can be seen that the approximation gets better as β * grows both for q = 2 and q = 3. For β * = 2, 3 the approximation is very good, also in both considered cases of two and three dimensional covariates. Exemplarily we show the results for n = 20 q since the effect is very similar for the other cases.

To evaluate the performance of the estimator on the whole interval [0, 1] q we display in Table 2 the arithmetic mean of the estimated mean squared error of ĝ(x 1 ), . . . , ĝ(x N ) where x 1 , . . . , x N form a grid on [0, 1] q with N = 20 q . Again, the performance is surprisingly poor for n = 10 2 and get even worse for β * = 2, 3; see the discussion below. In Figure 4 we show plots of the estimated mean squared error of ĝ on [0, 1] 2 for these cases. From the picture it can be deduced that the problem lies on the boundaries. The reason could be the smaller number of observations in this area which are of higher significance for larger β * .

While the performance of the estimators (except the two cases discussed before) are promising, we highlight the following points:

• The higher the degree of the polynomial the more data is needed to attain satisfying estimation.

• For a point that lies in the center of [0, 1] q the interval containing the observations for the estimation is of size (2h n ) q , but if the point lies close to the boundary or at the boundary the interval gets smaller. Combined with the previous point, one has to be very careful when dealing with points at the boundary in small samples with polynomials of high degree.

• As n grows, the number of points within each interval grows.

• The results improve as β * grows provided n is large enough. The results improve as well as n grows which are both expected effects that correspond to the theoretical result in Theorem 4.1.

• The local constant approximation (case β * = 0) seems to get worse as the dimension increases, in the case where not enough data points are provided or where the bandwidth is too large. One reason for this is that for each interval, the constant estimator always only fits one point (the maximum) whereas already in the linear estimator (β * = 1), the number of points fitted grows with the dimension (namely, q + 1). For instance, for the bi-dimensional case with small sample size n = 10 2 and β * = 3 the bandwidth h n is of order n -1/6 ≈ 0.46 so h n may be too large: for a point x far away from the boundaries, the resulting estimation ĝ(x) using local constant approximation consists in taking the maximum of the observations Y i 's over (almost) the whole interval. When n grows to n = 20 2 and n = 30 2 then the results gets better since the bandwidths shrink to h n ≈ 0.14 and h n ≈ 0.10.

Once mentioning that all of the issues discussed before fade away for n large enough it has to be highlighted that bandwidth selection is a crucial point one has to be very careful with during the estimation procedure. From a theoretical perspective, it is clear that h n drives the speed with which the boundary estimators converge; see Theorem 4.1. But even more importantly, when dealing with a small sample size in real data applications, the bandwidth impacts considerably the behavior of the estimator.

For the one-dimensional case, [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] propose a data-driven procedure to choose the bandwidth in any given application. The authors construct an adaptive estimator of the boundary of the curve based on a nested version of Lepski's method. They also investigate its performance in terms of pointwise and L q risks. We believe that the method itself can be adapted to the higher-dimensional setting, because essentially it depends on the errors and the response variables, which are one-dimensional quantities. The full theoretical analysis of such an adaption is a comprehensive topic and we leave it to future research. Nevertheless, we sketch our adaption of the method below.

We start with constants s ∈ (0, 1) and ρ > 1. The choice of these is decided by the user of the method. To avoid too large estimation steps, ρ should be close to 1. The constant s Table 1: Estimated mean squared error for ĝ(0.5, 0.5) (left-hand side) and for ĝ(0.5, 0.5, 0.5) (right-hand side)

should not be too close to 1. We set K = log ρ (n 1-s and define the geometric sequence of bandwidths h k = h 0 ρ k for k = 0, . . . , K + 1, where h 0 = n s-1 . For each k, we define the estimator ĝk as in Equations (3.1) and (3.2). We choose an optimal bandwidth h k by setting k := inf{k = 0, . . . , K : ∃l ≤ k : ĝk+1 -ĝl > ζl + ζk+1 } ∧ K and choosing the corresponding h k. Here, the thresholds ζk can be estimated from the onedimensional observations (Y i ) i=1,...,n as explained in [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] and sketched below.

Finally, the required data-driven estimator is defined as ĝdriven := ĝk .

The estimation of the thresholds ζ k requires first the estimation of the extremal indices involved in the error distribution; namely the tail index denoted α in the present paper as well as the coefficients involved in the second order conditions of regular variation, see Equations (1.3) and (1.4) and Assumption 3.1 in [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] for more details. Since these coefficients are not directly related to the dimension of the covariates, their estimation could be done using similar arguments as in [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] i.e., with a Hill-type estimator; see their Section 3.2 and more specifically Equation (3.10) for the precise definition of the estimator. This part requires an investigation of the tail distribution of the error and involves some additional technical assumptions; see for instance Equation (3.17) and Assumption 10.1 in their paper. In sum, we believe that the estimation of the critical thresholds in the multivariate setting may be attained in the same fashion as in their Sections (3.3) and (3.4).

Note that different approaches to this problem may be considered such as a theoretically lighter cross validation approach or a bootstrap method, we refer to [START_REF] Hall | Bandwidth choice for local polynomial estimation of smooth boundaries[END_REF] for more details. 6 Proofs of the main results

Proof of Theorem 4.1

The proof of Theorem 4.1 is a direct application of Propositions 6.1 and 6.4 stated below and follows along similar lines as the proof of Theorem 2.2 in [START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF].

Proposition 6.1 Assume that model (2.2) holds under (K2) and (K4) and consider the regression function estimator ĝ defined in (3.1)-(3.2) where g fulfills condition (K1) for some β ∈ (0, β * + 1] and some c g ∈ [0, c * ]. Then, there exist C β * ,q,c * , C β * ,q and a natural number J β * ,q , which depend only on the respective subscripts such that for all x ∈ [0, 1]

q |ĝ(x) -g(x)| ≤ C β * ,q,c * h β n + C β * ,q max j∈{1,...,2J β * ,q } q min X i ∈x+hnI j |ε i | , where x + h n I j = {(x (1) + h n I j 1 ) ∩ [0, 1]} × . . . × {(x (q) + h n I jq ) ∩ [0, 1]} with I k = [-1 + (k - 1)/J β * ,q , -1 + k/J β * ,q ].
Proof: We first highlight that throughout the proof the design points X i : (Ω, F, P) -→ ([0, 1] q , B[0, 1] q ) are random elements. To make the reading easier, we omit the script ω but the proof has to be understood ω-wise that is for any realisation X i (ω), ω ∈ Ω. Besides, unless it is specified otherwise, n ∈ N is arbitrary.

Let x ∈ [0, 1] q be fixed and for n ≥ 1 set

I * n = {[x (1) -h n , x (1) + h n ] ∩ [0, 1]} × . . . × {[x (q) -h n , x (q) + h n ] ∩ [0, 1]}.
The idea of proof is based on Theorem 3.1 in [START_REF] Jirak | Adaptive estimation in nonparametric regression with one-sided errors[END_REF] but comprehensive adaptions are needed to deal with the multivariate case. We consider random design points satisfying assumption (K4) where the Riemann approximation in the aforementioned paper is replaced by the integral defined in (3.2).

This means that we consider the coefficients ( bj ) j for all multiindices j with |j| ∈ {0, . . . , β * } which minimize the objective function

S(x, (b j ) j ) = I * n j∈N q 0 :|j|≤β * b j (t -x) j dt (6.1) under the constraint Y i ≤ j∈N q 0 :|j|≤β * b j (X i -x) j for all i with X i ∈ I * n .
Now, a Taylor-Lagrange development up to the order β of g around x yields

g(X i ) = |j|≤ β -1 D j g(x) j! (X i -x) j + |j|= β D j g(x + θ(X i -x)) j! (X i -x) j with θ ∈ [0, 1]. Then we have g(X i ) = |j|≤ β -1 D j g(x) j! (X i -x) j + |j|= β D j g(x) j! (X i -x) j + |j|= β D j g(x + θ(X i -x)) j! (X i -x) j - |j|= β D j g(x) j! (X i -x) j = |j|≤ β D j g(x) j! (X i -x) j + r β (X i , x)
where r β is the remainder term defined for t, x ∈ [0, 1] q by

r β (t, x) = |j|= β D j g(x + θ(t -x)) -D j g(x) j! (t -x) j .
By assumption (K1) we can make use of the Hölder property (3.4) and get

r β (t, x) ≤ c g t -x β-β |j|= β (t -x) j j! ≤ c g t -x β-β |j|= β t -x β j! = c g c 1 (β, q) t -x β
with some constants c g , c 1 (β, q) < ∞.

Consider now that b j are the Taylor coefficients such that

b j =    D j g(x)/j! if |j| ≤ β 0 if |j| > β .
With this we define the following two quantities

i = g(X i ) - |j|≤β * b j (X i -x) j , i = 1, . . . , n and * n := sup t∈I * n |r β (t, x)|.
Then, one may rewrite the data points Y i in the model (2.2) as

Y i = |j|≤β * b j (X i -x) j + ε i + i , i = 1, . . . , n,
and from what precedes, under the constraint

X i ∈ I * n , it follows that i ≤ * n ≤ c g c 1 (β, q)h β n . (6.2) 
Since the errors ε i , i = 1, . . . , n are non-positive, we have for any

X i ∈ I * n Y i = |j|≤β * b j (X i -x) j + ε i + i ≤ |j|≤β * b j (X i -x) j + i ≤ |j|≤β * b j (X i -x) j + * n , i = 1, . . . , n.
Thus, since the coefficients ( bj ) j minimize the local integral (6.1), we have

I * n |j|≤β * bj (t -x) j dt ≤ I * n   |j|≤β * b j (t -x) j + * n   dt (6.3)
for all n. Define now the polynomial

Q(t) = |j|≤β * (b j -bj )(t -x) j + * n , t ∈ I * n
as the difference of the integrands of the last two quantities. From (6.3), it follows that

I * n Q(t)dt ≥ 0 (6.4)
for any n and for any boundary curve g.

Define now the three sets Q + , Q -and Q 0 as

Q + := {t ∈ I * n : Q(t) > 0}, Q -:= {t ∈ I * n : Q(t) < 0} and Q 0 := {t ∈ I * n : Q(t) = 0}. First note that λ(Q 0 ) = 0 or Q ≡ 0
where λ is the Lebesgue measure. In the latter case, Proposition 6.1 is trivially true since then from (6.2) we have

|ĝ(x) -g(x)| = | b0 -b 0 | = * n ≤ c g c 1 (β, q)h β n .
For Q ≡ 0 we have

λ(Q + ) > 0 (6.5) which we will prove via a contradiction. If λ(Q + ) = 0 this would imply that λ(Q -) = λ(I * n ) since λ(Q 0 ) = 0 and Q -∪ Q + ∪ Q 0 = I * n . But λ(Q -) λ(I * n )
= 1 is a contradiction to (6.4) so (6.5) must be true. This is needed for the application of Lemma 6.2. Note that by definition

Q(x) = |j|≤β * (b j -bj )(0) j + * n = b 0 -b0 + * n and thus sup t∈I * n |Q(t)| ≥ |Q(x)| ≥ | b0 -b 0 | - * n . (6.6) Now define Q(t) = Q (1 -t (1) ) max((x (1) -h n ), 0) + t (1) min((x (1) + h n ), 1), . . . , (1 -t (q) ) max((x (q) -h n ), 0) + t (q) min((x (q) + h n ), 1) .
It is a polynomial on [0, 1] q and it inherits from Q the properties of a nonnegative integral [0,1] q Q(t)dt ≥ 0 and an area with positive Lebesgue measure where Q is positive. Thus Lemma 6.2 can be applied. With this and (6.6) we get

c 3 (β * , q)(| b0 -b 0 | - * n ) ≤ c 3 (β * , q) sup t∈I * n |Q(t)| = c 3 (β * , q) sup t∈[0,1] q | Q(t)| ≤ inf t∈Bγ Q(t) = inf t∈B δ Q(t) (6.7)
for some constant c 3 (β * , q) > 0 where

B γ := [γ (1) 1 , γ (1) 2 ]ו • •×[γ (q) 1 , γ (q) 
2 ] and

B δ := [δ (1) 1 , δ (1) 2 ]× • • • × [δ (q) 1 , δ (q) 2 ] with δ (r) 1 = (1 -γ (r) 1 ) max((x (r) -h n ), 0) + γ (r) 1 min((x (r) + h n ), 1) and δ (r) 2 = (1 -γ (r) 2 ) max((x (r) -h n ), 0) + γ (r)
2 min((x (r) + h n ), 1) for some γ 1 , γ 2 ∈ [0, 1] q . Thus B δ has a volume of minimum size c 2 (β * , q)h q n for some c 2 (β * , q) > 0. On the other hand, for any design point X i ∈ I * n , by definition,

Q(X i ) = |j|≤β * (b j -bj )(X i -x) j + * n = g(X i ) -i + * n - |j|≤β * bj (X i -x) j ≤ g(X i ) + 2 * n -Y i = |ε i | + 2 * n (6.8)
where the last inequality comes from the constraint Y i ≤ p(X i ) and | i | ≤ * n for all i = 1, . . . , n.

Combining inequalities (6.7) and (6.8), it follows that

c 3 (β * , q)| b0 -b 0 | ≤ c 3 (β * , q) * n + inf t∈B δ Q(t)
≤ c 3 (β * , q) * n + min

X i ∈B δ Q(X i ) ≤ c 3 (β * , q) * n + min X i ∈B δ (|ε i | + 2 * n ).
(6.9)

Then, there exists some positive constant C β * ,q such that

|ĝ(x) -g(x)| = | b0 -b 0 | ≤ C β * ,q * n +C β * ,q min i∈{1,...,n} X i ∈B δ |ε i |.
Using the upper bound of * n given in (6.2), there exists some positive constant C β * ,q,c * depending only on β * , q and c * such that

|ĝ(x) -g(x)| = | b0 -b 0 | ≤ C β * ,q,c * h β n + C β * ,q min i∈{1,...,n} X i ∈B δ |ε i |.
Choosing a constant J β * ,q ∈ N depending only on q and β * large enough then there exists some l = (l 1 , . . . , l q ) with l r ∈ {1, . . . , 2J β * ,q } for r = 1, . . . , q such that x + h n I l := {(x (1) 

+h n I l 1 )∩[0, 1]}ו • •×{(x (q) +h n I lq )∩[0, 1]} ⊆ B δ where I k = [-1+(k -1)/J β * ,q , -1+ k/J β * ,q ], k ≥ 0 and thus |ĝ(x) -g(x)| ≤ C β * ,q,c * h β n + C β * ,q max j∈{1,...,2J β * ,q } q min X i ∈x+hnI j |ε i | ,
which is the desired result and concludes the proof.

2 Lemma 6.2 Let β * and q be natural numbers. There exist positive real numbers δ, c such that for all polynomial functions P : [0, 1] q → R of degree β * with non-negative integral over [0, 1] q there exists a δ-ball B δ ⊆ [0, 1] q w.r.t. the maximum norm such that P ≥ 0 on B δ and inf

B δ P ≥ c • sup [0,1] q |P |.
Proof: For all polynomial functions P : [0, 1] q → R of degree β * we have (6.10) where || • || [0,1] q ,Eucl denotes the supremum of the Euclidean norm of its argument over the set [0, 1] q and ∇P stands for the gradient of P . This result follows from Theorem 3.1 in [START_REF] Wilhelmsen | A Markov inequality in several dimensions[END_REF]; see Remark 6.3. By the mean value theorem and the Cauchy-Schwarz inequality, this implies that for all x, y ∈ [0, 1] q we have

||∇P || [0,1] q ,Eucl < 4(β * ) 2 • sup [0,1] q |P |,
|P (x) -P (y)| < L • ||x -y|| sup [0,1] q |P |, (6.11) 
where || • || is the maximum norm and L = 4 √ q(β * ) 2 . The factor √ q stems from the change of norms. Define ε = 1 2L , δ = |Bε| 4L and c = |Bε| 4 . Let P be any such polynomial function. Let P attain its supremum over the set V + = {x | P (x) > 0} at the point x 0 , and denote by x 1 the point where |P | attains its supremum on the whole cube [0, 1] q . First, we show (6.12) where |B ε | denotes the volume of some ε-ball inside [0, 1] q . This step is necessary in case x 1 ∈ V + , otherwise it is not needed but the statement is still trivially true. We note that P is non-zero on the ε-ball B ε centered at x 1 . Indeed, taking y to be the nearest point to x 1 such that P (y) = 0, Equation (6.11) gives ||x 1 -y|| > 2ε > ε. Next, by the mean value theorem there exists t 0 ∈ B ε such that

|P (x 1 )| ≤ 2 |B ε | P (x 0 ),
Bε |P (t)| dt = |P (t 0 )||B ε |.
Applying Equation (6.11) to x 1 and t 0 gives

|P (t 0 )| ≥ 1 2 |P (x 1 )|. Hence, |P (x 1 )| ≤ 2|P (t 0 )| = 2 |B | B |P (t)| dt ≤ 2 |B | V + P (t) dt ≤ 2 |B ε | P (x 0 )|V + | ≤ 2 |B ε | P (x 0 ).
In the second inequality, we used that the integral of P over [0, 1] q is non-negative. Next, let B δ denote the δ-ball centered at x 0 , and let P attain its infimum over B δ at the point x 2 ∈ B δ . Note that P > 0 on B δ . Indeed, taking y to be the nearest point to x 0 such that P (y) = 0, Equations (6.11) and (6.12) give ||x 0 -y|| > 2δ > δ. Finally, applying Equations (6.12) and (6.11) to x 0 and x 2 gives

|B ε | 2 |P (x 1 )| -P (x 2 ) ≤ P (x 0 ) -P (x 2 ) ≤ L|P (x 1 )|δ = |B ε | 4 |P (x 1 )|.
Hence, P (x 2 ) ≥ c|P (x 1 )| as required. This concludes the proof.

2

Remark 6.3 The bound given in the Markov inequality in Equation (6.10) in Lemma 6.2 is far from being optimal. For the sake of completeness, we recall the full statement of Theorem 3.1 in [START_REF] Wilhelmsen | A Markov inequality in several dimensions[END_REF]. With the above notation, it writes

||∇P || T,Eucl ≤ 4β * 2 ω(T ) sup T |P | (6.13)
where T is a compact and convex set with non-empty interior and ω(T ) stands for the thickness of T , that is the minimum distance between two parallel supporting hyperplanes for T . Note that in the context of Lemma 6.2, ω(T ) = ω([0, 1] q ) = 1. The bound of Equation (6.13) has been improved later on by [START_REF] Kroó | On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies[END_REF]. They showed that for any convex body (that is a compact convex set with nonempty interior) the constant 4β * 2 ω(T ) may be replaced by 4β * 2 -2β * ω(T ) . One may go further observing that the space [0, 1] q , under some adequate normalisation, may be seen as a central symmetric convex body (a convex body is central symmetric if and only if with proper shift it is the unit ball of some norm on R q ) so one may use the result of [START_REF] Sarantopoulos | Bounds on the derivatives of polynomials on Banach spaces[END_REF] to get an even smaller bound. We refer to the book of Rassias and Tóth (2014) for an exhaustive treatment of Markov-type inequalities for multivariate polynomials. For the sake of simplicity, we have presented the result with the bound given in [START_REF] Wilhelmsen | A Markov inequality in several dimensions[END_REF]. Proposition 6.4 Assume that model (2.2) holds under (K2)-(K4). Then

sup x∈[0,1] q min i∈{1,...,n} X i ∈x+hnI |ε i | = O P |log (h n )| nh q n 1 α
for every non-degenerate subinterval I ⊆ [-1, 1] q where we set min ∅ |ε i | := 0.

Before we prove this proposition let us first note that under assumption (K3)

|log (h n )| nh q n = O log(n) nh q
n so that Proposition 6.4 leads to the appropriate rates in the main result of Theorem 4.1. Similarly Proposition 6.6 and Proposition 6.7 respectively gives way to the expected rates in the main result of Theorem 4.3.

Proof: The proof is similar to the proof of Proposition 6.6. There are just some preliminaries to consider to deal with the random case.

Observe that it is obvious that we only have to consider those I where there exists a d > 0 such that |(x (r) + h n I r ) ∩ [0, 1]| ≥ dh n for all r = 1, . . . , q with I = I 1 × • • • × I q and by | • | we mean the length of the one-dimensional intervals.

Next we will show that with probability converging to one there are at least d n = O(nh q n ) random design points in every hypercube I n ⊆ [0, 1] q with edge length dh n . This implies that at least d n random design points lie in x + h n I. The number of points in I n can be written as n i=1 I{X i ∈ I n } and for all

I n 1 n n i=1 I{X i ∈ I n } ≥ P(X 1 ∈ I n ) - 1 n n i=1 I{X i ∈ I n } -E 1 n n i=1 I{X i ∈ I n } . For the term P(X 1 ∈ I n ) the lower bound (dh n ) q inf t∈[0,1] q f X (t) by P(X 1 ∈ I n ) = In f X (t)dt
and the consideration about the length of I n . The bound on P(X 1 ∈ I n ) is of order O(h q n ) by assumption (K4). Thus it remains to prove that sup

In 1 n n i=1 I{X i ∈ I n } -E 1 n n i=1 I{X i ∈ I n } = O(h q n ) (6.14)
with probability converging to one. Set therefore 

P n f In := 1 n n i=1 f In (X i ) and P f In := E[f In (X 1 )] with f In (t) := I{t ∈ I n }. Note that P f 2 In = P(X 1 ∈ I n ) ≤ (dh n ) q sup t∈[0,1] q f X (t). ≤ d 2 h n } -where a n = (a n,1 , . . . , a n,q ), b n = (b n,1 , . . . , b n,q ) and I n = [a n,1 , b n,1 ]ו • •×[a n,q , b n,q ] -
-P f In | = o(h q n ) a. s.
which proves (6.14). Now the assertion of the Proposition follows with the same arguments as in the proof of Proposition 6.6 with the modification from the proof of Proposition 6.7. 2 6.2 Proof of Theorem 4.3

The proof of Theorem 4.3 is similar to the proof of Theorem 4.1 and is based on the following Propositions 6.5, 6.6 and 6.7 respectively.

Proposition 6.5 Assume that model (2.3) holds under (K2) and (K4') and let ĝ be defined in (3.5)-(3.6) satisfying (K1) for some β ∈ (0, β * + 1] and some c g ∈ [0, c * ]. Then, there exists constants C β * ,q,c * , C β * ,q and a natural number J β * ,q such that for all

x ∈ [0, 1] q |ĝ(x) -g(x)| ≤ C β * ,q,c * h β n + C β * ,q max j∈{1,...,2J β * ,q } q   min i∈{1,...,n} x i,n ∈x+hnI j |ε i,n |   , where x + h n I j = {(x (1) + h n I j 1 ) ∩ [0, 1]} × • • • × {(x (q) + h n I jq ) ∩ [0, 1]} with I k = [-1 + (k - 1)/J β * ,q , -1 + k/J β * ,q ].
Proof: The proof is almost identical to the proof of Proposition 6.1 and is skipped here for the sake of conciseness. Proposition 6.6 Assume that model (2.3) holds with equidistant design points under (K2) and (K3') (which is equivalent to (K3) in this case). Then

sup x∈[0,1] q min i∈{1,...,n} x i,n ∈x+hnI |ε i,n | = O P |log (h n )| nh q n 1 α
for every non-degenerate subinterval I ⊆ [-1, 1] q where we set min ∅ |ε i,n | := 0.

Proof: The proof is similar to the proof of Lemma A.2 in [START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF] and the proof of Lemma A.1 in [START_REF] Neumeyer | Semi-parametric transformation boundary regression models[END_REF] but comprehensive adaptions are needed to deal with the multivariate case.

Let Z 1 , Z 2 , . . . be iid with the same distribution as -ε i,n with cumulative distribution function U . Recall that the distribution of the errors ε i,n do not depend of n, that is why, for the sake of clarity, the second index n is omitted in the Z i . To prove the result we shall show that It is obvious that we only have to consider those I where there exists a d > 0 such that |(x (r) + h n I r ) ∩ [0, 1]| ≥ dh n for all r = 1, . . . , q with I = I 1 × • • • × I q and by | • | we mean the length of the one-dimensional intervals. Note that at least d n = dh n n 1 q q design points lie in such an x + h n I. Now we want to arrange the design points x i,n in sets of size smaller than d n such that we can replace sup x∈[0,1] q by a maximum over these sets. To this end for each n we choose H n ∈ ( dhn 4 , dhn 2 ] such that 1 Hn is an integer. With this we build D l,n := {x i,n : x (r) i,n ∈ ((l (r) -1)H n , l (r) H n ], r = 1, . . . , q} for all l ∈ {1, . . . , 1 Hn } q . Note that these sets contain d Hn := H n n 1 q q < d n design points and that for every x ∈ [0, 1] q there exists D l,n with D l,n ⊆ {x i,n : x i,n ∈ x + h n I}. Now the supremum can be replaced by maximum, i. for some δ > 0 and sufficiently large L and n, where the second to last line follows from the fact that one can find a δ > 0 such that cL α d Hn nh q n (1 + o(1)) ≥ q + δ provided that both L and n are sufficiently large. This concludes the proof since h n = O(H n ). Proof: As in the proof of Proposition 6.6 it is obvious that we only have to consider those I where there exists a d > 0 such that |(x (r) + h n I r ) ∩ [0, 1]| ≥ dh n for all r = 1, . . . , q. By assumption (K4') there lie at least d n (d) design points in such an x + h n I.

The proof is similar to the proof of Proposition 6.6. We only have to adjust some steps of the proof to the non-equidistant case. Note to this end that the number of design points in the sets D l,n from the proof of Proposition 6.6 may differ from set to set in the non-equidistant case but that there are at least d Hn := d n (H n /h n ) points in each set by assumption (K4').

For all l ∈ {1, . . . , 1 Hn } q it holds P min i∈{1,...,n}

x i,n ∈D l,n 

Z i > y = U (y) #D
Z i > y   ≤ 1 -(1 -U (y) d Hn ) 1 H q n .
Now the assertion follows with the same arguments as in the proof of Proposition 6.6.
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Figure 1 :

 1 Figure1: Scatter plot of (X i , Y i ), i = 1, . . . , n together with the true regression function (black solid curve) in q = 1. A local constant approximation is considered. On the left hand side the blue vertical bar marks the point (x, ĝ(x)) for some given x and the blue square brackets the endpoints of the interval [x -h n , x + h n ]. On the right hand side the red crosses indicate the estimated values ĝ(x) for different values of x.

  Remark 4.2 Theorem 4.1 extends the result of[START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF], Theorem 2.2, to the multivariate random setting. Even in the univariate deterministic setting our result (Theorem 4.3 established below) is an extension of the aforementioned Theorem since the convergence rate holds on the whole unit interval [0, 1] whereas in[START_REF] Drees | Estimation and hypotheses tests in boundary regression models[END_REF] the result is restricted to

Figure 3 :βFigure 4 :

 34 Figure 3: True boundary curve (black solid line) and estimator ĝ (red dashed line) for different values of β * . The plot shows a cut trough the two dimensional surface (top) respectively three dimensional surface (bottom) of the function.

  ..,n} x i,n ∈D l,n Z i ≤ y ∀l ∈ 1, . . . , D l,n are disjoint and thus the corresponding Z i are independent. Further P min i∈{1,...,n}x i,n ∈D l,n Z i > y = U (y) dHn and thus It remains to show that for sufficiently large L 1-1 -U (Lr n ) d Hn n ) d Hn = o (H q n ) .(6.16) This implication follows from several Taylor expansions. Let z n → 0 and y n → ∞ denote some sequences with y n z n → 0. Now by a second order Taylor expansion of log(1 -z n ) we get for n sufficiently large1 -(1 -z n ) yn = 1 -exp (y n log (1 -z n )) = 1 -exp(-y n z n ) + O(y n z 2 n ) = 1 -exp(0) + O(y n z n ) + O(y n z 2 n ) = O(y n z n )where the third equality follows by a first order Taylor expansion of exp(-y n z n ). This means that1 -1 -U (Lr n ) d Hn n ) d Hnwhich proves our claim (6.16) ⇒ (6.15). Note that U (Lr n ) = cL α r α n (1 + o(1)) for some positive constant c and thus we have by a second order Taylor expansion of log(1 -U (Lr n )) U (Lr n ) d Hn = exp(d Hn log(1 -U (Lr n ))) = exp (-cL α d Hn r α n (1 + o(1))) = exp -cL α d Hn nh q n | log(h n )|(1 + o(1)) ≤ exp (-(q + δ)| log(h n )|) = o(h q n )
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  Proposition 6.7 Assume that model (2.3) holds under (K2), (K3') and (K4'). Thensup x∈[0,1] q min i∈{1,...,n} x i,n ∈x+hnI |ε i,n | = O P |log (h n )| d n 1 α with d n = d n (1), for every non-degenerate subinterval I ⊆ [-1, 1] q where we set min ∅ |ε i,n | := 0.

  and thus the conditions of Example 38 and Problem 28 in[START_REF] Pollard | Convergence of Stochastic Processes[END_REF] are fullfilled. Then since |f In | ≤ 1 Theorem 37 in[START_REF] Pollard | Convergence of Stochastic Processes[END_REF] can be applied and thus sup

	|P n f In
	In

  l,n ≤ U (y) d Hn where #D l,n is the number of design points in D l,n . Thus like in the proof of Proposition 6.6 we have

			
	P	 sup x∈[0,1] q	min i∈{1,...,n} x i,n ∈x+hnI
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