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Abstract: The odds-ratio measure is widely used in Health and Social surveys
where the aim is to compare the odds of a certain event between a population
at risk and a population not at risk. It can be defined using logistic régression
through an estimating équation that allows a generalization to continuons risk
variable. Data from surveys need to be analyzed in a proper way by taking into
account the survey weights. Because the odds-ratio is a complex parameter, the
analyst has to circumvent some difficulties when estimating confidence intervals.
The présent paper suggests a nonparametric approach that can take advantage
of some auxiliary information in order to improve on the précision of the odds-
ratio estimator. The approach consists in B-spline modelling which can handle
the nonlinear structure of the parameter in a flexible way and is easy to impie-
ment. The variance estimation issue is solved through a linearization approach
and confidence intervals are derived. Two small illustrations are discussed.

1. Introduction

In health and social surveys, the odds ratio is used to quantify the association
between the levels of a response variable Y and a risk variable X. For an infinité
population, let p — P (Y = 1|X) and the logistic régression

P
logit(p) = log = b0 + b\x1 ~P

where x is the value taken by X. It implies that p = exp(&o+6iæ)(l+exp(&o+frix))-1.
The odds ratio is defined (see [1]) as:

(1.1)
odds(Y = 1|X = x + 1)

_ v

odds(Y — \\X = x) = 6XP 1
where odds(Y = \\X = x 4-1) = P (Y = 1\X — x + 1 )/P(Y — 0|X = x + 1).

In the finite population context of sample surveys, we are interested in the max-
imum likelihood estimator Pi of the infinité population parameter bi based on the
data values of the finite population (see [2]). This finite population parameter pi is
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the solution of a finite population estimating équation. Given /?i, we consider the
finite population odds ratio OR = exp (3\ as our parameter of interest. Then, the
method suggested in [2] can be used to estimate /3i and OR with survey data. In
the context of surveys, [9] and [8] give details and examples of estimating an odds
ratio but without taking into account auxiliary information. Concerning auxiliary
information, [9], p. 169-170, advocate the use of weighted odds ratios and [11] sug-
gest using poststratification information to estimate parameters of interest obtained
as solutions of estimating équations. In the présent paper, we propose to study
the estimation of the odds ratio parameter when auxiliary information is available.
Results are derived from [7] who use auxiliary information to estimate nonlinear
parameters through nonparametric methods. The solutions of estimating équations
are particular nonlinear parameters but [7] give few details for such estimators.

In Section 2, we propose a S-spline nonparametric estimator for the odds-ratio.
In Section 3, we use linearization to dérivé the asymptotic variance of the estimator
under broad assumptions. We also suggest a variance estimator and give asymptotic
normal confidence intervals. In Section 4, we illustrate our approach on two real
data sets and conclude in Section 5 with a short discussion.

2. Odds ratio estimation in surveys using S-spline régression

2.1. Finite population parameter définition

The finite population parameters /3o and /3\ are defined as the maximum likelihood
estimators of the régression parameters bo and b\. Let (3 — (f3o,/3i)', where ' dénotés
the transpose, let yi be the value taken by Y and X{ the value taken by X for the
i-th individual from the finite population U = {1, ...,1V}. The finite population
parameter (3 maximizes the finite population likelihood:

L(yu---,yN]l3) = Il Pf (1 ~Vi)l~yi-
ieu

Under the logistic régression model, the maximum likelihood estimator f3 satisfies:

(2-1) = 0
ieu

with Xi = (1 Xiy and /i(xJ/3) = exp(x'/3)(l + exp(x-/3))_1 or ^2ieUti{/3) = 0
with ti((3) = Xi(yi — p,(x'/3)). Equation (2.1) is also called the score équation and
ti((3) the score function. The finite population parameter (3 is defined as an implicit
solution of the estimating équation (2.1) and we use itérative methods such as the
Newton-Raphson algorithm to compute it.

2.2. Estimation at the sample level using B-spline nonparametric
models

In order to estimate the parameter OR= exp/3i, we first estimate the régression
coefficient (3 by $ = (/3o,/di)/ and then dérivé the estimator OR — exp/3i. For a
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sample s selected from the population U according to a sample design p(-) , we
dénoté by 7q > 0 the probability of unit i to be selected in the sample and 7> 0
the joint probability of units i and j to be selected in the sample with ira = ir*. We
look for an estimator of (3 and of OR taking the auxiliary variable Z, with values
zi,..., zni into account.

The régression coefficient (3 is a nonlinear finite population function of totals
defined by the implicit équation (2.1). The functional method by [3], extended to
the nonparametric case by [7], is used to build a nonparametric estimator of (3. Let
M = Zieuàyi be the finite measure assigning the unit mass to each y*, i E R, and
zéro elsewhere, where Syi is the Dirac function at y*, ôVi(y) = 1 for y = yt and zéro
elsewhere. Consider also the functional T defined by

(2.2) T(M;f3) = £ x.fe - M(x'/3)) = £t;(/3).
ieu ieu

Then, the régression coefficient (3 is the solution of the implicit équation

(2.3) r(M;/3) = 0.

The measure M may be estimated by using the Horvitz-Thompson weights d{ =

I/7Ti or the linear calibration weights [3]. The functional method allows us to use
nonparametric weights for estimating the logistic régression coefficient. Remark that
the method is general and may be applied for any parameter (3 defined as a solution
of estimating équations.
[6] suggests using nonparametric weights based on R-spline régression to estimate
totals for variables which are related nonlinearly to the auxiliary information and
[7] suggest penalized R-spline régression to estimate totals or nonlinear parameters
such as a Gini index. The R-splines functions [5] are known for their flexibility
to model nonlinear trend in the data and by their numerical stability and ease of
implémentation. Let Ri,..., Rg, where q — m + K dénoté the R-spline functions of
degree m and with K interior knots. Then, the R-spline nonparametric weights [6]
are given by:

(2.4) whis = di ( ^ b (zk) ) ( dkb(zk)b'(zk) j b (z*),
\keU J \k€s J

where b(^) = (Ri(^),..., Bq(zi))'. The weights w^s dépend only on the auxiliary
variable and are similar to calibration weights [4]. They allow to estimate exactly
the population size N, Ylieswis = N, and the total of the auxiliary variable Z,
Eies<zi ~ Yjieu zi- use bere w\s to estimate the logistic régression coefficient
and the odds ratio efficiently. More exactly, we estimate M by M = J2ieswisàyi-
Plugging M into the functional expression of (3 given by (2.3) yields the R-spline
nonparametric estimator /3 of /3:

(2.5) T(M;3) = 0
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which means that (3 is the solution of the implicit équation wisxi(yi~Mxi3)) =
0.

An itérative Newton-Raphson method is used to compute /3- Consider for that the
dérivative of the functional T given in (2.2) with respect to (3 :

BT
(2.6) dë = ~^ = X'A(/3)X := J(/3),P ieu

with X = (xQi€t/ and A(/3) = -diag(ï/(xJ/3)) with i/(x-/3) = ^(x'/3)(l - /i(xJ/3)).
The 2x2 matrix X/A(/3)X is invertible and J(/3) is definite négative. From (2.6), the
matrix J ((3) is unknown and may be estimated by using the nonparametric weights
wl:

(2.7) Jw{(3) = -J2 whisv(AP)xiA = XgÂ(/3)Xs,
iEs

where A(/3) - -diag(^sz/(x'/3))ies and Xs - (x')iGs. Then, the r-th step of the
Newton-Raphson algorithm is:

(2-8) 0T = X-i ~ Jw@r-1mM-1Pr_l),
where (3r_1 is the value of (3 obtained at the (r - l)-th step. 3w(^r_1) is the value
of 3W{(3) and T[M\(3r_1) the value of T(M;(3) evaluated at (3 = /3r_1. Iterating to
convergence produces the nonparametric estimator (3 and the estimated Jacobian
matrix Jw((3). The odds ratio is estimated by OR = exp(/?i) and Jw(j3) is used in
Section 3 to estimate the variance of (3.

3. Variance estimation and confidence intervals

3.1. Asymptotic variance of the B-spline estimator of OR

The coefficient (3 of the logistic régression defined in (2.1) is a nonlinear function of
totals and the nonparametric weights w\s add even more nonlinearity. We approx-
imate (3 in (2.5) by a linear estimator in two steps: we first treat the nonlinearity
due to /3, and second the nonlinearity due to the nonparametric estimation. This
procedure is different from [3]. From the implicit function theorem, there exists a

unique functional T such that

(3.1) T(M) = (3 and T{M) = %
The functional T is Fréchet différentiable with respect to M. The dérivative of T
with respect to M, called the influence function, is defined by

rîW,£)= lim W + W-fM,
A—>0 A
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where ôç is the Dirac function at £. Under the assumptions given in [7], we obtain
the following first-order expansion:

(3.2) T(M) = T(M) + Y w\tlT (M, Vi) - £ IT (.M, m) + op(n~ll2).
i€s ieU

For i e U, IT(M,yi) = rq is called the linearized variable of T(M) = (3 and
equals:

u, = ~) 1 IT(M,yi;0) = - (X'A(/3)X) 1
(3.3)

d/3 J

The linearized variable rq = (wi,o,Ui,i)/ is a two-dimensional vector depending on
the unknown parameter (3 and on totals contained in the matrix J(/3). The second
component rqq of rq is the linearized variable of {3\. Note that with a binary variable
X, the odds ratio is given by OR = (NqqNh)/(XoiXio) where Xoo, Xoi, N\o, and
Nu are the population counts associated with the contingency table. In this case,
the linearized variable of 0i has the expression:

(3.4) rq, i =
l{æj=0,yi=Q} ^-{xj=\,yi=l}

_ 1{Xj=l,yi=0} _ l{xj=0,yi=l}
Nqq Nu Nio Noi

and the same expression is obtained from (3.3) after some algebra.
Relation (3.2) may be written as:

(3.5) P ~ P ~ WisU' ~ S U<’
ies ieu

namely, the R-spline nonparametric régression estimator $ is approximated by the
weighted estimator Yies wisui °f the finite population total of the linearized variable
iq. In the following, the aim is to dérivé the asymptotic variance of 0.

Note that using the weights di instead of w\s in (3.5) implies that the asymptotic
variance is given by:

Var I dlui = X] zL (^ÿ ” ’ïïi'Kj)did3\il\jîJ
Vies / ieu jeu

(3.6)

where Var(td(/3)) is the variance of td{0) = Yies <kU(P) with ti(0) = x*(yi -
/4X^)):

(3.7) Var(td{0)) = Var eH=ee (thj ~ ninj)didjti((3)tj(P).Vies / ieu jeu

Note that [2] gives the same asymptotic expression for the variance.
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For 5-spline basis functions formed by step functions on intervals between knots
(m — 1), the weights whis yield the post-stratified estimator of (5 [11]. Linear cal-
ibration weights lead to the case treated by [3]. Consider now the general case of
nonparametric weights w\s given in (2.4), then the right hand side of (3.5) is a non-
parametric estimator for the total of the linearized variable and a supplementary
linearization step is needed. It can be written as a generalized régression estimator
(GREG):

~J2Ui = - Ô'uHzi)) ~ - Ô'uHzi)),
iEs iEU iEs iEU

where 6U — (J2i£S dib(z;)b'(zj))_1(^es <Ab(z;)u'). In order to dérivé the asymp-
totic variance of the nonparametric estimator of /3, we assume that 1111 < C for ail
i £U with C a positive constant independent of i and IV, and || • || is the Euclidian
norm. Then, the linearized variable vérifiés JV||uj|| = 0(1) uniformly in i, because

^l|u*ll < ||2VJ_1(/3)||2 ||xi|| |yi - ii(-x.iP))\ = 0(1).

where the matrix norm || • ||2 is defined by 11A||| = tr(A7A).
Under the assumptions of Theorem 7 in [7] on the S-splines functions and the

sampling design, the nonparametric estimator Ylies wisui asymptotically equiva-
lent to

(3.8) wisui - u* - Y, di(Ui - o'uHzi)) o'uHzi))i
iEs iEU iEs iEU

where Ou = (ZieU b(zi)b'(zi))~l J2ieu b(zj)uj. This States that the R-spline non-
parametric estimator of J2ieU W is asymptotically équivalent to the generalized dif-
ference estimator. We interpret this resuit as fitting a nonparametric model on the
linearized variable u; taking into account the auxiliary information Z{. Nonparamet-
rie models are a good choice when the linearized variable obtained from the first
linearization step does not dépend linearly on z*, as it is the case in the logistic
régression, which implies a second linearization step.

Putting together (3.5) and (3.8), we can approximate the variance of /3 by the
Horvitz-Thompson variance of the residuals u; — Oub(zi),

(3.9) AV0) = J2 I] fai ~ KiTTjïdidj (uf - o'uHzi)) (w ~ Kh(zj)) ■
iEU jeu

The 5-spline nonparametric fitting allows large flexibility and implies that the resid-
uals Ui — Oub(zi) hâve a smaller dispersion than with a linear fitting régression.

We write the asymptotic variance in (3.9) in a matrix form similar to (3.6). We
hâve:

ui - o'ub(zi) = - J 1(/3) (t*(/3) - d'MziŸj
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with Gt = (Meuh^i)h'{zi)) ieu b(zi)t-(/3) and ti the score functions. Then,
the asymptotic variance of /3 becomes:

(3.10) AV(/3) = J_1(/3) Var(ê,j(/3)) J_1(^)
where ê^(/3) = Y,ies diefifi) the Horvitz-Thompson estimator of the residual
ei((3) = ti(f3) - 0tb(zi) of using R-spline nonparametric estimation and
Var(êrf(/3)) is obtained as in (3.7). Resuit given in (3.10) shows that improving
the estimation of (3 is équivalent to improving the estimation of the score functions
t» = Xi(yj -/x(x'/3)).

3.2. Variance estimation and confidence interval for the odds ratio

The linearized variable rp is unknown and is estimated by:

ûi = -J-1 (3) Xi(yi - m(x'3)) = -K1 (P) t»

where the matrix J^, is computed according to (2.7) and t i is the estimation of
with (3 = (3. Assuming that ail 7> 0, the asymptotic variance AV(/3) given in
(3.9) or (3.10) is estimated by the Horvitz-Thompson variance estimator with
replaced by ûq:

(3.11) t>C§) = EE 7Tij 7Tj7Tj * „/
— -didjUiUj

iÇ.s j£s
j-‘(3) VHT(êd(3)) J-1(3)

where Vht(ê^) is the Horvitz-Thompson variance estimator of ê^(/3) = Eies diêfifi)
with êi({3) = ti- 9ib(zl) and Of = {J2ies dib{zi)b'{zi))~l EjGs ^b(^)t'.

The variance estimator of /3\ is obtained from (3.11) as:

^(ft) = j-1(3)vHT(êrf,2(3))3;1(3),
where ê^.2(/3) is the second component of ê^(/3) so that, under regularity conditions,
the (l — o;)% normal interval for OR is:

CIl-a(OR) = exp [pi-z,a/2 exp /3i + za/2

where za/2 is the upper o/2-quantile of a A/”(0,1) variable. It is not symmetric
around the estimated odds ratio but provides more accurate coverage rates of the
true population value for a specified a [8]).

4. Two small illustrations

The aim of using auxiliary information in our context is to gain in terms of variance.
In order to ensure that it is so on some real examples, we consider below two data
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sets as if they were two finite populations of interest. Given that ail data are known,
it is possible to calculate (and not estimate) and compare the variances or asymp-
totic variances of the estimators we are interested in. More precisely, we compare
the asymptotic variances of different estimators of the odds ratio in the simple case
of one binary risk variable using two data sets. As previously mentioned, in this
context, the odds ratio is a simple fonction of four counts. We focus on the simple
random sampling without replacement and compare three estimators. The first one
is the Horvitz-Thompson estimator which does not use the auxiliary variable and
whose asymptotic variance is given by (3.6). The second estimator is the general-
ized régression estimator which takes the auxiliary variable into account through a
linear model, fitting the linearized variable against the auxiliary variable. The third
estimator is the B-spline calibration estimator with an asymptotic variance given
by (3.10). In order to gain efficiency, the auxiliary variable lias to be related to the
linearized variable. In the context of one binary factor, the linearized variable is
given by (3.4) and takes four different values, which dépend on the values of the
variables X and Y. In order to be related to the linearized variable, the auxiliary
variable has to be related to the product of the two variables X and Y, which is a

strong property. Moreover, because Uiti, X, and Y are discrète, using auxiliary in-
formation does not necessarily lead to an important gain in efficiency as illustrated
by the first health survey example. The gain in efficiency however is significant in
some other cases. In the second example using labor survey data, the gain in using
the B-splines calibration estimator compared to the Horvitz-Thompson estimator is
significant because the auxiliary variable is related to the variable Y but also to the
factor X; X and Y being related to one another, too.

f.l. Example from the California Health Interview Survey

The data set cornes from the Center for Health Policy Research at the University
of California. It was extracted from the adult survey data file of the California
Health Interview Survey in 2009 and consists of 11074 adults. The response dummy
variable equals one if the person is currently insured; the binary factor equals one
if the person is currently a smoker. The auxiliary variable is âge and we consider
people who are less than 60 years old. The data are presented in detail in [10].

We compare the Horvitz-Thompson, the generalized régression, and the B-splines
calibration estimators in terms of asympotic variance. In order to calculate the B-
splines fonctions, we use the SAS procedure transreg and take K = 15 knots and
B-splines of degree m — 3. The gain in using the generalized régression estimator
compared to the Horvitz-Thompson estimator is only 0.01%. It is 1.5% when using
B-splines instead of the generalized régression. When changing the number of knots
and the degree of the B-spline fonctions, the results remain similar and the gain
remains under 2%. In this example, there is no gain in using auxiliary information
even with flexible B-splines, because the auxiliary variable is not related enough
to the linearized variable. The linearized variable takes négative values for smok-
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ers without insurance and non smokers with insurance, positive values for smokers
with insurance and non smokers without insurance. Age is not a good predictor for
this variable, because we expect to find sufficient people of any âge in each of the
four categories (smokers/non smokers x insurance/no insurance). Incorporating this
auxiliary information brings no gain.

4-2. Example from the French Labor Survey

We consider 14621 wage-earners under 50 years of âge, from the French labour
force survey. The initial data set consists of monthly wages in 2000 and 1999. A
dummy variable W00 equals one if the monthly wage in 2000 exceeds 1500 euros
and zéro otherwise. The same for W99 in 1999. The population is divided in lower
and upper éducation groups. The value of the categorical factor DIP equals one for
people with a university degree and zéro otherwise. W00 corresponds to the binary
response variable Y while the diploma variable DIP corresponds to the risk variable
X. The variable W99 is the auxiliary variable Z. In this context, the odds ratio is
a simple function of four counts. We focus on the simple random sampling without
replacement and compare three estimators. The first one is the Horvitz-Thompson
estimator which does not use the auxiliary variable and whose asymptotic variance
is given by (3.6). The second estimator is the generalized régression estimator which
takes the auxiliary variable into account through a linear model, fitting the linearized
variable against the auxiliary variable. The third estimator is the H-spline calibration
estimator with an asymptotic variance given by (3.10).

To compare the Horvitz-Thompson estimator with the generalized régression es-
timator and the H-splines calibration estimator, we first calculate the gain in tenus
of asymptotic variance. We consider K = 15 knots and the degree m = 3. The gain
in using the generalized estimator compared to the Horvitz-Thompson estimator
is 20%. It is 33% when using H-splines. The resuit is almost independent of the
number of knots and, of the degree of H-spline functions. When the total number of
knots varies from 5 to 50 and the degree varies from 1 to 5, the gain is between 32%
and 34%. The nonlinear link between the linearized variable of a complex parameter
with the auxiliary variable explains the gain in using a nonparametric estimator
compared to an estimator based on a linear model [7]. For the odds ratio with one
binary factor, the linearized variable is discrète and the linear model does not fit the
data.

5. Discussion

In the presence of one auxiliary variable known for ail the population units, a B-
splines approach is easy to implement and can improve on the précision of the
Horvitz-Thompson estimator for an odds-ratio parameter if the auxiliary variable
is well related with the variable of interest. It is possible to take into account more
than one auxiliary variable by using some generalized additive model and consider



152

sonie R-splines estimator as proposed above for each of the additive components.
The theory however needs further development.
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