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Abstract: This article deals with nonparametric permutation testing methods
for repeated observations with multivariate ordered categorical data. Our spe-
cific interest is on testing for stochastic dominance, i.e. for a set of restricted
alternatives. Several solutions to the univariate stochastic dominance case based
on restricted maximum likelihood ratio tests hâve been proposed in the litera-
ture. These solutions require quite demanding and stringent assumptions and
so are generally criticized: their asymptotic null distributions are mixtures of
central chi-squared variables with weights depending on the underlying popu-
lation distribution F and so the related accuracy is at least difficult or even

impossible to assess. Further, testing for stochastic dominance in multivariate
settings by the likelihood approach is known to be a much more difficult prob-
lem. By working within the conditioning on a set of sufhcient statistics under
the null hypothesis and the nonparametric combination (NPC) of dépendent
permutation tests it is possible to find exact solutions to some of the related
problems. Solutions for multivariate two-sample designs guided by a medical
application problem are provided.

1. Introduction

Problems of testing for ordered categorical variables are frequently met in many

application disciplines, e.g.: social sciences, psychology, genetics, genomics, clinical
trials, marketing, the environment, industrial quality control, and so forth, where at
most a countable number of V > 1 of such variables are observed on each individual

unit.

Testing of hypothèses for ordered categorical variables is known to be quite a
difficult problem when the interest is for stochastic dominance, that is for a set of
restricted alternatives. Stochastic dominance problems are of spécifie interest in ap-

plication contexts since are frequently encountered in practice and présent peculiar
difficulties, especially within the framework of likelihood ratio tests (e.g. [3], [5-9],
[11-13], [16], [18], [22], [23], [33], [34], [36-38]). Several solutions to the univariate
case hâve been proposed within the restricted maximum likelihood ratio test. These
solutions are generally criticized, because they: i) require quite stringent assump-
tions; ii) are known asymptotically for relatively small number C of categories; iii)
the asymptotic null distributions are mixtures of central chi-squared variables where
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the weights essentially dépend on the underlying unknown population distribution
F and so the related degree of accuracy and the rate of convergence are at least
difficult to characterize and to assess. Thus, when available their utilization is in
most cases doubtful both in practice and in theory.

Moreover, also due to the extreme difhculty to express the likelihood function
[17], the multivariate case is considered as almost impossible to be analyzed within
the likelihood approach, especially when V is larger than 2 or when sample size is
smaller than the number of population parameters (e.g. [10], [12], [13], [19], [34], [36]).
By working within the conditionality principle of inference and the nonparametric
combination (NPC) of dépendent permutation tests (e.g. [1], [2], [10], [14], [15],
[24-31]), there are exact solutions to most important of related problems.

The NPC approach works as a general methodology for many multivariate set-
tings, e.g. as with cases when sample sizes are smaller (even much smaller) than
V, when there are non-ignorable missing and/or censored data, when some of the
variables are quantitative and others categorical, when the null hypothesis is ex-
pressed as an interval of équivalent points, when the data corne from selection-bias
experiments, and so forth. In particular, it results especially useful when testing for
a set of restricted alternatives with experimental data, i.e. for stochastic dominance,
in which context it shows spécifie efficacy providing for exact admissible solutions
that also enjoy nice asymptotic properties. NPC methods require that the given
testing problems are equivalently broken-down into a set of simpler sub-problems
(Roy [32]) to each of which a permutation test is available, provided that these par-
tial tests are jointly analyzed. Thus, the NPC works within the permutation theory.
Permutation tests are conditional inferential methods where conditioning is on a set
of sufficient statistics under the null hypothesis for the underlying distribution F.
For most problems of practical interest, especially when F lies outside the regular
exponential farnily of distributions, the minimal sufficient statistics is just the actual
pooled data set X. Within the NPC methodology it is particularly noticeable that
researchers are not required to model and estimate the dependence parameters on
variables and on these partial tests because, due to sufficiency of X, the related
methods become invariable on ail underlying parameters. In addition, the related
solutions are often easy to obtain even for complex problems like those arising from
dominance alternatives with ordered categorical variables.

The exact détermination of permutation null distributions is obtained by the com-

plete examination of ail permutations of the data X, II(X) say. Of course, this way
becomes impractical when sample sizes are not very small and for complex problems
(with the data of section 2, II(X) contains some 2.447 x 1011 P-dimensional points).
In practice, however, they can be estimated, to the desired degree of accuracy, by a
conditional Monte Carlo method consisting of a random sample of R éléments from
n(x). This solution is especially recommended for NPC methods (e.g. [25], [27],
[28], [30]). Main NPC routines are implemented in R, Python, SAS®, StatXact®,
MATLAB®, etc.

Section 2 introduces a motivating medical example; section 3 examines the ba-
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sic methodology for restricted alternatives in two-sample designs; solutions to the
example are in section 4; sonie concluding remarks are in section 5.

2. A motivating example

This motivating medical example, from [4] and [20], concerns a clinical trial on
shoulder tip pain scores observed on every patient at V = 6 time points after a

laparoscopie surgery. The scores are classified into C — 5 ordered categories ranging
from ci = 1 (low) to C5 = 5 (high). Two treatments, a drug Y and a placebo N,
were randomly assigned to n = 41 eligible patients, ni = 22 of which received
Y and 712 — 19 received N. Since pain distributions are expected to be naturally

d

time-decreasing, i.e. Xt > Xq, 1 < t < q < V, the pooled data set

X = {Xju, i = 1,..., rij, t = 1,..., F, j = 1,2}

appears as a list of trajectories of repeated observations that behave as a two-
sample of independent discrète non-stationary stochastic processes with unknown
time-converging (maybe monotonically) transition matrices. According to this in-
terpretation, the testing process has to be necessarily set up without assuming time-
invariant distributions.

In addition to the analyses discussed in [4], [20], [21] and [35] it is required to
establish if patients taking Y exhibit, across time, a stochastically lower level of
pain than those taking N. That is, while considering the multivariate distributional
equality Xi = X2 as the basic assumption, onwards called the working null, to test
for the joint stochastic dominance hypothèses of marginal distributions:

y v c-i

Ho : n (-Vit=x2t)=fi n [Ui(c/,)=Mco],
t=1 t=i h=1

against the alternative:
v

d y c~l
H1 : f|(X1( < X2t) = U U [U((ch) > F2t(ch)},

t=1 t=l h= 1

where Fjt(ch) = Pr{X^ A c^}, j = 1,2, h = 1,...,C — 1 are partial (marginal)
CDFs, and where, of course, Fjt(C) = 1, t = 1,..., V, j = 1,2. It is worth noting
that the problem has been broken-down, according to Roy [32], into (C— 1) x V = 24
simpler partial sub-problems. Also noticeable is that the related testing problem for
a set of restricted alternatives requires a number of multi-one-sided partial test
statistics. Note that Hq is the tested null and that the working null Xi = X2 has
the rôle to justify the exchangeability property.

As far as we know, in no case this problem can be analyzed within likelihood-based
methods unless extremely stringent conditions, generally too difficult or even almost
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impossible to justify, were introduced. This is a direct conséquence of two main
aspects: i) the full set of involved parameters, corresponding to the number of cells
in a multivariate contingency table représentation, has Cv — 1 = 15624 dimensions
(that number becomes 640584 if parameters are subject-specific, i.e. random; Joe
[17]); ii) the set of alternatives is restricted to lie in the V ■ (C -1) = 24-dimensional
positive orthant. So, the likelihood way cannot be validly considered.

With clear meaning of the symbols, the problem: Hoth : F2t{ch) = F\t{ch) against
H\th : F2t(ch) > F\t(ch), h = 1,..., C — 1, t = 1,..., V, can be tested by the joint
comparison of (C — 1) x V random frequencies, like F2t{ch) and F\t(ch), where, of
course, the resulting 24 partial tests are dépendent in quite a complex way, with
dependence coefficients depending on ail underling unknown parameters. That is
why for their analyses it is necessary to stay within the permutation approach and
the NPC.

The related data are in the following Table 1:

Table 1

Data on tip shoulder pain observed along time in 2 groups of patients

Treatment
y N

Time Time

ID 1 2 3 4 5 6 ID 1 2 3 4 5 6
1 1 1 1 1 1 1 23 5 2 3 5 5 4
2 3 2 1 1 1 1 24 1 5 3 4 5 3
3 3 2 2 2 1 1 25 4 4 4 4 1 1

4 1 1 1 1 1 1 26 4 4 4 4 4 3
5 1 1 1 1 1 1 27 2 3 4 3 3 2

6 1 2 1 1 1 1 28 3 4 3 3 3 2

7 1 3 2 1 1 1 29 3 3 4 4 4 3
8 2 2 1 1 1 1 30 1 1 1 1 1 1

9 1 1 1 1 1 1 31 1 1 1 1 1 1

10 3 1 1 1 1 1 32 1 5 5 5 4 3
11 1 1 1 1 1 1 33 1 3 2 2 1 1

12 2 1 1 1 1 2 34 2 2 3 4 2 2

13 1 2 2 2 2 2 35 2 2 1 3 3 2

14 3 1 1 1 3 3 36 1 1 1 1 1 1

15 2 1 1 1 1 1 37 1 1 1 1 1 1

16 1 1 1 1 1 1 38 5 5 5 4 3 3
17 1 1 1 1 1 1 39 3 3 3 3 1 1

18 2 1 1 1 1 1 40 5 4 4 4 2 2

19 4 4 2 4 2 2 41 1 3 3 3 3 1

20 4 4 4 2 1 1

21 1 1 1 2 1 1

22 1 1 1 2 1 2

3. The two-sample basic problem

In order to find suitable general solutions to the methodological testing problems
raised by the motivating medical example, our proposai is to stay within the theory
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of conditional inference where the conditioning is on a set of sufficient statistics,
under the working null hypothesis Xi = X2, for the underlying distribution F. This
implies to stay within the permutation theory and the NPC of dépendent tests.
Indeed, with a clear meaning of the symbols, indicating by p_p(X) the likelihood
associated with the population distribution F, the likelihood of any two-sample
data X (X^,... ? X^^, X21 . • • , ^-2112 ) is

ni ri2

pHx) = nm(Xn) IîffifXï),
i=1 7—1

where Xjj = (Xju,... ,XjVi) are individual V-dimensional time trajectories. This,
when F\ = F2, as stated by the working null hypothesis, is invariable with respect
to any rearrangements X*, i.e. permutations, of observed trajectories X. That is:
Pf(X) — pf(X*) is a permutation invariable likelihood. Of course, such a property is
not true under the alternative where Fit 7^ F21, for some t. Moreover, provided that
the likelihood is positive on the observed data set, i.e. pfÇX) > 0, the pooled data
X under the working null hypothesis is always a set of sufficient statistics for the
underlying F. In addition, especially when pf lies outside the regular exponential
family or n is smaller than the number of parameters of F, X is minimal sufficient.
Thus, conditioning on X makes any inference to be independent of F.

Actually, the null conditional probability, given X, of every event A member of
a suitable family of events A, is independent of F; specifically: VF and MA G A,
Pr{X* G A] F|X} = Pr{X* G A\X}.

This makes permutation inferences distribution-free and nonparametric. In par-

ticular, it is to put into evidence that the nonparametric property is especially
important with respect to the set of dependence coefficients involved by the set of
partial tests into which the testing problem is broken-down.

Indeed, if T — (Ti,...,Tx) are K > 1 permutation statistics (e.g. tests) and if
p : 7Zh —> 1Z1 is any measurable function, then the permutation null distribution of
p is independent of F; noticeably, it is independent of ail dependence parameters
underlying T. To be spécifie:

PrMïT,...Tk)<*-,OX} = PrMîï,...Xk) <z;|x}
#[X* 6 ^(2)]

= Pr[<Fr (F>Ix M

since, due to measurability of p, p^l{z) G A for every z G F1.
We emphasize that this latter property is central for the NPC approach where the

combining functions should satisfy general testing properties (e.g. [25], [27], [30]).
Also, it is important to emphasize that the number K into which the hypothesis is
broken-down can be unrelated to the number V of variables (time répétitions) and
with the number of parameters defining F.

In practice, indicating by X = {X(z), i = 1,..., n; ni, nff the n\ + 77.2 = n data
trajectories, where it is intended that the first n\ vectors in the list are from the
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first sample and the rest from the second, a random permutation X* € II(X) can be
obtained as X* = (X(w*), i = 1,..., n; ni, 77,2}, where u* = {u\,..., u*n} is a random
permutation of unit labels u = {1,..., n}. Thus, the permuted sub-table at time t,
t — 1,..., V, associated with X* is computed as

{fjth = € ch),h = = 1,2},
where: #(•) is the number of éléments of X* that satisfy (•); X^ = X(u*) for i <n\
and = X(n*) for n\ < i < n. Oî course, each permuted sub-table is such that
f-th = fith + f2th = fîth + fîth = f*th,h = V • • and so marginal frequencies
f.th, as well as cumulative marginal frequencies N.th = ^ith + ^2th — N*th with
Njth — 'Ï2s<h fjtsi me permutation invariable quantities. Thus, permuted EDFs are:

F-tM = Y. fjtshj, h = 1,..., C, t = 1,. - -, V, j = 1,2.
s<h

4. The one-dimensional testing problem

Let us fix our attention to one time point t, first. The related partial testing problem
is then:

Sot : Vif = x2t
<7—1

p] [Utfo) = F2t(ch)},
h=1

against

d c-1
Alt : Xit <X2t= [J [Fit(cft) > fl2t(ck)l,

ft=l

where, according to Roy [32] union-intersection methodology, the hypothèses hâve
been broken-down into C — 1 simpler one-sided sub-problems. Of course, each sub-
problem is concerning the comparison of two unknown frequencies. Clearly, that
problem can be properly solved by joint analysis of C — 1 dépendent partial tests
and then by their NPC.

The C — 1 partial test statistics we propose are:

n, = (6Ih - Kh) [F-thU - F-th)]~h ,h = 1,... ,C - 1,

where: F*th = F*t(ch) = N*th/nj, j = 1,2, F.th = N.th/n are permutation and
marginal EDFs. Note that EDFs Fjth me maximum likelihood unbiased estimâtes
of population CDFs Fjt(ch), h = 1,...,C - 1, j = 1,2. Also note that: i) large
values of each partial test T^h are significant; ii) the C — 1 partial tests T*h are
positively dépendent; iii) 0 is assigned to expressions with the form 0/0; iv) each
T*h is a reformulation of Fisher’s exact probability test; v) each T^h is conditionally
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optimal with conditional variance a^* — n\ri2(n — 1 )/n2 not dépendentth

vi) asymptotically each T*h is normally distributed.
Their NPC can be achieved according to the methods discussed in [25],

The simplest way of combination is, for instance, by their direct sum:

C-i
i

TXm = E (h«, - îm) [P-th(l - F,h)r •
h=1

It is worth noting that Tadi looks like the Anderson-Darling goodness-of-fit test
(sum of dépendent standardized partial statistics) for directional alternatives. TADt
is provided with some nice properties (e.g. [25], [27], [30]): i) as ail partial tests T*h
are unbiased, it is unbiased; ii) as at least one of T*h is consistent, it is consistent;
iii) as its combined acceptance région is convex, it is admissible; iv) it is an admis-
sible combination of conditionally optimal partial tests, and so there does not exist
any other test G, for the same hypothèses and within the same conditions, that is
uniformly better than it.

The p-value-statistic related to the pair [TADt-, X) is defined as AADt — Pr{T\Dt A
^AD*|X}, where the conditioning on actual data set X is emphasized and T°ADt =
TADtOQ represents the observed value of TADt on data X. According to the general
testing rule, if AADt A et then Hq is rejected at significance level a > 0.

To justify the NPC solution, let us consider the représentation, related to a general
problem with K partial tests, R random permutations and combining function 0,
that follows:

on (i, h);

[27], [30],

To Tu • T*r Tir

T°k T*k i • Tkr T*kr
i

rpO TJ, i T^r t;r

where: the first column of first sub-table contains the observed values of K partial
tests, i.e. T£(X), k = 1,..., K] the r-th column contains the values of the K partial
tests at the r-th random permutation X*, r = 1,..., R. The first element of second
sub-table contains the observed value of a combined tests obtained by the combining
function 0, i.e. T^ — 0(T1°,..., T£); the r-th element is the permutation value of
combined test tp at the r-th data permutation.

If the working null hypothesis would be true the sub-matrix {T£r}xXR simulâtes
the JT-dimensional null distribution of K partial permutation tests. Accordingly, the
sub-vector {T^t}r simulâtes the null permutation distribution of combined test 0.
Thus, the statistic A^ = #(T^ > Tfy/R gives an unbiased and strongly consistent
estimate, as R diverges, of the p-value statistic of combined test T0 If Ho would
not be true, at least one of partial tests would give larger observed values than in
Ho and so, if combining function 0 is non-decreasing in each argument, the p-value
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statistic satisfies the relation: Ap/q < Auniformly for every data set X and for
every underlying distribution F. The latter implies the unbiasedness property and
so justifies that if Ap, < a then Hn is rejected. Formai proofs of these properties are

in [25], [27], [28], [30],
The same unidimensional problem (e.g. [1], [29]) can also be tackled by assigning

non-decreasing W scores to ordered classes, e.g. as ch —)■ Wh, with w\ < W2 < ... <
u>Ci and w\ < wc- In such a case the data are transformed into Whi — Wh • l(X(z) =

Ch), i = 1,..., n, where l(-) is the counting function. Thus, the permutation solution
is nothing else than a comparison of sample means of scores: T^ — w\. One
further solution is by transforming data Xjti into ranks Rjti = < XJti) or
mid-ranks Mjti = #{Xjti < Xjti) + #{Xjü = Xjti)/2, i = 1,..., rij, t =
j = 1,2, and then to proceed, in the spirit of Mann and Whitney, by comparing
mean of ranks and of mid-ranks: T^t = R*lt - R*lt and T^t = — Mft, respectively.

Clearly, although unbiased, consistent and easy to interpret, these three further
solutions suffer from the arbitrary substitution of categorical data with numerical
quantities. We will see, however, that with the data of the example their inferences
are closely concordant in practice.

5. The multidimensional problem

Let us now consider the multidimensional hypothèses under testing: where the null
hypothesis Hq : f)ï=i OhZiiFitich) = F2t(ch)\ against the set of restricted alterna-
tives H\ : jJÜi {Jh=i \Fit(ch) > F2t(ch)\• This is nothing else than a simple extension
of the Anderson-Darling goodness-of-fit type solution, shown for the unidimensional
case. Thus, with a clear meaning of the symbols, its solution is achieved by the test
statistic:

y c-1
_ 1

Tad = E E {Rh - Kk) [F-th( 1 - F.th)]-ï .
t=i

Similarly to the unidimensional formulation, if the alternative is true then at least
one summand assumes values not smaller than under Ho. So, that test is unbiased,
consistent and admissible. In place of the direct combination of V partial tests
T\Dt, i.e. one Anderson-Darling test for each variable, it is possible to think of a
more general combination like T^ = 4>{T\Dl,... ,T\DV). The most commonly used
of combining functions ij) is Fisher’s Tp — -2 \°ë{^ADt), where AADt are the
p-value statistics of T\Dt.

Likewise, the unidimensional setting, the multidimensional problem (e.g. [1], [29])
can also be tackled by assigning non-decreasing Wt scores to ordered classes, e.g. as

cth —> wth, h = 1,..., C, t = 1,..., V, where u>t\ < ... < uttc, with at least one strict
inequality VF In such a case the data are transformed into wthi — Wth • 1 (Xjti — Cth)•
Thus, the permutation solution is nothing else than a multivariate comparison of
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sample means of scores:

nw=ip[(wi2-wi1),...,(w*V2-w*vl)}-
And so on also for T^R and T^M with ranks and mid-ranks, respectively.

6. Solution to the example

The analyses of data of the medical example, based on R = 100000 random permu-

tâtions, for T\D, T^, and Tj^ give the listed results:

t 1 2 3 4 5 6 A

Tad 0.05848 0.00044 0.00005 0.00002 0.00024 0.00622 0.000035

Tw 0.09036 0.00045 0.00005 0.00002 0.00026 0.00739 0.000025

T*m 0.10795 0.00035 0.00007 0.00003 0.00026 0.00736 0.000075

where scores are Wk = fc, k = 1,..., K. These results exhibit quite strong evidence
for the distributional higher pain scores, i.e. stochastic dominance, of patients taking
N with respect to those taking Y. We also see that three tests give almost exactly
the same results.

In order to take account, at least approximately, of some unobserved covariates
and of baseline data (i.e. scores W at time t — 1), we also conducted a multivariate
dominance analysis on individual score différences Dti = Wu — Wu, t = 2,... ,6,
i = 1,... ,n. The related results, still based on R = 100000 random permutations,
with Fisher’s combined test Tp = "0F[(^22 ~ -Ô21), • • • 5 (^62 — An)] are:

t 2 3 4 5 6 AF

Tp 0.03729 0.00631 0.00162 0.07842 0.47577 0.01731

From these results it seems that at time 6 pain score différence from baseline of two
groups of patients manifest non-significant diversity; whereas on ail other observation
times, say 2 to 5, there seems to remain a significant greater pain on patients taking
N with respect to those taking Y. This latter conclusion relies on a partial analysis
bounded to times 2 -r 5, whose combined test leads to Af,2-5 — 0.00504.

7. Concluding remarks

The NPC of dépendent test method is suitable and effective for many multivariate
testing problems which are very difffcult or even impossible to solve within tradi-
tional likelihood parametric frameworks.

One major feature of the NPC, provided that the permutation testing theory ap-

plies, is that one must pay attention to a set of partial tests into which the problem
is equivalently broken-down (Roy [32]). It is required that each partial test has to
be appropriate for the related sub-hypotheses, because the underlying dependence
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relation structure is nonparametrically captured by the conditional combining pro-
cedure. This aspect is of great importance especially for non-normal and categorical
variables, in winch dependence relations are generally difficult to define and, even
when well-defined, are too hard to cope with especially with multivariate ordered
categorical variables. The researcher is required to make sure that ail partial tests
are marginally appropriate, i.e. unbiased, at least one is consistent and larger values
of each partial test are signihcant for the spécifie sub-alternative. The latter are,

indeed, sufficient conditions for the NPC that are generally easy to check.
As the NPC method is conditional on a set of sufficient statistics, it shows good

general power behavior. Monte Carlo experiments on ordered categorical data (re-
ported in: [1], [10], [19], [29]), show that the direct and Fisher’s combining functions
on Anderson-Darling partial tests T\Dt and T^ hâve generally good power behavior
both for balanced and unbalanced samples and, in some situations, they are slightly
more powerful than the Mann-Whitney-like tests T^ and T^. Moreover, NPC tests
for restricted alternative compared with parametric competitors, when these ex-

ist, are relatively more efficient and much less demanding in terms of underlying
assumptions.
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