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Empirical L’-distance between regression
model and vector space

Zaher Mohdeb'* and Abdelkader Mokkadem?

Ecole Nationale Polytechnique de Constantine T and Université de Versailles
Saint-Quentin-en- Yvelinest

Abstract: The paper is devoted to the estimation of the square distance bet-
ween the regression function f and the subspace E, spanned by the linearly
independent functions gy, ..., gp. In order to estimate this measure of discrea-
pancy, we propose an empirical L>-distance between f and E,, without weight
and we show that it is invariant with respect to change of basis in £,.

1. Introduction

We consider the following regression model

(1.1) Yon —Jln) tEn, =10,

where f is a unknown real function, defined on the interval [0,1] and ¢, = 0 <
ton < v+ < tpn =1, is a fixed sampling of the interval [0,1]. The errors &;, form
a triangular array of random variables with expectation zero and finite variance a%,
and for any n, the random variables £ ,...,&p, are independent.

Let g1,...,gp be linearly independent functions defined on [0, 1] and let E), be the
vector space spanned by g1,...,9,. We assume that the design P silmmais
associated to a positive density function h in the interval [0,1]. We denote L?(dp),
where du(t) = h(t)dt, the space of square integrable functions, equiped with the
usual inner product (.,.). As measure of discreapancy between the regression func-
tion f and the subspace E,, we may use the square distance

(1.2) D2(f) = min ] £(t) — o(t) [ (t) dt.

In this paper, we propose an empirical L*-distance of D?(f). We follow the procedure
of Dette and Munk (1998), but without use of weights. Indeed Dette and Munk
(1998) use weights satisfying particular conditions; this leads to a problem with
the choice of weights. Generally, this empirical L2-distance is used to test the null
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hypothesis Hy: ”f € E,” against the alternative hypothesis Hy: ”f ¢ E,”. The
previous test has been the subject of several works: Dette and Munk (1998), Mohdeb
and Mokkadem (2002, 2004) introduce a test statistic based on the estimation of
the square of the distance of f to E, with respect to a L?-norm. Other related work
includes that of Dette (1999), Gonzalez-Manteiga and Cao (1993) and Stute (1997).
We give the main result in the following section.

2. Main result

First, note that square distance D?(f) given in (1.2) may be expressed also as

G(f’gla v 19{0)
(2.1 i g L )
} ( ) G(Ql:“':gp)
where G(v1, . .., v;) denotes the Gramian determinant | ((vi,v;)) |s,j=1,..k for vi, ..., v

in L%(dp). We need to estimate D?(f); for this, we use the observations ¥ =
(Yi,ns--.,Yn,) and we follow the procedure of Dette and Munk (1998), but with-
out use of weights.
Let
Din=tin—ti-1n, 1=2,...,0, Bi1y=ADByn,
W = diag(Ainhltin))

e=l...0n

and let E,,, be the vector space of R spanned by (g1.n,...,0nn), where

Ok = (Qk(tl,n) e ,gk(tn,n))f, ke =el

Dette and Munk (1998) propose an estimator denoted M2 of the distance D2(f)
between f and the model E,, and estimating the unknown inner products involved
in the expression (2.1) by empirical expressions. To show the invariance of the
estimator M2 with respect to change of the basis in E,, Dette and Munk (1998)
are led to introduce suitable weights w; ,,, i, ...,n satisfying the following particular
conditions:

n
Z Az‘,nwi,nh(ti,n) =] v ]|

1=1

and
n
(G 90) = Y DiinWinh(tin)ge(tin)oi(tin), 1<ESILp.
=1 :
Weights w; n, i,...,n satisfying the previous conditions are generally not easy to

obtainable (see the discussion on pages 783-784 in Dette and Munk (1998), and
Theorem 2.1 therein).



169

In this paper, we define G,,(Y, g1,...,gp) as the determinant obtained by replacing
in (2.1) the inner product (f, f) by

ViV — Z Ai,nh(ti,n)Yi?n

i=1

and (f, gr) by

n
Yfng,n = Z Ai,nh(ti,n)gk(ti,n)yﬁ,n 3 k= I P
=1

We estimate D?(f) by
D2 i GH(Y:Q].J"')QP}
i Gilgiyi oy gy)

It is clear that D?(f) does not depend on the basis {g1,...,gp} of Ep, since D?(f)
is the square distance in L*(dp) of f to E,, but it is not obvious the same holds for
D2(Y, g1, -,9p)- The following result states that DZ(Y, g1, ..., gp) does not depend
on the choice of the basis {g1,...,gp}.

Theorem 2.1. For any © € R, D2(0,g1,...,gp) is invariant with respect to
change of basis in E,.

Proof. Let U = {uy, ..., up} be an orthonormal basis of E, and V = {vy,...,v,} an
arbitrary basis of E,. It is sufficient to show that

D2(O,u1,...,up) = D2(8,11,...,v,).

We have for all f € L*(du),

D) = (£, ) + P({frurh ., (frw)

and

DX(f) = (£.5) + Q{Fmds - (frud)

where P (resp. @) is a second degree polynomial whose coefficients depend only of
the basis U (resp. V).

Let A = (a4j)i j=1,. p be the change-of-basis matrix, that is

(2:2) V= ag1ul + -t agplty, k=1,...,p.

We have
(f!fuk)=a‘kl(fau'l)-i_”'-l-akp(fsup)a kzlv--'ap:
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then
(F01)s oo () = H((frwads- o (Frmph)
where H: R? — R? is polynomial map, with H(ci,...,¢) = (c1,...,¢p)A’.
Therefore
DX(f) = (£, ) + Qo H((f,um),.., (),
whence

P((furhy- s (o)) = Qo H((fyuihy- ., (frus)) , ¥F € L),

Otherwise, V(zlg...,zp) e RP, If = Z?:I zju; € Lg(d,u) siich that 2 = <f, Uj),
j=1,...,p; therefore
Pt iondp) = Qo lan st Mz, .. 2] €RE,

which leads to P=Qo H .
Consider now D2(0, uy,...,u,) and D2(0,v1,...,vp).
We have
D20, u1,...,up) = WO + P(@’Wul,,,,, olf @’Wup,n)

and
DL(O,v1,..., 1) = WO +Q(O Wy, ...,6 W),

where W = diag(Ainh(tin)),_; >

Ukn = (uk(tl.n)a ceey U (tﬂ,ﬂ)),

and !
Vkn = (Uk(tl,n)a cees 'Uk(t'n.,n)) .

According to (2.2), we have also
Vi =0k ok Ghpliny 1 E=1,.00,p
and therefore
OWugrn = ap1®Wuyy + -+ akpe'Wup,n k=11,

that is
(@’W'Ul;n, 1 @’va,n) = H(e’wul,n, e ,@'Wup,n) :

Thus
DA(O,01, .., 0p) = WO + Qo H(OWurz, .., 0Wups)

as @) o H = P, therefore

D'rzl(euvlz TR :'UP)

O'We + P(@’wul,n, e @’Wup,n)
= D3(B,u1,...,up).

The result is proved. i)
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