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In this paper, new renements and improvements of Mitrinovic-Cusa and related inequalities are presented. We prove in particular for 0 < x < π 2 and any n ≥ 5

x 2n

where Pn(x)

(2 k-1)k , B 2k are Bernoulli numbers. We also prove for any n ≥ 5

The analysis results show that our bounds are tighter than previous methods.

Introduction

Inequalities involving trigonometric functions are used in many applications in various elds of mathematics. The method to compare functions to their corresponding Taylor polynomials has been successfully applied to prove and approximate a lot of trigonometric inequalities [START_REF] Malesevic | Extensions of the natural approach to renements and generalizations of some trigonometric inequalities[END_REF].

A method called the natural approach, introduced by Mortici in [START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens inequalities[END_REF], uses the idea of comparing functions to their corresponding Taylor polynomials. This method has been successfully applied to prove and approximate a wide category of trigonometric inequalities.

Let us consider the double inequality 1 (cos x)

1 3 < sin x x < 2 + cos x 3 .
(

) 1 
The left-hand side is known as Adamovic-Mitrinovic inequality (see [START_REF] Mitrinovic | Sur une inegalite elementaire ou interviennent des fonc-tions trigonometriques[END_REF], [START_REF] Mitrinovic | Analytic inequalities[END_REF]), while the right-hand side is known as Cusa inequality. The latter one which was proved by Huygens was used in order to estimate the number π.

In this paper we provide another natural approach by comparing functions with their corresponding Taylor polynomials. This approach is analog to that given by [START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens inequalities[END_REF]. As a corollary, that permits us to extend and sharpen results related to trigonometric inequalities and give generalizations and renements.

In [START_REF] Malesevic | Double-sided Taylor's approximations and their applications in Theory of analytic inequalities[END_REF]Theorem 1 p.4] it was proved for 0 < x < π/2 and every n ∈ IN

2n k=2 A(k)x 2k < cos x - sin x x 3 < 2n+1 k=2 A(k)x 2k ,
where A(k) = 3 2k+3 -32k 3 -96k 2 -88k-27

4(2k+3)!
. An error estimation is also given.

In particular, the following inequalities have been established Notice that these inequalities are ner that provided by Mortici [START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens inequalities[END_REF] : In this paper, we aim to rene some above inequalities and to generalize trigonometric chains.

-

Main results

In [START_REF] Chouikha | New sharp inequalities related to classical trigonometric inequalities[END_REF] we proved for 0 < x < π

2 cos x + x 3 1 - x 2 63 sin x 15 < sin x x 3 < cos x + x 3 sin x 15 .
(

) 2 
We easily derive the following

x 6 15 1 - x 2 63 < (sin x) 2 -x 3 cot x < x 6 15 , - x 8 945 < (sin x) 2 -x 3 cot x - x 6 15 < 0.
In the sequel we provide lower bound of (1) which is ner than (3) and appears to be sharper than many known bounds .

To that end, we will consider a function

f (x) = (sin x) 2 -x 3 cot x - x 6 15 + x 8 945
dened for 0 < x < π/2 and we will provide better estimations.

2.1

Estimation for the function f (x) At rst, consider the following technical lemma which has been proved by [START_REF] Chen | Sharp inequalities related to the Adamovic-Mitrinovic, Cusa, Wilker and Huygens results[END_REF]Lemma 3.1], but the proof we give here is slightly dierent.

Lemma 2-1 For 0 < x < π/2 consider the function

f (x) = (sin x) 2 -x 3 cot x - x 6 15 + x 8 945
then f (x) can be expanded as power series

f (x) = k≥5 a k x 2k , a k = 2 2 k-2 |B 2 k-2 | (2 k -2)! + (-1) k+1 2 2 k-1 (2 k)! = 2 2 k-2 (2 k -2)! |B 2 k-2 | + (-1) k+1 (2 k -1) k ,
where B 2k are the Bernoulli numbers. Moreover, the coecients a k , k ≥ 5 are all positive:

a 5 = 1 2735 , a 6 = 8 467775
, a 7 = 206 91216125 , ...

Proof of Lemma 2-1

The following series expansions can be found in [START_REF] Gradshteyn | Table of Integrals Series and Products[END_REF] or [START_REF] Jerey | Handbook of Mathematical Formulas and Integrals[END_REF] 

cot x = 1 x - ∞ k=1 2 2k | B 2k | (2k)! x 2k-1 , x ∈ (0, π)
and

sin 2 x = ∞ k=1 (-1) k+1 2 2k-1 (2k)! x 2k , x ∈ (0, π 2 ) (sin x) 2 -x 3 cot x = ( 1 15 x 6 - 1 945 x 8 + 1 2835
x 10 + 8 467775

x 12 + 206 91216125

x 14 + 139 638512875

x 16 + 10861 488462349375

x 18 + 438628 194896477400625

x 20 + O x 22 ).

To prove the positivity of the coecients a k we will use the following inequality for Bernoulli numbers established by D'Aniello [START_REF] D'aniello | On some inequalities for the Bernoulli numbers[END_REF]:

2(2k)! π 2k (2 2k -1) <| B 2k |< 2(2k)! π 2k (2 2k -2)
.

For any odd value of k, we have

a k = 2 2 k-2 (2 k -2)! |B 2 k-2 | + (-1) k+1 (2 k -1) k = 2 2 k-2 (2 k -2)! |B 2 k-2 | + 1 (2 k -1) k > 0.
Consider the even case, then

a k = 2 2 k-2 (2 k -2)! |B 2 k-2 | + -1 (2 k -1) k .
By denition of Bernoulli numbers

S n (p) = n-1 k=0 k p = 1 p + 1 p k=0 p+1 k B k n p+1-k .
Then for k even

a k = 2 2 k-2 (2 k -2)! |B 2 k-2 | - 1 (2 k -1) k > 2 2 k-2 (2 k -2)! 2(2k -2)! π 2k-2 (2 2k-2 -2) - 1 (2 k -1) k and a k < 2 2 k-2 (2 k -2)! 2(2k -2)! π 2k-2 (2 2k-2 -1) - 1 (2 k -1) k .
Therefore

2 2 k-2 2(2k-2)! π 2k-2 (2 2k-2 -1) (2 k -2)! + (-1) k+1 2 2 k-1 (2 k)! < a k = 2 2 k-2 |B 2 k-2 | (2 k -2)! + (-1) k+1 2 2 k-1 (2 k)! < 2 2 k-2 2(2k-2)! π 2k-2 (2 2k-2 -2) (2 k -2)! + (-1) k+1 2 2 k-1 (2 k)! . and k≥5 2 2k-1 2π 2k-2 (2 2k-2 -1) + (-1) k+1 2 2k-1 (2 k)! x 2k < f (x).
Thus it implies the left hand of (4) since for any integer n ≥ 5 we have

cos x ≤ cos x + sin x ( x 3 15 - x 5 945 ) + sin x 5≤k≤n a k x 2k-3 ≤ cos x + sin x ( x 3 15 - x 5 945 ) + sin x 5≤k≤∞ a k x 2k-3 = ( sin x x ) 3 .
Notice that

(sin x) 2 -x 3 cot x = (sin x) 2 -x 3 1 x - ∞ k=1 2 2k | B 2k | (2k)! x 2k-1 = (sin x) 2 -x 2 + ∞ k=1 2 2k | B 2k | (2k)! x 2k+2 < (sin x) 2 -x 2 + ∞ k=1 2 2 k+1 x 2 k+2 π 2 k (2 2 k -2) .
In the other hand we know that for k > 1

(2k)! > √ 4πk ( 2k e ) 2k e 1 24k+1 .
It implies

2(2k -2)! π 2k-2 (2 2k-2 -1) - 1 (2 k -1) k > 2 4π(k -1)( 2k-2 e ) 2k-2 e 1 48k-23 π 2k-2 (2 2k-2 -1) - 1 (2 k -1) k > 2 4π(k -1)( 2k-2 πe ) 2k-2 (2 2k-2 -1) - 1 (2 k -1) k > 2 4π(k -1)( 2k-2 πe ) 2k-2 2 2k-2 - 1 (2 k -1) k > 2 4π(k -1)( k -1 πe ) 2k-2 - 1 (2 k -1) k .
Thanks to Maple we may easily verify that the last expression is non negative as soon as k > 6. This means that a k are non negative.

Our rst result Theorem 2-2 motivated us to further rene the Adamovic-Mitrinovic inequality. It permits us to deduce the lower bound of ( sin x x ) 3 which appears to be ner than the corresponding bounds in Statement .

Theorem 2-2 For 0 < x < π 2 for any n ≥ 5 the following inequalities hold

sin x n k=5 a k x 2k-3 ≤ ( sin x x ) 3 -cos x -sin x ( x 3 15 - x 5 945 ) ≤ sin x n-1 k=5 a k x 2k-3 + sin x 2 π 2n - n-1 k=5 a k 2 π 2n-2k x 2n-3 (3) 
where

a k = 2 2 k-2 (2 k -2)! |B 2 k-2 | + (-1) k+1 (2 k -1) k , k ≥ 5
and B 2k are the Bernoulli numbers.

Proof of Theorem 2-2 By Lemma 2-1 the function

f (x) = (sin x) 2 -x 3 cot x - x 6 15 + x 8 945
is positive. We also need the following Lemma which gives a upper and lower bound for the preceding function.

Lemma 2-3 consider the real analytic functions f dened on the interval

[a, b] : f (x) = ∞ k=0 a k (x -a) k
where a k ∈ IR, a k ≥ 0 for all k ∈ IN Then f (x) may be bounded by Taylor's approximation for any n ≥ 1

n k=0 f (k) (a+) k! (x -a) k ≤ f (x) ≤ n k=0 f (k) (a+) k! (x -a) k + 1 (b -a) n R n (b)(x -a) n , where R n (x) = f (x) -n k=0 f (k) (a+) k! (x -a) k .
We may nd an elegant proof of this Lemma in [START_REF] Mitrinovic | Sur une inegalite elementaire ou interviennent des fonc-tions trigonometriques[END_REF]Theorem 4] .

Moreover, if we suppose in addition b) are the best possible constants. This result may also be deduced from [START_REF] Chen | Sharp inequalities related to the Adamovic-Mitrinovic, Cusa, Wilker and Huygens results[END_REF]Theorem 3.2].

f (n) is increasing in [a, b] we easily deduce n k=0 f (k) (a+) k! (x -a) k + f (n) (a+) n! (x -a) n ≤ f (x) ≤ n k=0 f (k) (a+) k! (x -a) k + f (n) (a+) n! (x -a) n + 1 (b -a) n R n (b)(x -a) n . The coecients f (n) (a+) n! and 1 (b-a) n R n (
Applying the preceding to the function f (x) = (sin x) 2 -x 3 cot x = k≥5 a k x 2k we then derive for 0 < x < π/2 and n ≥ 5 the following inequalities

n k≥5 a k x 2k ≤ f (x) ≤ n-1 k≥5 a k x 2k +   2 π 2n - n-1 k≥5 a k 2 π 2n-2k   x 2n
hold. Therefore,

sin x n k≥5 a k x 2k-3 ≤ f (x) sin x x 3 ≤ sin x n-1 k≥5 a k x 2k-3 + sin x   2 π 2n - n-1 k≥5 a k 2 π 2n-2k   x 2n-3 .
This means

sin x n k≥5 a k x 2k-3 ≤ sin x x 3 -cos x - x 3 sin x 15 + x 5 sin x 945 ≤ sin x n-1 k≥5 a k x 2k-3 + sin x   2 π 2n - n-1 k≥5 a k 2 π 2n-2k   x 2n-3 .
This proves the theorem.

Some particular cases of Theorem 2-2 are given below. Let us introduce some examples of the inequalities obtained for n = 5, 6, 7, 8, ....

-Putting n = 5 , we obtain the following

cos x + x 3 1 - x 2 63 + x 4 189 sin x 15 < sin x x 3 < cos x + x 3 1 - x 2 63 sin x 15 + 1024 π 10 x 7 sin x (4) 
Moreover, for 0 < x < π/2 the following inequalities hold

cos x + x 3 1 - x 2 63 + x 4 189 sin x 15 < sin x x 3 . (5) 
-Taking n = 6, one has for 0 < x < π/2 the following inequality -Taking n = 7, one has for 0 < x < π/2 the following inequality

cos x + x 3
cos x + x 3 15 1 - x 2 63 1 - x 2 3 - 8x 4 495 - 206x 6 96525 sin x < (sin x) 3 x 3 < (7) cos x+ x 3 15 1 - x 2 63 1 - x 2 3 - 8x 4 495 sin x+ 16384 π 14 - 16 2835π 4 - 32 5π 2 x 11 sin x.
-Putting n = 8, one has for 0 < x < π/2 the following inequality Etc... Remarks 2-4: Notice that when the degree n of the polynomial increases, the function sin x 5≤k≤n a k x 2k-3 approaches the upper bound

cos x + x 3 15 1 - x 2 63 1 - x 2 3 - 8x 4 495 - 206x 6 96525 - 139x 8 675675 sin x < (sin x) 3 x 3 < (8) cos x + x 3 15 1 - x 2 63 1 - x 2 3 -
( sin x x ) 3 - cos x -x 3 15 + x 5
945 since the coecients a k > 0. In other words, the precision increases with n and allows us to have a good estimate of the error. Indeed, consider the dierence

cos x + x 3 15 1 - x 2 63 1 - x 2 3 + bx 4 sin x - (sin x) 3 x 3
For b = -8 495 we have

cos x + x 3 15 1 - x 2 63 1 - x 2 3 - 8x 4 495 sin x - (sin x) 3 x 3 < - 206x 12 91216125 + 304x 14 1915538625 - 373x 16 78153975900 < 0 For a = 1 3 , b = -8
495 and c = -206 96525 we get

cos x + x 3 15 1 - x 2 63 1 - x 2 3 + bx 4 + cx 6 sin x - (sin x) 3 x 3 < - 139x 14 638512875 + 13723x 16 976924698750 - 559483x 18 1559171819205000 < 0 For a = 1 3 , b = -8 495 , c = -206 96525 , d = -139
675675 we get

cos x+ x 3 15 1 - x 2 63 1 - x 2 3 - 8x 4 495 - 206x 6 96525 - 139x 8 675675 + dx 10 sin x- (sin x) 3 x 3 < - 10861x 16 488462349375 + 567257x 18 389792954801250 - 13763x 20 359808881355000 < 0 2.2
Another estimation for f (x) The following result provided new bounds for the function f (x) = (sin x) 2 -x 3 cot x. It was proved in [START_REF] Chen | Sharp inequalities related to the Adamovic-Mitrinovic, Cusa, Wilker and Huygens results[END_REF]Theorem 3.3,p.11] Lemma 2-5 For 0 < x < π/2 and n ≥ 0 the following inequalities hold

(sin x) n k=0 b k+2 x 2k+5 < (sin x) 2 -x 3 cot x < (sin x) n-1 k=0 b k+2 x 2k+5 + 2 π 2n+5 - n-1 k=0 b k+2 2 π 2n-2k x 2n+3 sin x where b k = 2(2k -1)(2k + 1)(2 2k-1 -1) | B 2k | +(-1) k (2k + 1)! .
Moreover, all the coecients b k are non negative for k ≥ 2.

Let f (x) = (sin x) 2 -x 3 cot x then following [START_REF] Chen | Sharp inequalities related to the Adamovic-Mitrinovic, Cusa, Wilker and Huygens results[END_REF] one has the expansion

f (x) = 1 15 + 19x 2 1890 + 167x 4 113400 + 479x 6 2494800 + ... x 5 sin x.
Here is a slight improvement of this Lemma which will be useful to rene the bounds of inequalities.

Lemma 2-6 For 0 < x < π/2 and n ≥ 0 the following inequalities hold

(sinx) n k=0 b k+2 x 2k+5 - x 5 15 - x 7 945 1 + ∞ k=1 2 2 2 k-1 -1 |B 2k | x 2 k (2 k)! < (sin x) 2 -x 3 cot x- x 5 15 + x 7 945 < (sinx) n-1 k=0 b k+2 x 2k+1 - x 6 15 - x 8 945 1 + ∞ k=1 2 2 2 k-1 -1 |B 2k | x 2 k (2 k)! + 2 π 2n+5 - n-1 k=1 2 π 2n-2k x 2n+3 sin x where b k = 2(2k -1)(2k + 1)(2 2k-1 -1) | B 2k | +(-1) k (2k + 1)! .
Moreover, all the coecients b k are non negative for k ≥ 2.

Indeed, since [9,p.145]

1 sin x = 1 x + ∞ k=1 2 2 2 k-1 -1 |B 2k | x 2 k-1 (2 k)!
this Lemma may be deduced from Lemma 1.5 in writing

- x 6 15 + x 8 945 = (sin x)(- x 6 15 + x 8 945 ) 1 x + ∞ k=1 2 2 2 k-1 -1 |B 2k | x 2 k-1 (2 k)! = (sin x)(- x 5 15 + x 7 945 ) 1 + ∞ k=1 2 2 2 k-1 -1 |B 2k | x 2k (2 k)!
Now, we will proceed as above, we will use Taylor's approximation for this function to provide bounds for sin x x 3 -cos x. By Lemma 1-5 we derive Theorem 2-7 For 0 < x < π/2 the following inequalities hold

(sinx) 2 n k=0 b k+2 x 2k+2 < (sin x) 3 x 3 -cos x < (sin x) 2 n-1 k=0 b k+2 x 2k+2 + 2 π 2n+5 - n-1 k=0 b k+2 2 π 2n-2k x 2n+2 (sin x) 2 where b k = 2(2k -1)(2k + 1)(2 2k-1 -1) | B 2k | +(-1) k (2k + 1)! , B 2k 
are the Bernoulli numbers. By using inequalities involving several means, Neuman [START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities[END_REF] presented the following inequality chain generalizing the Adamovic-Mitrinovic inequality :

sin x x 3 > cos x. (9) 
For x ∈ (0, π 2 ) one has

(cos(x)) 1/3 < cos(x) sin(x) x 1/4 < sin(x) arctan(sin(x)) 1/2 < (10) 1 2 (cos(x) + sin(x) 2x ) 1/2 < 1 + 2 cos(x) 3 
1/2 < 1 + cos(x) 2 2/3 < sin(x) x .
Thus the left inequality of ( 1) is improved. Notice that Yang [17] proved that for 0 < x < π 2 ,

sin(x) x < 2 3 cos( x 2 ) + 1 3 2 < (cos( x 3 )) 3 < 2 + cos(x) 3 (11) 
which improves the right inequality of (1). We are interested in last inequality of the chain (9) for x ∈ (0, π 2 )

1 + cos(x) 2 2/3 < sin(x) x ⇔ 1 + cos(x) 2 2 < sin(x) x 3 .
Theorem 1-2 asserts that for any n ≥ 5

sin x n k=5 a k x 2k-3 ≤ ( sin x x ) 3 -cos x -sin x ( x 3 15 - x 5 945 ) ≤ sin x n-1 k=5 a k x 2k-3 + sin x 2 π 2n - n-1 k=5 a k 2 π 2n-2k x 2n-3 ,
where

a k = 2 2 k-2 (2 k -2)! |B 2 k-2 | + (-1) k+1 (2 k -1) k , k ≥ 5
and B 2k are the Bernoulli numbers. Then by Theorem 1-2

sin x n k=5 a k x 2k-3 + cos x + sin x ( x 3 15 - x 5 945 ) ≤ ( sin x x ) 3 ,
where

a k = 2 2 k-2 (2 k -2)! |B 2 k-2 | + (-1) k+1 (2 k -1) k , k ≥ 5
and B 2k are the Bernoulli numbers. The function

u(x) = 1 + cos(x) 2 2 -cos x -sin x x 3 15 - x 5 945
has no constant sign. Indeed,

u( π 2 ) = 1 4 -( π 3 120 ) 1 -( π 2 252 ) ≈ 0.00174, u( π 4 ) = 1 2 + ( √ 2 4 ) 2 -( √ 2 2 ) -(π 3 √ 2 1920 ) 1 -( π 2 1008 ) ≈ -0.001164.
However, we obtains the following which is an improvement of the chain ( 9)

Theorem 3-1 For x ∈ (0, π

2 ) the following inequalities hold

1 + cos x 2 2 < cos x + sin x ( x 3 15 - x 5 945 + x 7 2835 ) < sin x x 3 ,
Proof of Theorem 3-1 The right hand of the inequalities are deduced from Theorem 2-2. Let us consider expansions trigonometric functions with power series, [START_REF] Gradshteyn | Table of Integrals Series and Products[END_REF], [START_REF] Jerey | Handbook of Mathematical Formulas and Integrals[END_REF]. We will use the Taylor expansions of sin x, cos x

sin x = x - x 3 3! + x 5 5! - x 7 7! + .... + (-1) k-1 x 2k-1 (2k -1)! + (-1) k sin θx (2k + 1)! x 2k+1 cos x = 1 - x 2 2! + x 4 4! - x 6 6! + .... + (-1) k x 2k (2k)! + (-1) k+1 cos θx (2k)! x 2k
where 0 < θ < 1. It is easy to remark that

x -

x 3 3! + x 5 5! - x 7 7! < sin x < x - x 3 3! + x 5 5! - x 7 7! + x 9 9! 1 - x 2 2! + x 4 4! - x 6 6! < cos x < 1 - x 2 2! + x 4 4! - x 6 6! + x 8 8! . for 0 < x < π 2 .
The left hand of the theorem can be majored for x ∈ (0, Corollary 3-2 For x ∈ (0, π

2 ) and n ≥ 5 the following inequalities hold

1 + cos x 2 2 < cos x + sin x ( x 3 15 - x 5 945 + n k=5 a k x 2k-3 ) < sin x x 3 .
where

a k = 2 2 k-2 (2 k -2)! |B 2 k-2 | + (-1) k+1 (2 k -1) k , k ≥ 5
and B 2k are the Bernoulli numbers.

Indeed, by induction on n we derive

sin x ( x 3 15 - x 5 945 + p k=5 a k x 2k-3 ) < sin x ( x 3 15 - x 5 945 + p+1 k=5 a k x 2k-3 )
since the coecient a p+1 > 0 which implies the corollary.

Bounds of Adamovic-Mitrinovic inequalities

By Theorem 2-2 we are able to improve the left hand inequality (3). Indeed, one has the following

cos x - sin x x 3 < -sin x P n (x) < - x 3 15 1 - x 2 63 sin (x) = -sin xP 5 (x)
where P n (x), n ≥ 5 is the n-polynomial

P n (x) = 5≤k≤n a k x 2k-2 = 5≤k≤n ( 2 2k-2 (2k -2)! (-1) k+1 (k) (2 k -1) + | B 2k | x 2k-2 .
Turn to the Statement. In [8, Theorem 1] the authors proved for 0 < x < π/2

- x 4 15 + 23x 6 1890 - 41x 8 37800 < cos x - sin x x 3 < - x 4 15 + 23x 6 1890 - 41x 8 37800 + 53x 10 831600
The authors used the following frame

2n k=2 (-1) k A(k)x 2k < cos x - sin x x 3 < 2n+1 k=2 (-1) k A(k)x 2k ,
where

A(k) = 3 2k+3 -32k 3 -96k 2 -88k-27 4(2k+3)! . 4.1

Examples

By increasing the degree n of P n (x) in Theorem 2-2 , one can improve the precision so that the bounds obtained are sometime better than the one provided by [START_REF] Malesevic | Extensions of the natural approach to renements and generalizations of some trigonometric inequalities[END_REF].

In this case, taking n = 7 is enough to prove right hand of Statement (i)

P 7 (x) = x 3 15 1 - x 2 63 + x 4 189 + 8x 6 31185 sin x.
recall that we have for x ∈ (0, π/2)

x -

x 3 6 + x 5 120 - x 7 5040 < sin x < x - x 3 6 + x 5 120 - x 7 5040 + x 9 362880 .
Then we obtain thanks to Maple It is easy to see that the last expression is non negative for 0 < x < π/2. Then for x ∈ (0, π/2) the following inequalities hold Thus, for the left hand our estimate appears to be ner than that provided by Statement (i) [START_REF] Malesevic | Extensions of the natural approach to renements and generalizations of some trigonometric inequalities[END_REF]. However, for the right hand one has the following and for this case the right hand of our estimate appears to be ner than that provided by Statement (ii) [START_REF] Malesevic | Extensions of the natural approach to renements and generalizations of some trigonometric inequalities[END_REF]. By the same way one proves Statement (iii) That means for 0 < x < π/2 we rene Statement 1 (iii) and the following hold 

cos x - sin x x 3 < - x 3 15 sin x 1 - x 2 63 1 - x 2 3 - 8x 4 

Other renements

We may prove the following frame which also improves the one of Mortici 

(sin x] 2 < x 2 - x 4 3 + 2x 6 45 - x 8 315 + ... = 2n+1 1 (-1) k+1 2 2k+1 x 2k (2k)! .
For the right hand of the inequality, Theorem 2-7 implies

(sin x) 3 x 3 -cos x < (sinx) 2 n-1 k=0 b k+2 x 2k+2 + 2 π 2n+5 - n-1 k=0 b k+2 2 π 2n-2k x 2n+2 < (x 2 - x 4 3 + 2x 6 45 -...) n-1 k=0 b k+2 x 2k-2 + 2 π 2n+5 - n-1 k=0 b k+2 2 π 2n-2k x 2n+2 .
Putting n = 2 one gets thanks to Maple (sin x) That means our bounds are ner than Statement (i).

Putting n = 6 one gets (sin x) x 16 -80489729 2100778872192000

x 18 + 148949261 17685128260800000

x 20 -73252620769 98789126464828800000

x 22 > 0.

That means this bound is ner than Statement (iii).

Concluding remarks

More generally, all the examples derived from Theorems 2-2 and 2-7, naturally suggest that we may expect that the following inequalities hold or at least for some values of n cos x -sin x x We may also expect (following Theorem 2-7) that hold.

10

 10 

( 2 k

 2 -1) k , A(k) = 3 2k+3 -32k 3 -96k 2 -88k -27 4(2k + 3)! .

(sin x) 3 x 3 -x(- 1 )

 31 cos x < (sinx) 2 2n (sin x) 2 < -2n k=2 k A(k)x 2k

  then use in Theorem 1-2 the polynomial P n (x) with a degree of order n = 9 to get a better estimate. Using Maple consider

			-	x 4 15	+	23x 6 1890	-		41x 8 37800	+	53x 10 831600	-	74677x 12 27243216000	+	989x 14 10897286400	<
	(sin x) -	x 3 15	+	x 5 945	-	x 7 2835	-	8x 9 467775	-	206x 11 91216125	-	139x 13 42567525	< cos x-	sin x x	3	.
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	By the same way we may improve another bound of [8] : for 0 < x < π/2
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							x 3 15		x -	x 3 6	+	x 5 120	-	x 7 5040	1 -	x 2 63	1 -	x 2 3	-	8x 4 495	-	206x 6 96525	-
										x 4 15	+	23x 6 1890	-	41x 8 37800	+	53x 10 831600	-	74677x 12 27243216000	+	989x 14 10897286400	=
	-	x 12 5443200	-	14929x 14 70053984000	+	197x 16 12770257500	-	103x 18 229864635000	= -	x 12 1351350 + 1567545 x 2 -113472 x 4 + 3296 x 6 7355668320000	> 0.

must