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Budapest University of Technology and Economies* and University of Stuttgart!
Abstract: In this paper we introduce a nearest neighbor based estimate of the
prédiction interval with prescribed conditional coverage probability and with
small length. In the spécial case, when there is no feature vector, the problem is
the estimate of a confidence interval. For confidence interval estimate, we show
the distribution-free strong consistency of the conditional coverage probability
and of excess length of the interval, while the conditional coverage probability
of prédiction interval has the distribution-free strong consistency property and
under weak conditions on the underlying distributions strong consistency and
the fast rate of convergence of the excess length are shown. As a conséquence,
we construct a confidence set estimate for classification.

1. Introduction

Consider a training data set

(1.1) D„ = {(X1,Yi),...,(Xn,yn)},

and a test point (Xn+i, 1^+1), with the training and test data ail drawn i.i.d. front
the same distribution. Here each Xi E is a feature vector, while b E 1 is a

response variable. The problem of prédictive inference is the following: if we observe
the n training data points £>n, and are given the feature vector Xn+\ for a new
test data point, we would like construct a prédiction interval Cn(x) = Cn(T>n,x)
for Yn+1 such that we believe Cn{Xn+\) is likely to contain the test point’s true
response value Yn+1-

We are interested in the conditional coverage probability

(1-2) PjYn+i G Cn(Xn+1) | Vn,Xn+\ = x}

and in the length of the interval Cn(x). Most of the related literature study the
(unconditional) coverage probability

P{V„+1 e Cn(Xn+1)},

while Vovk [16] considers the conditional coverage probability

P{F„+i S C„(Xn+i) j D„}
*Corresponding author
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and Barber et al. [1] investigate the conditional coverage probability

p{r„+1 e cn(xn+l) | Xn-{-l — 2)}-

If there is no feature vector Xi, then the problem is reduced to the estimation of
confidence interval.

In this paper we consider three set estimation problems:
• confidence interval of given conditional coverage probability and of small length,
• prédiction interval of given conditional coverage probability (1.2) and of small

length,
• confidence set for classification with given conditional coverage probability

(1.2) and with small size.
Such estimâtes can be derived from the estimâtes of quantiles or conditional

quantiles. For example, concerning the confidence interval one may search for the
shortest interval with prescribed empirical distribution. In the sequel we modify
this principle such that choose the shortest interval with a bit smaller empirical
distribution. It turns out that these interval estimation problems are easier than the
corresponding point estimation, which means that the rate of convergence of the
length of the interval is super-polynomial.

Lei et al. [12], Papadopoulos et al. [14], Romano, Patterson and Candés [15],
Vovk [16], studied estimâtes of prédiction intervals. These authors discuss and in-
vestigate various concepts on the basis of independent and identically distributed
or exchangeable samples. Concerning an overview on the validity and on efficiency,
especially a négative resuit for the non-asymptotic situation see Vovk [16] and Bar-
ber et al. [1]. Lei and Wasserman [11] and Lei, Robins and Wasserman [13] contain
results on batch mode prédiction, while Vovk [16] and Lei et al. [12] are on online
(or sequential) prédiction.

Usually, the authors use a prédiction set around a point prédiction of V, espe-

cially intervals are considered, which are symmetric around a régression function
estimate, showing the consistency of the coverage probability, also refining the pro-
cedures under computational aspects (see Papadopoulos et al. [14]). Here we show
the consistency of the conditional coverage probability and investigate the rate of
convergence for the excess of the estimated prédiction (confidence) interval length
with respect to the minimal prédiction (confidence) interval length.

2. Estimate the confidence interval

In this setup there is no feature vector. For the random variable V, introduce the
distribution function

F(y) := P{Y < y}.
If 0 < p < 1, then the set of possible quantiles is an interval Q such that

[QpJowi Qp,up) G Q G [Qp,lowi Qp,up\i
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where

Qp,uP ■■= F~p{p) := sup y
y£M.:F(y)<p

is the upper quantile, and

Qp,iow Fiow (p) min y
y6R:F(y)>p

dénotés the lower quantile. In general, the quantile is not unique. The quantile is
unique, if

Qp,low ~ Qp,up■

Concerning a confidence interval

C = [flo, fhi],

we need that for the coverage probability

F{Y eC}>l- a,

where 0 < a < 1 is fixed, and the size of the interval

^ :== fhi flo

is as small as possible.
If the lower and upper quantiles are known, then the optimal confidence interval

can be constructed as follows: Put

D(P) ■= Frol(P + 1 - a) ~ Füp(p),

(0 < p < a) and

Then

and

p* := argminD(p).
0 <p<a

A* min D (p) = D(p*),
0 <p<a

IL = ipF'.

/w = f^(P* + !-«)■
For the sake of simplicity, throughout the paper we assume that the arg min exists.
In the general case, p* can be defined such that D(p*) < info<p<aD(p) + 1/n2,
where n is the sample size.

If the lower and upper quantiles are unknown, then assume, that we observed
data {Yi,..., Yn} consisting of independent and identically distributed copies of Y.
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Let

A fa) —

i=1

be the empirical distribution function, where I dénotés the indicator function, while

0 < p < 1F-1
n,low (p) := min y,

yER:Fn(y)>p

and

Aiipfa) := SUP y. 0 < p < 1
y€M:F„(j/)<p

are the corresponding quantile function estimâtes. From these estimâtes one may
dérivé the plug-in estimate of the optimal confidence interval. Put

Alfa) := Fn,îow(P + 1 ~ a - lnn/y/n) - Fn^p(p + lnn/y/n)
(0 < p < a) and

Then

pn := argminDn(p).
0<p<a

An — Ai fan) î

fn,lo = F~lp{pn + ln n/y/n)
and

fn.hi = F/ljPn + !-<*- ln n/y/Ü).
The main point here is that we underestimate the optimal confidence interval re-

sulting in distribution-free consistency.
Lei, Robins and Wasserman [13] studied the extension of our problem, when

Y is d! dimensional and the afin was to approximate the confidence set of minimal
Lebesque measure. They assumed a smooth density of Y, and from the kernel density
estimate they derived a confidence set estimate. For Lipschitz continuous density and
for the expected Lebesgue measure of the symmetric différence of the optimal and
estimated confidence set they got a rate of convergence O (lnn/nlFd'+2^, which is
O (ln n/n1/3), for d' — 1. Here we do not assume a density and construct a confidence
interval instead of a confidence set such that the tail of the excess of the estimated

confidence interval length with respect to the minimal confidence interval has the
rate of convergence O (l/n21nn).

Put

Ai = \fn,loi fn,hi] •

The following theorem is on the tail distribution of the conditional coverage proba-
bility P{Fn+i G Cn \ Yf,..., Yn} and of the excess length (An — A*)+:
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Theorem 2.1. For any distribution ofY and £ > 0,

P{|P{F„+1 € cn I Yi,...,Ynj - (1 - a)| > 4
(2-1) < 8(n + l)e n£ Z128 + \nn/^>£/^
and

(2.2) P{An - A* > 0} < 2/n2lnn.
The proof of this theorem is in the last section. (2.1) implies that

(2.3) lim P{yn+1 € C„ | Yu..., Yn} = 1 - a
71-» OO

a.s. and

(2.4) E {|P{Fn+1 € C„ | Yi,..., Yn} - (1 - a)j} = O (ln n/y/n).
Furthermore, because of

OO OO

^>{An - A* > 0} < ^ 2/n21nn < oo,
77“ 1 77=1

the Borel-Cantelli lemma implies the strong distribution-free consistency of the ex-
cess length:

lim [An — A*]+ = 0

3. Conformai prédiction

Introduce the conditional distribution function

F(y | x) := P{F < y \ X = x}

and the corresponding lower and upper conditional quantile functions are defined
by

Qp,iowix) Fx^w(p) '■ min y.
yER:F(y\x)>p

and

qP,uP{x) := Fx>lp(p) := sup y,
y£R:F(y\x)<p

respectively.
The conformai prédiction is an interval

C{x) = [fio(x)Jhi(x)].
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Concerning a prédiction interval C(x), we need that for the conditional coverage

probability (called also conditional validity in [11] and in [16])

(3.1) P{Y G C(X) | X = x} > 1 - a,

where 0 < a < 1 is fixed, and the length of the interval

A(z) := fhi(x) - fi0{x)

is as small as possible (efficiency, compare [11] and [16]).
An extension of our problem can be found in Lei et al. [12] (with a generalization

to multi-dimensional Y in Lei and Wasserman [11]) such that C(x) is an arbitrary
(measurable) set, and under (3.1) the aim is to minimize A(C(x)), where A stands
for the Lebesgue measure. From a kernel density estimate they derived a consistent
estimate of the optimal prédiction set, and for Lipschitz continuons conditional
density showed the rate of convergence of order O (lnn/nlFd+3^. Our setup is much
simpler such that there is no need to assume the existence of the density of (X, Y).
Here, we do not assume a density of (X, Y). Interestingly, under mild conditions,
especially Lipschitz continuity of the function F (y | •), we get a super-polynomial
rate O (l/n21nn) in the case of prédiction interval, instead of a prédiction set.

If the conditional distribution function and the conditional quantile functions are

known, then the optimal prédiction interval can be constructed. Put

D(P) := Fxjow(P + 1 - a) “ FX,1P(P)>
(0 < p < a) and

P* -=p*(x) := argminI7(p).
0<p<a

Then

A*(z) = min D(p) — D(p*),
p<a

fîo(x) = Fpuv¥)
and

fUx) = F~L (?* + !-«)'
If the conditional distribution function and the conditional quantile function are

unknown, then assume, that we observed data (1.1). The obvious way is to estimate
the conditional distribution function and the conditional quantile function. Allowing
additional measurement errors, Hansmann and Kohler [10] studied local averaging
régression based, in detail kernel régression based, conditional quantile function
estimâtes. Here we introduce a k-nearest-neighbor (k-NN) estimate, which is easier
to analyze. For a fixed x G Rd, reorder the data (Xi, Yi),..., (Xn, Yn) according to
increasing values of ||Xj — x||. The reordered data sequence is denoted by

(^-"(n,!)^)? F(n,!){%))i • • • •> (-^(n,n) F{n,n) (*^))-
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X(n,k){x) is the k-th nearest neighbor of x. The tie breaking is done by randomiza-
tion. If the distribution of feature vector X is denoted by /i, then for the sake of
simplicity, we assume that y lias a density, therefore tie happens with probability 0.

The k-NN estimate of the conditional distribution function is defined by

Fk,n{y I x)
1

k

k

i—1

while

and

F~x
x,k,n,low (P) '■ = min y,

y£R:Fk:ri(y\x)>p

F~l (v)x,k,n,up^" > sup y,
y£R:Fk,n{y\x)<P

0 < p < 1

0 < p < 1

are the corresponding conditional quantile function estimâtes. From these estimâtes
one may dérivé the plug-in estimate of the optimal prédiction interval. Put

Fn{p) ■— Fx k n iow(p F 1 a tk,n) Fx^k^up(p + tk,n)
(0 < p < a) with

tk,n := lnn(l/\/X + (k/n)l/d),
and

Pn := Pn{x) ■= argminDn(p).
0<p<a

Then

Xn{F) — Fn^Pn),

fk,n,lo{x) = Fx^^nup(pn + tk,n)
and

fk,n,hi(x) ~ Fx k^n iow{Pn + 1 —OL — tk,n)-
This estimate has a simple interprétation. If yi < • • • < y*, dénotés the ordered

samples of T(nii)(æ),..., Y^k)(x): then

For

y9(n) = argrnin [Fxx^low(i/k + 1 -a- 24,n) - y*]
yi',i/k<a

= argmin[yLfc(i/fc+1_a_2tfe n)j - y,]
; i<ka

= argmin[yp+A.(1_a_2ifc n)j - yj,
yi',i<ka
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we hâve that

and

Put

fk,n,lo{%) yg(n)+[ktk^n J

fk,n,hi{%) yg(n)+[k(l—a)—•

Ck,n{?t) — \fk,n,lo{x\ fk,n,hi{^)\-

The next theorem is on the strong universal consistency of the conditional cover-

âge probability and on the rate of convergence under some smoothness condition. In
order to hâve non-trivial rate of convergence of the conditional coverage probability,
one has to assume tail and smoothness conditions, otherwise the rate of convergence
can be arbitrarily slow, see Chapter 3 in [9]. For most of the related results, the
feature vector X is assumed to be bounded, which excludes the classical paramet-
rie problem, where the conditional distributions of X given Y are multidimensional
Gaussian distributions. Next, we introduce a mild combined tail and smoothness
condition, under which we get fast rate of convergence.

Définition 3.1. For each y, the function F (y | •) satisfies the modified Lipschitz
condition, if there is a constant C* such that for any y G R and x, z G Rd

(3-2) \F{y | x) - F(y \ z)\ < ^y(SXÂX_4Y'd,
where Sx^r dénotés the sphere centered at x and having the radius r (cf [3], [8]).

If the density / of p is continuons, then the right hand side of (3.2) is approx-

imately equal to C* f(x)l/d\\x — z\\. For d — 1, the standard exponential distribu-
tion is an example, where the right hand side of (3.2) is approximately equal to
C*e~x max{x -z,z — x}. Interestingly, one can show densities for modified Lipschitz
condition, where E{||X||} = oo, for example, f is the Cauchy density.
Theorem 3.1. Assume that p has a density. If k = kn such that kn/(lnn)2 oo
and (ln n)dkn/n —> 0, then for any distribution of (X, Y),

(3.3) lim P{Tn+i G Ck n{Xn+i) | T>n,Xn+1 = x} = 1 - a
n-> oo

a.s. for p-almost-all x. If, in addition, for each y, the function F (y | •) satisfies the
modified Lipschitz condition, then for any fixed x,

E{|P{Tn+i € Ckn,n(Xn+1) | Vn,Xn+l — x} — (1 — a)|}
= O fin n/y/k^j + O fin n{kn/n)1^d'\ .(3.4)
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For the choice

(3.5) kn — [const ■ n2/^+2)j,
the rate (3.4) is of order

(3.6)

Under mild condition, the following theorem states strong consistency and the
rate of convergence of the excess length [An(:r) — A*(x)]+:
Theorem 3.2. Assume that fi has a density and kn/(\nn)2 —>■ oo and (lnn)dkn/n —>
0.

(i) If either the conditional quantités at p* and at p* + 1 — a are unique,
or the function F (y | •) satisfies the modified Lipschitz condition, then

lim [An(x) — A*(æ)]+ = 0(3.7)

a.s. for p-almost-all x.

(ii) Under the modified Lipschitz condition we hâve that

(3.8) P{An(æ) - A*(x) > 0} < 2n~21nn + 2e~3kn/uî^>2C*.
We get that linn>2C* = 1, if tï, is large enough. Thus, the choice (3.5) and (3.8)

imply the super-polynomial rate of convergence:

P{An(x) - A*(x) > 0} < 2n~21nn + 2e~3kn/u = 0(l/n21nn).
It is an open problem whether (3.7) is satisfied without assuming anything on the

conditional distribution function, or whether there is an estimate of the optimal
prédiction interval with distribution-free consistency of the excess length of the
prédiction interval.

4. Estimate the confidence set for classification

The previous results hâve some conséquences in classification. For the classification,
the label Y takes values in the finite set {1,...,^} and the Bayes decision g*
minimizes the error probability:

g* (x) = arg max Pj (x)
j

where

Pj(x) = r{Y =j\X = x}, j = 1,... ,K.
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A possibility for improving the confidence of the classification is the Bayes decision
with rejection option, which means that for small values of maXj Pj(x) one does not
make any decision, see Problem 2.5 in [7].

Another possibility is, that instead of deciding on a single label, we give a list of
labels. Such list is called confidence set for classification. The problem is to construct
a confidence set Cn(x) = Cn(Vn,x) such that for the conditional coverage probability

P{y G C{X) \X = x}>l-a,

where 0 < a < 1 is fixed, and the cardinality \C(x)\ of the set C(x) is as small as
possible. (Cf. [4] and [5].)

If the a posteriori probabilities Pj(x), j = 1,..., K are known, then the optimal
confidence set can be constructed. Let Pn^(x) > ••• > P1km(x) be the ordered
values of P\(x),..., Pk(x). Define L*(x) by the inequalities

L*(x) L*(x)~ 1

^ ^ y 1 — CK > ^ ^ Pij(x){x)•
3=1 j-1

Then, the optimal confidence set is

C*(x) = {h(x),...,iL*(x)(x)}.
If the a posteriori probabilities Pj(x) are unknown, then an approximation of Pj is

denoted by Pj, j = 1,..., 77, from which the corresponding plug-in confidence set is
as follows: Let P'^^x) > • • • > P~iK(x\(x) be the ordered values of Pi(x),..., Pk{x)-
Define L{x) by the inequalities

L(x) L{x)—1

É T(x)W
j-1 3=1

with a t > 0. Then, the plug-in confidence set is

C(x) = {ii(x),...,ïL(x)(a;)}.
In this way we underestimate the optimal confidence set.

Choose an integer k less than n, then the fc-nearest-neighbor estimate of Pj is

1 k
i= 1

As before, from these estimâtes we dérivé the plug-in confidence set Cn(x) such that
Cn and Pnj correspond to C and Pj, respectively. Furthermore,

t = tk,n := lnn(l/\/fc + (k/n)l^d).
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Theorem 4.1. Assume that p has a density. If k — kn such that kn/(\nn)2 —> oo
and (lnn)dkn/n —> 0, then for any distribution of (X, Y),

(4.2) liminf P{yn+i G Cn(Xn+1) | Vn,Xn+i = x} > l - a
n—>oo

a.s. for p-almost-all x. If, in addition, the modified Lipschitz condition is satisfied,
then for any fixed x,

E{((1 - a) - ¥{Yn+i s Cn(Xn+1) | Vn,Xn+l = 3;})+}
(4.3) = 0 (inn/y/k^j + O (hm(fcn/n)1//c^ .

Theorem 4.2. Assume that fi has a density and kn/(\nn)2 -» oo and (ln n)dkn/n —>
0. Under the modified Lipschitz condition we hâve that

(4.4) f{\Cn(x)\ - \C*{x)\ > 0} < 2n“21nn + 2e“3A:"/141Ilnn>2C*.

5. Proofs

Proof Theorem 2.1. We hâve that

P{y„+1 e Cn I Yi,... ,Yn} = F(fnM) - F

and

|[n/n.M)--F’(/»,io)]-(l-a)|
< I [F{fn,hi) - Fifnjo)} - (1 - a - 2 ln n/y/n) | + 2 ln n/y/n
= | \F(f„M) - F(fni0)] - [Fn(fnM) - F„(/„,,0)]| + 2 ln n/\Æ
< 2sup |F(y) - Fn(y)| + 2lnn/y/n.

y

Thus, Theorem 12.4 in Devroye, Gyorfi and Lugosi [7] implies that

< P{2sup IF{y) - Fn(y) \ > s/2} + l2inn/^>£/2
y

< 8(n + l)e-n£ /128 + Iinn/^e/4-

Furthermore,

A„ - A* = Dn(pn) - D{p*)
< D„(p‘) - £>(î>*)
< (^(P*) “ F/lpip* + lnn/v/n)) +

+ (KdowiP* Fl-a- ln n/y/n) - F^{p* + 1 - a))+.(5.1)
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One lias

HFûp(P*) ~ Fn,uP(p* + ln n/y/n) > 0}
<P{Fn(F-1(p*))>J)* + lnn/v,S}
= P{-F’n(Fup1(p*)) - F(F~p\pt)) > lnn/v^}.

The Hoeffding inequality implies that

PKpV) - ^(P* + lnn/v/S) > 0} < e-2»dn»/VS)2 = l/n2i»».
Similarly, we get that

HKL(p* + 1 - « - ln«/VS) - i£,(p‘ + 1 - a) > 0} < 1/n21”".
□

Proof of Theorem 3.1. One lias that

P{yn+1 G Ck,n{Xn+1) | Vn,Xn+1 = x} = F(fk^hi(x) | x) - F(fk,nJ0{x) I x).

Devroye [6] proved that kn/\nn —> oo and kn/n -* 0 imply that

(5-2) | F (y | x) - Fknin(y | x) | -G 0
a.s. for ail y and for /r-almost ail x, from which we get

(5.3) sup\F(y | x) - Ffcn,n(y | x)\-> 0
y

a.s. for /z-almost ail x: where we used the argument of the standard proof of Glivenko-
Cantelli theorem showing that the pointwise convergence of empirical distribution
functions implies the uniform convergence. We hâve that

\[F{fk,n,hi(x) | x) - F(fk^io(x) | x)] - (1 - a)|
— \[F(fk,n,hi{x) | x) — F(fk)n>i0(x) | æ)] (1 — Cl — 2t/jjn)| T 2tkjU
= | [F{fk,n,hi(x) I x) “ F{fk,n,lo{x) | z)]

— [Fk^n{fk,n,hi{x) | x') Tfc,n(/fc,n,/o(^') | *^)] | T 2tk,n
(5.4) < 2 sup | F {y \ x) - Fk,n{y \ x)\ + 2tk,n.

y

Under the conditions of the theorem

tknin ^ 0*

Therefore (5.3) and (5.4) imply (3.3). Because of (5.4), (3.4) is proved if

(5.5) E sup IF (y
. y

Fk,n(y I æ)l| = O (ln k/VJej +0 ((/c/n)1/c^
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Put
k

Fk,n{y Ix) =^{FkAv Ix) I Xi,...,xn} = j:J2F(y\ X(n$(x)).
i—1

Concerning (5.5), we show that

(5.6) E jsup \Fk,n{y I x) — Fk,n{y I æ)l| = O (lnk/Vk^j
and

(5.7) E jsup |Fjfe>n(y | x) - F (y | æ)| j =0 ((k/n)1/d) .

Proof of (5.6): We hâve

E sup IFk,n{y | x) - Fk,n{y | x
l y
i

= E |e |sup \Fk,n(y | x) ~ Fk,n{y I x)\ I Xi,...,Xr<
E<! I P|sup|Ffc!Tl(y I x) -Fk,n(y I x)l ^ s I Xh...,Xr

Conditioning with respect to Xi,...,Xn we note that Fk,n{y I x) is an arithmetic
mean of independent {0,1} valued random variables. Although these random vari-
ables are not identically distributed, we can extend the proof of Theorem 12.4 in
Devroye, Gyôrfi and Lugosi [7], which is a sharpened version of the Glivenko-Cantelli
theorem. Thus, we obtain that

sup \Fk,n(y I x) -Fk,n(y | æ)| > s | Xh...,Xn f- < 2(k -f l)e‘
y

-fcs2/32

0 < s < 1, which implies

E |sup \Fk,n{y I x) ~ Fk,n(y I x)l| < min{l,2(fc+l)e_fcs2/32}ds
< £ + 2{k + 1) J e~ks2F2ds
<e + 2(k + l)FÏ T

Vk Jke2/32

<£ + 6le~^/^
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which yields (5.6) by the choice e = ln k/y/k.
Proof of (5.7): The modified Lipschitz condition (3.2) implies that for each y,

1 ^
IFk,n{y Ix) - F(y I ^)l < i I - F(y I Æ)lK

i= 1

i=1

— F y(Fx,\\x-X(ntk)(x)\\) ^ ■

For i.i.d. uniformly distributed Ui,...,Un, let £7(i,n), • • •, £7(n,n) dénoté the corre-
sponding order statistic. If y has a density, then from Section 1.2 in Biau and
Devroye [2] we hâve that

(^•8) /i('Sæ,||:r-X(n!fc)(a:)||) = ^(fc,n)*
Thus, for any fixed y and s > 0 with (s/C*)d > k/n, the Bernstein inequality implies
that

P jsup \Fk,n(y | x) -F{y \ x)\ > sl y

<r{c<)>*}
= v{u{k,n)>(s/C*)d}
= P U Ê (W)- - (»/<?*)“) < -l(s/C*)d - k/nJln i=1

n\(s/C*)d-k/n]2
< g 2(s/C*)<i+2[(S/C*)d-fe/n]/3 _

Therefore

E |sup \Fk}n(y | x) — F (y | x)|l y

- P \ snp | Fk>n(y | x) - F (y | x)| > s \ ds
roc

<2C*(k/n)Vd+ /
J2C*{k/n)1/d

roo

<2C*{k/n)1/d + /
J2C* (k/n)1/d

<2C*{k/n)1/d + 0((l/n)1/d)
= 0((k/nfl%

n[(Æ/C*)d-fc/n]2
2(S/C*)^+2[(s/C*)d-fc/n]/3

■3n(s/C*)d/32ds
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and so we get (5.7). □
Proof of Theorem 3.2. Notice that

An(x) - A*(x)
= Dn(pn) - D(p*)
< Dn(p’) - D(p*)

(5-9) + {F-Ll^P* + 1 - “ - h,n) ~ + 1 - «)) +
Proof of (ii): We hâve that

p{^P(p*)-fI:h,„P(p*+4,„)> o}
<V{Fk,n(F-lp(p*)\x)>p* + tk,n}
= P{Fk)n(F~lp(p*) \ x) - F(F~l„(/) 1x) > lnn(l/\4 + (fc/n)1/1*)}
< P{ffe,„(F-4(p*) ! x) - ^(^(p*) | x) > ln n/Vfc}
+ P{ft,„(Fxd„(P*) I *) - F(F-;„(p*) 1x) > lnntfc/n)1/'*}.

As in the previous proofs, the Hoeffding inequality and the Bernstein inequality
imply that

P{Ffc,„(F-‘p(p*) | x) - Fk,n(F^p(p*) I x) > lnn/Vfc} < e^dn-M)2
= n_21nn,

and for ln n > 2C*,

P|x) - F(F“4(p‘) I x) > lnnffc/n)1/**}
<p{c*^,>lnn(t/n)1/‘'}
< P{^(fe,n) > 2/c/n}
— P |“ {^Ui<2k/n ~ ^{I[/i<2fc/n}) < ~^/n j

n(/c/n)^
< g_4(fc/n)+2(fc/n)/3

- e~3k/u.

{F-lp(pn-F-ln„(p* + tk,n)> o} < n~21nn + e -3/e/14Iln„>2c*

Thus,
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The proof of

P + 1 - “ - M - *ïL(P* + 1 - a) > 0}
< n“21nn + e-3fc/14hnn>2c*

is similar.
Proof of (i): Because of (5.9) we hâve to prove that

{Fx,up(p*) - Fx,k,n,up(p* + tk,n)) + 0
and

iFx,k,n,low(P* + l~a~ tk,n) ~ FJ0W(P* + 1 ~ «))+ 0
a.s. for /i-almost-all x.
If the conditional quantiles at p* and at p* + 1 — a are unique, then Theorem 1 in
Hansmann and Kohler [10] and (5.2) imply

(*ÜpW) ~ KLnM + M) + < CO»*) ~ ^,„,„p(P*)) +

(■Kl,n,lcm^* + 1 - “ - M ~ Fx,L(P* + 1 - «)) +
- (Fx,k,n,low(P* + 1 ~ °0 ~ Fx,low(P* + 1 “ Q)) +
- |^æi>n,/o«;(P* + 1 ~ <*) ~ Fx,low(P* + 1 ~ °0I
->0

a.s. for /r-almost-all x.
If the function F (y | •) satisfies the modified Lipschitz condition, and Iinra>2C* — 1
for n large enough, then (3.8) implies that

P{An(z) - A*(z) > 0} < 2n_21nn + 2e“3fc"/14
and so the condition kn/\nn —> oo together with the Borel-Cantelli lemma implies
the strong consistency (3.7). □
Proof of Theorem 4.1. For the plug-in confidence set, we can bound the condi-
tional coverage probability and the excess size as follows.

p{y ec(x) |x = x}= J] pj(x)
j£C{x)

K

> £ bw-£ \Pj(x) - PM
jec{x) j=1

K

> l-a-t-^2\Pj{x)-Pj(x)\.
j=i

(5.10)



189

Furthermore,

I|C(x)|-|C'*(x)|>0 = \{x)>L*(x)
= ^L(x)-1>L*(x)
~ \-a-t>Zjl[x) Pïj{x)(x)
- ^-a-i>Z-l[x) Pij{x)(x)-Ef= i \P3(x)-P3(x)\
- \-a-t>l-a-Y,f=1 \Pj{x)—Pj(x)\

(5-U) =lt<Z?=1\Pj(*)-PjW
(5.10) implies that

P{^n+l € Cn(Xn+1) | Pn,Xn+i = X}
K

(5.12) > 1 - a - 4,n - XI r
j=i

Under the conditions of the theorem tkn,n -» 0. Devroye [6] proved that fcn/ lnn ->■ oo
and kn/n —> 0 imply that

(5.13) |Pj(x) - Pn,j{x)| -> 0

a.s. for ail j and for /i-almost ail x, from which we get the first half of the theorem.
Because of (5.12), (4.3) is proved if

(5.14) E{\Pj(x) -PnJ{x)\} = 0(\nk/Vk] + o((fc/n)1/<i) .

This last step can be verified in the same way as in the proof of Theorem 3.1. □
Proof of Theorem 4.2. (5.11) implies that

P{|C„M! - |C*(z)| > 0} < P jife,,» < £ |Pj(x) - PnJ(x)I
< 2n_21nn + 2e_3fc^^p4Ilnn-2C,*,

where the last step can be made as in the proof of Theorem 3.2. □
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