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3D MULTISCALE VECTORIAL SIMULATIONS OF RANDOM MODELS

Matthieu Faessel, Dominique Jeulin

Centre de Morphologie Mathématique, Mathématiques et Systemes, MINES ParisTech, 35 rue St Honoré,

77300 Fontainebleau, France.

ABSTRACT

We present here a method using level sets as primary grains to generate 3D simulations of random models in
the continuous space. Primary grains of any shape can be used as long as we are able to represent them by
an implicit function. Simulations are generated using Boolean combinations of the primary implicit functions.
This approach allows us to build complex combinations of simulations that we could not obtain with a pixel
based method. Furthermore, vectorial simulations do not require a large amount of computer resources, which
allows us to obtain fast generations of microstructures with very large sizes and numbers of primary grains.

KEYWORDS: Random models, vectorial simulation, implicit functions.

INTRODUCTION

The heterogeneity of materials can be handled
through a probabilistic approach to generate models
and simulations of the microstructures, before
estimating their physical behavior. An efficient way to
model random media is based on the theory of random
sets [1, 2], giving a strong theoretical framework for
modeling heterogeneous microstructures by means
of a probabilistic approach. Such simulations are
generally performed in the discrete space on a grid of
points (2D or 3D images) [3, 4], using combinations
of pixel based primary grains.

The aim of this paper is to introduce tools allowing
to generate 3D random models in the continuous
space using level-sets. Primary grains are defined
by implicit functions. Boolean combinations of base
implicit functions are used to build 3D random models.
The models generated are also implicit functions and
then they can be represented as well with level-sets
and can be exported directly as mesh or as 3D images.
Generated models can also be used for embedded
models or be themselves implanted as primary grains
to produce more complex structures. Examples of
multiscales simulations obtained with this method will
be presented in this paper.

IMPLICIT FUNCTIONS

Implicit functions are real valued functions defined
in 3D space by ¢(x,y,z) = c. An implicit function
representation [5] defines a surface as a level set of a
function ¢, most commonly the set of points for which

o(X) =0.
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Figure 1. Representation of the 2D implicit function
@(x,y) = x> +y> — 1 with three level sets: ¢ = —0.75,
¢=0and ¢ =1.25.

Two primitive operations are required: the ability
to evaluate the function, and the function gradient at
a given point. The implicit function divides space into
three regions:

— on the surface: ¢(x,y,z) =c,
— outside of the surface: @(x,y,z) > c,
— and inside the surface: ¢(x,y,z) < c.

When c is zero, positive values are outside, negative
values are inside, and zero is on the surface (as
illustrated with a sample function in figure 1). Note
also that the function gradient points from inside to
outside.

BOOLEAN OPERATIONS ON
IMPLICIT FUNCTIONS

If ¢4 and @p are two different implicit functions,
then the implicit function @4_p representing the union



of the interior region of ¢4 and ¢ is defined by:

Paup(X) = min(@a(X), Pp(X))

Similarly, the implicit function @4np representing the
intersection of the interior regions of ¢4 and @p is
defined by:

Pang(X) = max(@a(¥), pg(¥))

The complementary ¢@; of an implicit function @4
corresponds to its opposite function:

Pi(X) = —¢a(¥)

which allows us to define the difference function @4\ :

Pa\B(X) = Panp(X) = max(9a(X), —¢p(¥))

The figure 2 represents examples of Boolean

operations on two implicit functions.
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Figure 2. Boolean operations with two implicit
functions: Q4(x,y) = x> +y* — 1, and @p(x,y) = (x —
1) +y* -1
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RANDOM SETS MODELS

POINT PROCESSES

Point processes are the first step in the construction
of more general models, that are called grain models.
Considering a compact set K = [0, Xjax] X [0, Yinax] ¥
[0, Znax] € R? and a probability space (Q,A,P), a point
process X is defined as a mapping from the probability
space to configurations of points of K:

V(DEQ,X((D) :{xl,...,xn,...},x,-EK

Poisson point process

One of the most prevalent and simple stochastic
model for the creation of spatial point patterns is
the Poisson point process. This point process allows
to simulate a complete spatial randomness, which is
usually inaccessible in practice. The nonhomogeneous
Poisson point process in R" with a regionalized
intensity 0(x) (x € R", 8 > 0) is such that the numbers
N(K;) are independant random variables for any family
of disjoint compact sets K;. N(K) is a Poisson random
variable with parameter 6 (K):

0(K) = /Ke(dx) (1)

PA(K) = PIN(K) =n} = ©

Hardcore point process

For the Matern hard core point process, the points
are located in a more regular way than in the case
of the Poisson point process. A possible principle
for hard core processes is done by thinning the
points of a Poisson point process [6]. This can be
accomplished by considering a specified hard core
distance. This means that only points which have a
certain minimum distance to their nearest neighbour
are retained. This may be interpreted to imply certain
repulsion effects between the points. Two parameters
describe a Matern hard core point process: the intensity
0 of the underlying Poisson point process and the hard
core distance D. Then, the intensity, 67y of the Matern
hard core point process is given by [6]:

1— e—ODzﬂ:
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BOOLEAN MODEL

The Boolean model [1, 2, 6] is obtained by
implantation of random compact primary grains A’
(with possible overlaps) on Poisson points x; with the
intensity 6, giving the random set A = kaA;k. The
figure 3 show realizations of simple Boolean models
using spheres as primary grains. For each Poisson
point P;(x;,yi,z;) generated, we define an implicit
function

Gi(x,3,2) = (x—x;) 2+ (y—yi)* + (z—2)* — R;

(where R; is the radius of the sphere implanted at point
B).

The Boolean model will correspond to the union of
the spheres, that is to say, to the function ¢,,; defined
by:

(Pbool (.X',y, Z) = min((pi(xaya Z))

Figure 3. Boolean model of spherical primary grains
generated in a unit cube: a) using simple Poisson point
process (0 = 0.08). b) using hardcore Poisson point
process (6 = 0.08, D = 0.25). The radius is the same
for all implanted spheres: R; = 0.04. The surfaces
represented correspond to the default level set of the

function Qpoor: Ppoor(x,y,2) = 0.

MULTISCALE BOOLEAN MODEL

Multiscale Boolean models are binary version of
Cox Boolean models, where the homogeneous Poisson
point process is replaced by a Cox point process
(Poisson process with a non-uniform intensity 6(x))
[7]. They are generated using embedded one-scale
Boolean models: a first microstructure made of a
Boolean set of primary grains is generated (with a
point density 6;). The union of those first primary
grains is used as a binary mask for the point process
of the second scale model: the second set of Poisson
points are genrated with the following intensity:

- 0(x) = 6, inside the first-scale grains,

— 0(x) =0 outside the first-scale grains.

Every Boolean combination of implicit functions is
itself an implicit function. Thus, a function @,
resulting from a Boolean combination of implicit
functions ¢; preserves the property of space division:
Opool 1S positive at every point outside of its surface,
null on the surface and negative at every point interior
to its surface.

In order to simulate a multiscale Boolean model,
a first one-scale Boolean model is generated. The
resulting implicit function @, is used as a mask
for a second point process: here again, we generate
randomly new Poisson points in the whole space,
but only points that are within the surface of @0,
are kept. In other words, a point x; generated during
the second Poisson point process is kept only if

Opoot; (Xx) < 0.

Such construction is illustrated in figure 4 with
two embedded Boolean models with spherical primary
grains. The same method can be employed with any
number of scales and any base models: the figure
5 shows an example of a two-scale Boolean model
obtained with a combination of a Poisson line process
and a Boolean model of spheres.

Figure 4. Two-scale Boolean model of spheres
(generated in a unit cube). a) First scale (hardcore)
Boolean model: density of the Poisson point process:
6, = 0.01, hard-core distance: di = 0.4, radius of
spheres (constant): ri = 0.2. b) Generation of the
second scale Boolean model (red, plain) within the first
one (blue, wireframe): 6, =0.9, d) =0, r, =0.04. ¢)

Resulting two-scale Boolean model.



Figure 5. Two-scale Boolean model obtained with
a Poisson lines process (blue, wirelines) embedded
with a Boolean model with spherical primary grains
(red, plain). a) Combined view. b) Resulting union of
spheres.

ADVANTAGES OF THE METHOD

This method of simulation is quite flexible, and
allows to generate realistic random media with a low
computational effort and memory storage. Quite large
simulations can be obtained, in order to reproduce
random media involving a superimposition of scales,
as well as a wide range of sizes, since there is
no impact of the digitization in the simulations.
Furthermore, boundaries of generated microstructures
are meshed, which makes the simulations a suitable
input in a finite element code for the numerical
prediction of the effective properties of complex
microstructures [8]. Moreover, when generated models
are used in physical simulations, it is often necessary
to produce periodic models, and if the generation
of periodic models is also possible in the discrete
case, only the level set based approach can ensure to
produce periodic meshes. The simulation approach is
not restricted to binary random sets, and was extended
to tesselations, multi-component media, such as the
dead leaves model [4] (as illustrated by figure 6), ...

Figure 6. Three phases dead-leaves model of spheres

CONCLUSIONS

We presented a method allowing to generate 3D
simulations of random models in the continuous space
using level sets. Primary grains are described by
implicit functions, which are combinated by Boolean
operations to produce random 3D models. As both
primary grains and the generated models are implicit
functions, possibilities of combinations offered by this
method are infinite and allows us to produce models
with a high complexity. The vectorial approach is
quite flexible and does not require a large amount of
computer ressources.

The results presented here were obtained using the
VTKSIM library. This library, developped at the Centre
de Morphologie Mathématique, is built as an on layer
of the VTK (Visualization ToolKit) library [9]. A demo
version presenting some of its capabilities is available
online: http://cmm.ensmp.fr/~faessel/vtkSim/demo/
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