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This paper focuses on the problem of smoothing a rotation trajectory corrupted by noise, while simultaneously estimating its corresponding angular velocity and angular acceleration. To this end, we develop a geometric version of the Savitzky-Golay filter on SO(3) that avoids following the conventional practice of first converting the rotation trajectory into Euler-like angles, performing the filtering in this new set of local coordinates, and finally converting the result back on SO(3). In particular, the estimation of the angular acceleration requires the computation of the right-trivialized second covariant derivative of the exponential map on SO(3) with respect to the (+) Cartan-Schouten connection. We provide an explicit expression for this derivative, creating a link to seemingly unrelated existing results concerning the first derivative of the exponential map on SE(3). A numerical example is provided in which we demonstrate the effectiveness and straightforward applicability of the proposed approach. An open implementation of the new geometric Savitzky-Golay filter is also provided.

I. INTRODUCTION

Estimating velocity and acceleration signals from noisy displacement data is a fundamental and well-studied problem. Naive approaches such as finite differencing, drastically amplify zero-mean quantization or measurement noise to a level that makes the estimated velocity and in particular the acceleration useless. Therefore, some more advanced methods, typically referred to as data filtering (causal) or data smoothing (noncausal) are required.

There are many methods for filtering and differentiating position data. Typical approaches use a low-pass Butterworth filter, followed by central finite-differencing [START_REF] Mettler | Extracting micro air vehicles aerodynamic forces and coefficients in free flight using visual motion tracking techniques[END_REF], [START_REF] Kwon | Measurement for deriving kinematic parameters: numerical methods[END_REF], [START_REF] Winter | Measurement and Reduction of Noise in Kinematics of Locomotion[END_REF], [START_REF] Paiman | Observing the State of Balance with a Single Upper-Body Sensor[END_REF], [START_REF] Giakas | Optimal digital filtering requires a different cut-off frequency strategy for the determination of the higher derivatives[END_REF] or spline interpolation [START_REF] Kim | Estimating the non-linear dynamics of freeflying objects[END_REF], Savitzky-Golay filtering [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF], or Tikhonov regularization [START_REF] Tikhonov | Regularization of incorrectly posed problems[END_REF], [START_REF] Chartrand | Numerical Differentiation of Noisy, Nonsmooth Data[END_REF]. A comprehensive survey of available approaches can be found in [START_REF] Knowles | Methods for numerical differentiation of noisy data[END_REF], [START_REF] Giakas | Optimal digital filtering requires a different cut-off frequency strategy for the determination of the higher derivatives[END_REF], [START_REF] Walker | Estimating velocities and accelerations of animal locomotion: a simulation experiment comparing numerical differentiation algorithms[END_REF].

Estimating angular velocity and angular acceleration vectors from noisy rotation data provides an additional challenge. The set of rotations SO(3) is not a vector space, but rather a differentiable manifold, where the filtering and smoothing techniques described above cannot directly be applied. To circumvent this fundamental issue, a local coordinate representation such as Euler angles is employed. In [START_REF] Kwon | Measurement for deriving kinematic parameters: numerical methods[END_REF], for example, noisy rotations are converted into orientation This work was partially supported by the Research Project I.AM. through the European Union H2020 program under GA 871899. M. J. Jongeneel and A. Saccon are with the Department of Mechanical Engineering, Eindhoven University of Technology (TU/e), The Netherlands {m.j.jongeneel, a.saccon}@tue.nl * Corresponding author angles and those are filtered with a Butterworth filter before computing their time derivatives. These filtered orientation angles derivatives are then converted into angular velocities by employing the Jacobian of the local parametrization transformation. Accelerations are then computed as the time derivative of the angular velocity. Besides the potential issue emerging from the well-known problem of running into representation singularity [START_REF] Forster | On-Manifold Preintegration for Real-Time Visual-Inertial Odometry[END_REF], [START_REF] Kok | Using Inertial Sensors for Position and Orientation Estimation[END_REF], the approach is somehow affected by the problem that the selected parametrization (Euler angles, Cardan angles, Roll-Pitch-Yaw angles, etc.) will provide non-uniform filtering of the rotation data due to the configuration and direction-dependent distortion provided by the local parametrization: uniform isotropic noise on SO(3) is converted into nonuniform anisotropic noise in the parametrization space, leading to configuration dependent performance despite the use of uniform filtering in parametrization space. Moved by these fundamental observations and discontented by the lack of elegance and limitations of the existing approaches, in this work we explore a different take on this old problem providing a more refined but still practical and effective solution.

We consider the problem of estimating angular velocity and angular acceleration trajectories of a rigid-body from noisy rotation measurements. These rotation measurements are assumed to be given by an external system (e.g., modern motion capture systems capable of tracking user-defined rigid bodies or spherical-motion encoders [START_REF] Stein | Mathematical models of binary spherical-motion encoders[END_REF]), in the form of rotation matrices contaminated with independent and identically distributed isotropic zero-mean noise. To tackle this challenge, we propose an extension of the Savitzky-Golay filter [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF], [START_REF] Schafer | What Is a Savitzky-Golay Filter? [Lecture Notes[END_REF] that can be directly applied on SO(3) leading to an estimation of noise-free rotation trajectory and a simultaneous estimation of the corresponding angular velocities and accelerations. The Savitzky-Golay is a relatively well know filter that, by fitting a polynomial model on the data, can provide both filtering of the signal as well as simultaneous estimation of its higher-order derivatives. For ease of presentation, our presentation focuses on the smoothing version of the filter (offline noncausal filtering) although a straightforward adaptation would allow obtaining a causal filter, just employing the present and past samples.

While the derivation of the geometric filter structure is straightforward when equipped with a solid basis of signal processing, differential geometry, covariant differentiation, and Lie group theory, for practical usability of the filter an explicit expression for the right-trivialized second covariant derivative of the exponential map on SO(3) with respect to the (+) Cartan-Schouten connection (cf. [16, Section II]) is required. Through a thorough investigation, we have discovered that this is essentially equivalent to the directional derivative of the right trivialized tangent of the exponential map on SO(3), whose explicit expression has been proposed, to the best of the author's knowledge, in [START_REF] Park | Geometric integration on Euclidean group with application to articulated multibody systems[END_REF] (see also [START_REF] Sonneville | Geometrically exact beam finite element formulated on the special euclidean group se(3)[END_REF] and [START_REF] Müller | Geometric methods and formulations in computational multibody system dynamics[END_REF] where, unfortunately, it appears with a typo). In [START_REF] Park | Geometric integration on Euclidean group with application to articulated multibody systems[END_REF], the expression appears as a key ingredient to computing the first-order directional derivative of the exponential map on SE(3) in the context of geometric integration of the dynamics of articulated multibody systems, without however recognizing its relationship with second order geometry and covariant differentiation on SO [START_REF] Winter | Measurement and Reduction of Noise in Kinematics of Locomotion[END_REF].

An implementation of the developed geometric Savitzky-Golay filter is made available with this work 1 to promote its use and validation by the research community.

For sake of completeness, we note that when a dynamic/higher order kinematic model is selected to justify the measurements, additional measurements such as those provided by gyro sensors are available, or rotation measurements are not only affected by additive noise but also low-pass filtered, other geometric approaches such as complementary filtering [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF], invariant extended Kalman filtering [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF], and minimum energy filtering [START_REF] Saccon | Second-orderoptimal minimum-energy filters on lie groups[END_REF] could be used to obtain a potentially optimal (typically causal) filter to denoise/estimate the rotation trajectory and its time derivatives. These works consider thus a different problem than the one treated here.

Besides this introduction, this work has the following structure. In Section II, we introduce the notation used in this paper, provide a recap of the standard Savitzky-Golay filter, and finally detail its new geometric version on SO [START_REF] Winter | Measurement and Reduction of Noise in Kinematics of Locomotion[END_REF]. In Section III, by employing a numerical simulation, we demonstrate the effectiveness of the proposed filter by accurately estimating both the angular velocity and angular acceleration, on a rotation trajectory with additional realistic uniform zeromean noise. Section IV concludes with a summary.

II. THE SAVITZKY-GOLAY FILTER ON SO(3)

In this section, we first introduce the notation used in this paper. Then, in Section II-B, we recap the main idea and the formulation of the Savitzky-Golay filter on a flat space. We then introduce the proposed geometric formulation of the Savitzky-Golay filter in Section II-C.

A. Notation and definitions

We assume that the reader is familiar with the theory of finite dimensional smooth manifolds, matrix Lie groups, and covariant differentiation. We refer to the books [START_REF] Boothby | An Introduction to Differentiable Manifolds and Riemannian Geometry[END_REF], [START_REF] Ralph Abraham | Manifolds, Tensor Analysis, and Applications[END_REF], [START_REF] Lee | Riemannian Manifolds[END_REF] for a review on differentiable manifolds and covariant differentiation and to [START_REF] Varadarajan | Lie Groups, Lie Algebras, and Their Representations[END_REF], [START_REF] Marsden | Introduction to Mechanics and Symmetry[END_REF], [START_REF] Rossmann | Lie Groups. An Introduction Through Linear Groups[END_REF] for a review of the theory of Lie groups and Lie Algebra. Many of these topics are also covered in [START_REF] Bullo | Geometric Control of Mechanical Systems[END_REF] and [START_REF] Bloch | Nonholonomic Mechanics and Control[END_REF]. We employ D to indicate differentiation, with Df (x) • Z indicating the direction derivative of f evaluated at x in the direction Z. Covariant differentiation of a vector field X in the direction 1 The source code is publicly available at https: //gitlab.tue.nl/robotics-lab-public/ savitzky-golay-filtering-on-so3

Y with respect to a given connection is denoted DX • Y and second covariant differentiation of a function f is written

D 2 f • (X, Y ) := D(Df • X) • Y -Df • (DX • Y ).
In the context of Lie groups, the symbols d and d denote the right trivialized version of the operator D and D. Further details on second covariant differentiation can be found in [16, Section IV.A] and references therein. We write SO(3) to indicate the Special Orthogonal group in 3 dimensions, and so(3) to indicate its corresponding Lie algebra. A 3 × 3 rotation matrix is denoted as R ∈ SO(3). Small Greek bold symbols such as ξ, η, and ζ are used to indicate elements of so(3). We use ∧ (hat) to indicate the classical mapping from R 3 to the corresponding 3 × 3 skew symmetric matrix in so(3) and ∨ (vee) to indicate its inverse [START_REF] Murray | A Mathematical Introduction to Robotic Manipulation[END_REF]Chapter 3.2]. An element of so(3) can be mapped to the group SO(3) using the exponential map, which we denote as exp(•). Additionally, log(•) indicates the logarithm map on SO [START_REF] Winter | Measurement and Reduction of Noise in Kinematics of Locomotion[END_REF]. Finally, we use ω to indicate the angular velocity and write ω to indicate the angular acceleration (defined as the time derivative of the angular velocity).

B. Standard Savitzky-Golay filtering on a flat space

Savitzky-Golay filtering is a data smoothing method that also allows for the direct estimation of higher order derivatives of the original noisy signal. The idea is straightforward: a polynomial of chosen degree is fitted on the noisy data through the least-squares method over a moving window of selected size [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF], [START_REF] Schafer | What Is a Savitzky-Golay Filter? [Lecture Notes[END_REF]. Causal filtering is obtained using a moving window that employs present and past samples, while noncausal filtering (also known as smoothing) is obtained by employing past, present, and future data samples. It is important to note that the polynomial coefficients are different for each instant of time.

Without loss of generality and for the sake of illustration, let us consider the noisy sampled data x(t k ) ∈ R d , t k = kT s , k ∈ {0, . . . , N }, with d denoting the sample data dimension and T s the sampling time. As an estimation model about t k , for a chosen k, the Savitzky-Golay filter uses

R d ∋ x(t) = x(t k ) + ρ 0,k + ρ 1,k (t -t k ) + 1 2 ρ 2,k (t -t k ) 2 = x(t k ) + p(t -t k ; ρ k ), (1) 
where p denotes the 2nd order (vector) polynomial model

R d ∋ p(t; ρ) := ρ 0 + ρ 1 t + 1 2 ρ 2 t 2 (2) 
with ρ := [ρ 0 ; ρ 1 ; ρ 2 ] and ρ 0 , ρ 1 , and ρ 2 ∈ R d . Note that, for the sake of illustration, we wrote (2) as a second-order polynomial, while in general one could choose a polynomial of any order [START_REF] Schafer | What Is a Savitzky-Golay Filter? [Lecture Notes[END_REF]. In a Savitzky-Golay filter, a different vector of coefficients ρ k := ρ 0,k ; ρ 1,k ; ρ 2,k is selected for each instant of time t = t k . Smoothing of x(•) and estimation of higher order derivatives at t = t k are obtained from (1) as

x(t k ) = ρ 0,k + x(t k ) , (3) x(t k ) = ρ 1,k , (4) x(t k ) = ρ 2,k , (5) 
with ρ 0,k corresponding to noise estimation at t = t k . As anticipated, ρ k is obtained via the solution of the following minimum least-squares problem over a moving window. For noncausal filtering, taking a window of dimension 2n + 1, n ∈ N, we get

ρ k = arg min ρ m=n m=-n x(t k+m ) -x(t k+m ) 2 = arg min ρ m=n m=-n x(t k+m ) -x(t k ) -p(t k+m -t k ; ρ) 2 . (6) 
Unless data padding is employed, the moving window center time t k is constrained to satisfy t n ≤ t k ≤ t N -n , i.e., data smoothing can be obtained only for points inside the interval of interest excluding some of the boundary points. Equation ( 6) is of the form (cf. [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF], [START_REF] Schafer | What Is a Savitzky-Golay Filter? [Lecture Notes[END_REF])

ρ k = arg min ρ ∥A k ρ -b k ∥ 2 , (7) 
with suitable matrix 2n+1) , with solution

A k ∈ R d(2n+1)×3d and vector b k ∈ R d(
ρ k = (A T k A k ) -1 A T k b k ∈ R 3d . (8) 
In the following subsection, we illustrate how to modify the standard approach to work on SO(3), providing the main contribution of this paper.

C. Geometric Savitzky-Golay filtering on SO(3)

The generalization to SO(3) of the signal model ( 1) is obtained by taking a second-order (vector) polynomial now defined on the Lie algebra of the group, namely

so(3) ∋ p(t; ρ) := ρ 0 + ρ 1 t + 1 2 ρ 2 t 2 , (9) 
and then employing the exponential map of SO(3) to generate rotations according to

SO(3) ∋ R(t) = exp(p(t -t k ; ρ k )) R(t k ). (10) 
In [START_REF] Knowles | Methods for numerical differentiation of noisy data[END_REF], as before, ρ k = (ρ 0,k ; ρ 1,k ; ρ 2,k ) ∈ R 9 denotes the parameter vector to be optimized for t = t k . Note that we are identifying (as sets) so(3) with R 3 via the usual Lie algebra homeomorphism identifying 3 × 3 skew-symmetric matrices with 3-dimensional vectors, so that we write R 9 in place of (so(3)) 3 = so(3) × so(3) × so(3).

To smooth the noisy rotation data R(•) and obtain the estimate R(t k ), we consider again a moving window of size 2n + 1, centered about t = t k . Within this time interval, we minimize the least-square error between R(t k ) and R(t k ), now measured in the Lie algebra of the group. Namely, we define the following least-squares problem

ρ k = arg min ρ m=n m=-n log R(t k+m ) R -1 (t k ) -p(t k+m -t k ; ρ) 2 , (11) 
which generalizes (6) on SO(3). Equation ( 11) is again in the form [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF] and the solution can thus still be retrieved via [START_REF] Tikhonov | Regularization of incorrectly posed problems[END_REF].

Straightforward computations, shows that A k ∈ R 3(2n+1)×9 and b k ∈ R 3(2n+1) associated to [START_REF] Walker | Estimating velocities and accelerations of animal locomotion: a simulation experiment comparing numerical differentiation algorithms[END_REF] are given by

A k =               I 3 (t k-n -t k )I 3 1 2 (t k-n -t k ) 2 I 3 I 3 (t k-n+1 -t k )I 3 1 2 (t k-n+1 -t k ) 2 I 3 . . . . . . . . . I 3 (t k-1 -t k )I 3 1 2 (t k-1 -t k ) 2 I 3 I 3 (t k -t k )I 3 1 2 (t k -t k ) 2 I 3 I 3 (t k+1 -t k )I 3 1 2 (t k+1 -t k ) 2 I 3 . . . . . . . . . I 3 (t k+n-1 -t k )I 3 1 2 (t k+n-1 -t k ) 2 I 3 I 3 (t k+n -t k )I 3 1 2 (t k+n -t k ) 2 I 3               (12) 
and

b k =                    log R(t k-n ) R -1 (t k ) ∨ log R(t k-n+1 ) R -1 (t k ) ∨ . . . log R(t k-1 ) R -1 (t k ) ∨ log R(t k ) R -1 (t k ) ∨ log R(t k+1 ) R -1 (t k ) ∨ . . . log R(t k+n-1 ) R -1 (t k ) ∨ log R(t k+n ) R -1 (t k ) ∨                    . ( 13 
)
Before stating the main result of this paper, we recall the following known result. The exponential map on SO(3) and its right trivialized tangent can be computed explicitly as

exp(ξ) = I 3 + α(ξ)ξ ∧ + 1 2 β(ξ)(ξ ∧ ) 2 ∈ SO(3) (14) 
and

d exp(ξ) = I 3 + 1 2 β(ξ)ξ ∧ + 1 ∥ξ∥ 2 γ(ξ)(ξ ∧ ) 2 (15) 
where

α(ξ) := sin(∥ξ∥) ∥ξ∥ , (16) 
β(ξ) := sin 2 (∥ξ∥/2) (∥ξ∥/2) 2 , (17) 
and

γ(ξ) := 1 -α(ξ) . (18) 
For a proof, the reader is referred to [27, Chapter 9] and references therein for the proof of Rodrigues' formula [START_REF] Stein | Mathematical models of binary spherical-motion encoders[END_REF], while to [START_REF] Bou-Rabee | Hamilton-pontryagin integrators on lie groups part i: Introduction and structure-preserving properties[END_REF] for that of the trivialized tangent [START_REF] Schafer | What Is a Savitzky-Golay Filter? [Lecture Notes[END_REF]. We are now ready to state the main result of this paper.

Theorem 2.1 (Geometric Savitzky-Golay filter on SO(3)): The explicit expressions for computing the smoothed rotation, angular velocity, and angular acceleration at the time t = t k , associated to the least-squares problem [START_REF] Walker | Estimating velocities and accelerations of animal locomotion: a simulation experiment comparing numerical differentiation algorithms[END_REF] solved via [START_REF] Tikhonov | Regularization of incorrectly posed problems[END_REF] with A k and b k given by, respectively, ( 12) and ( 13) is given by

R(t k ) = exp(ρ 0,k ) R(t k ) , (19) ω 
(t k ) = d exp(ρ 0,k ) • ρ 1,k , (20) 
ω(t k ) = d 2(+) exp(ρ 0,k ) • (ρ 1,k , ρ 1,k ) + d exp(ρ 0,k ) • ρ 2,k , (21) 
where d 2(+) exp is the right-trivialized second covariant derivative of the exponential map with respect to the (+) Cartan-Schouten connection. The derivative d 2(+) exp can be explicitly computed as

d 2(+) exp(ξ) • (η, ζ) = 1 2 β(ξ)ζ ∧ + γ(ξ) ∥ξ∥ 2 (ζ ∧ ξ ∧ + ξ ∧ ζ ∧ ) + α(ξ) -β(ξ) ∥ξ∥ 2 (ξ T ζ)ξ ∧ + 1 ∥ξ∥ 2 1 2 β(ξ) - 3 ∥ξ∥ 2 γ(ξ) (ξ T ζ)(ξ ∧ ) 2 • η (22)
where α(•), β(•), and γ(•) are defined as in ( 16), [START_REF] Park | Geometric integration on Euclidean group with application to articulated multibody systems[END_REF], and (18), respectively.

Proof: Given the parametric model [START_REF] Knowles | Methods for numerical differentiation of noisy data[END_REF], it is straightforward to prove that [START_REF] Müller | Geometric methods and formulations in computational multibody system dynamics[END_REF] holds by substituting t = t k therein, recalling the polynomial expression [START_REF] Chartrand | Numerical Differentiation of Noisy, Nonsmooth Data[END_REF].

To prove ( 20) and ( 21), for sake of brevity, let us first rewrite [START_REF] Knowles | Methods for numerical differentiation of noisy data[END_REF] simply as

R(t) = exp(φ(t)) R, (23) 
with R ∈ SO(3) a constant. The time derivative of ( 23) with respect to t is

Ṙ(t) = (D exp(φ(t)) • φ(t)) ∧ R = (d exp(φ(t)) • φ(t)) ∧ exp(φ(t)) R = (d exp(φ(t)) • φ(t)) ∧ R(t) . (24) 
Because Ṙ(t) = ω ∧ (t)R(t), we obtain the known identity

ω(t) = d exp(φ(t)) • φ(t) , (25) 
which equals [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF] after straightforward substitutions. To prove [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF], we take the covariant derivative of ( 24) with respect to the (+) Cartan-Schouten connection, obtaining

D Ṙ dt = D 2(+) exp(φ) • ( φ, φ) + D exp(φ) • φ ∧ R = d 2(+) exp(φ) • ( φ, φ) + d exp(φ) • φ ∧ exp(φ) R, ( 26 
)
where we omitted the time dependency of φ for the sake of brevity. Furthermore, D 2(+) exp is defined as

D 2(+) exp(ξ)•(η 1 , η 2 ) =: d 2(+) exp(ξ)•(η 1 , η 2 ) ∧ exp(ξ) , (27) 
with ξ, η 1 , and η 2 arbitrary elements in so(3).

It is straightforward to show that D Ṙ/dt = ω∧ (t)R, proving the less known fact that ω is the right trivialized covariant derivative of Ṙ with respect to the (+) Cartan-Schouten connection. This leads to the following analytical expression of (spatial) angular acceleration ω(t) of [START_REF] Boothby | An Introduction to Differentiable Manifolds and Riemannian Geometry[END_REF] as

ω(t) = d 2(+) exp(φ) • ( φ, φ) + d exp(φ) • φ , (28) 
which also proves [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF].

What is left to show is how to compute an explicit expression for d 2(+) exp. To this end, we recall that by definition of the parallel transport of the (+) connection (cf e.g. [16, Section II]), D 2(+) exp is defined as the limit

D 2(+) exp(ξ)•(η 1 , η 2 ) = lim ϵ→0 1 ϵ D exp ξ +ϵη 2 •η 1 • exp -1 ξ + ϵη 2 exp(ξ) -D exp(ξ) • η 1 ( 29 
)
where exp -1 ξ+ϵη 2 exp(ξ) denotes the integrable parallel transport of the (+) connection from exp ξ + ϵη 2 to exp(ξ), allowing to take the difference between two vectors belonging to different tangent spaces of SO [START_REF] Winter | Measurement and Reduction of Noise in Kinematics of Locomotion[END_REF]. From the definition of d exp, we have

D exp(ξ + ϵη 2 ) • η 1 = d exp(ξ + ϵη 2 )η 1 ∧ exp(ξ + ϵη 2 ) , (30) 
from which we can rewrite (29) as

D 2(+) exp(ξ) • (η 1 , η 2 ) = lim ϵ→0 1 ϵ d exp(ξ + ϵη 2 )η 1 ∧ exp(ξ) -(d exp(ξ)η 1 ) ∧ exp(ξ) = lim ϵ→0 1 ϵ d exp(ξ + ϵη 2 ) -d exp(ξ) η 1 ∧ exp(ξ) = Dd exp(ξ)η 2 η 1 ∧ exp(ξ) , (31) 
where Dd exp(ξ)η 2 denotes the directional derivative of d exp at ξ in the direction η 2 . From ( 27), we then conclude

d 2(+) exp(ξ) • (η 1 , η 2 ) = Dd exp(ξ)η 2 η 1 . (32) 
Remarkably, an explicit expression for the directional derivative of d exp is available and, to the best of our knowledge, it was provided for the first time in [START_REF] Park | Geometric integration on Euclidean group with application to articulated multibody systems[END_REF] as a necessary step in computing the directional derivative of the exponential map on SE(3). An explicit derivation of the expression is presented in [START_REF] Müller | Review of the exponential and Cayley map on SE(3) as relevant for Lie group integration of the generalized Poisson equation and flexible multibody systems[END_REF]. Employing the explicit expression for Dd exp from [START_REF] Park | Geometric integration on Euclidean group with application to articulated multibody systems[END_REF] and its relationship with d 2(+) exp provided by [START_REF] Bou-Rabee | Hamilton-pontryagin integrators on lie groups part i: Introduction and structure-preserving properties[END_REF] leads to [START_REF] Saccon | Second-orderoptimal minimum-energy filters on lie groups[END_REF]. This concludes the proof. Note that we could have presented [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF] directly in terms of Dd exp by differentiating [START_REF] Lee | Riemannian Manifolds[END_REF] with respect to time. In this way, however, the relationship between angular acceleration and covariant differentiation of Ṙ would have been lost.

In the following subsections, we demonstrate the effectiveness of the derived explicit expressions for the Savitzky-Golay filter on SO(3) on a concrete example.

III. A WORKED-OUT EXAMPLE

In this section, we describe a numerical implementation of the filter to demonstrate its effectiveness on synthetic data. Performing an in-depth performance analysis, e.g., by comparing the proposed filter to state-of-the-art alternatives, goes beyond the scope of this work. Instead, we limit ourselves to presenting numerical results showing a comparison between our proposed method and the classical approach of finite differencing on an example for which the analytical solution is known.

A. Ground truth simulation data

We consider an example of a rotating frame in threedimensional space. To create the ground truth simulation data, containing the time evolution of the rotations matrices, angular velocity, and angular acceleration of the rotating frame, we start by considering a continuous time sine wave in R 3 defined by

φ(t) = λ 0 + Aλ 1 sin(ω c t), (33) 
where A is the signal amplitude, ω c = 2πf c the signal frequency, and t the time. In [START_REF] Müller | Review of the exponential and Cayley map on SE(3) as relevant for Lie group integration of the generalized Poisson equation and flexible multibody systems[END_REF], the vectors λ 0 , λ 1 , ∈ R 3 are random vectors sampled from the multivariate normal distribution such that λ 0 , λ 1 ∼ N (0, I 3 ). This allows us, later on, to demonstrate the filter on a set of rotation matrices representing a random trajectory in SO(3). Making use of (33), we can compute the rotation matrices R(t) by taking the exponential map on SO(3) such that

R(t) = exp(φ(t)). (34) 
Next, we take the first-and second-order time derivatives of the sine wave defined in [START_REF] Müller | Review of the exponential and Cayley map on SE(3) as relevant for Lie group integration of the generalized Poisson equation and flexible multibody systems[END_REF], which results in

φ(t) = Aλ 1 ω c cos(ω c t) (35) 
and

φ(t) = -Aλ 1 ω 2 c sin(ω c t) . ( 36 
)
Making use of ( 20) and ( 21), we can write the analytical expressions for the angular velocity and angular accelerations of the rotating frame, which results in

ω(t) = d exp (φ(t)) • φ(t) (37) 
and

ω(t) = d 2(+) exp(φ(t)) • ( φ(t), φ(t)) + d exp(φ(t)) • φ(t) , (38) respectively. 

B. Simulating a noisy measurement

We now assume that we can measure the rotation matrices R(t) with some noise at the sampling frequency f s . To simulate this, we consider the signal R(t) in [START_REF] Skogstad | Filtering Motion Capture Data for Real-Time Applications[END_REF] at the discretetime indices t k , with t k = kT , where k ∈ {0, . . . , N }, with N the total number of discrete-time indices and T = 1/f s . Next, we perturb the signal R(t k ) by adding Gaussian noise such that we obtain the (simulated) measured rotation matrices R(t k ) according to

R(t k ) = exp (a k ) R(t k ), (39) 
with a k ∼ N (0, Σ) a random vector with covariance Σ ∈ R 3×3 . These rotation matrices are representing the noisy measurement and will serve as the input to the numerical simulation. In the following section, the performance of the Savitzky-Golay filter will be compared against that of geometric central finite differencing to estimate the angular velocity and angular acceleration, which are computed as

ω(t k ) = 1 2T log( R(t k+1 ) R -1 (t k )) + log( R(t k ) R -1 (t k-1 )) ∨ , (40) 
and

ω(t k ) = 1 2T ω(t k+1 ) -ω(t k-1 ) , (41) respectively. 

C. Numerical simulation

In this section, we apply the Savitzky-Golay filter on the data R(t k ) using the content of Section II, which gives us the estimated rotation matrices R(t k ), the estimated angular velocities ω(t k ), and the estimated angular accelerations ω(t k ).

We start by creating the sine wave φ(t) as given in [START_REF] Müller | Review of the exponential and Cayley map on SE(3) as relevant for Lie group integration of the generalized Poisson equation and flexible multibody systems[END_REF], where we use A = 2deg and f c = 1Hz, and compute the random vectors λ 0 and λ 1 to be λ 0 = -0.4831 0.6064 -2.6360

T and λ 1 = 0.9792 1.4699 -0.4283 T . We then sample (34) using a sampling frequency of f s = 200Hz, which is a representative sample rate for real-world systems, such as motion capture systems [START_REF] Skogstad | Filtering Motion Capture Data for Real-Time Applications[END_REF]. In (39), the random vector a k is sampled at every timestep t k from the multivariate normal distribution with zero mean and a covariance given by Σ = σ 2 I 3 , where we choose σ = 0.06rad. For the Savitzky-Golay filter, we choose a polynomial order of p = 3 and a window size of n = 20.

Figure 2 shows the simulation results of the orientation, showing the analytical solution R, the noisy measurement R, and the estimation from the Savitzky-Golay filter R. To visualize the orientation, we have plotted the trajectories of the tips of the unit vectors of the rotating frame over time. Mathematically, this means we write Rv j , where v j , for j = 1, 2, 3, is given by We define the error in orientation as

v 1 = 1 0 0 T , v 2 = 0 1 0 T , v 3 = 0 0 1 T . (42) 
e R (t k ) = ∥ log R(t k )R -1 (t k ) ∥, (43) 
which gives the error in radians at each time index t k . Note that in (43), we can substitute R for R to compute the error for the rotation matrices obtained by the Savitzky-Golay filter, which we denote by e R (t k ). Consequently, we can plot e R (t k ) and e R (t k ) as a function of time, which is shown in Figure 1. Figure 1 clearly shows the error reduction of the Savitzky-Golay filter on the estimation of the rotation matrices with respect to the simulated measurement. This can also be expressed in terms of the mean error ēR , defined as ēR = 1 N N k=0 e R (t k ), which gives us ē R = 0.0972rad and ē R = 0.0213rad, for this specific simulation. The angular velocity and angular acceleration as a result of the simulations are shown in Figures 3 and4, respectively. We have plotted the analytical solution ω, ω as given by (37), (38), the result from finite differencing ω, ω as given by ( 40), (41), and the result from the Savitzky-Golay filter ω, ω as given by ( 20) and [START_REF] Barrau | The Invariant Extended Kalman Filter as a Stable Observer[END_REF]. Considering Figures 3 and4, we clearly see, as expected, how finite differencing leads to poor estimations of the angular velocity and angular acceleration profiles. The noise on the orientation data is amplified to a level that makes the data useless for post-processing processes. Instead, our approach using the Savitzky-Golay filter clearly results in an accurate estimation of the velocity and acceleration profiles, closely following the analytical solution. Similar to the error in rotation, we can compute the error in velocity and acceleration by

e ω (t k ) = ∥ ω(t k ) -ω(t k )∥ (44) 
and

e ω (t k ) = ∥ ω -ω(t k )∥, (45) 
respectively, where we can substitute ω for ω and ω for ω to compute the error in the angular velocity and angular acceleration for the estimation from the Savitzky-Golay filter. If we compute the mean errors, we obtain ē ω = 0.61rad/s, ē ω = 13.64rad/s, ē ω = 15.68rad/s 2 , and ē ω = 2341.38rad/s 2 .

IV. CONCLUSION

An explicit formulation of the Savitzky-Golay filter on SO(3) for accurate estimation of angular velocity and angular acceleration from noisy orientation data has been provided. The proposed method does not require a pre-/post-conversion to/from Euler-like angles, as the filter can directly work on rotational matrices. Numerical simulations have been performed to compare the proposed method to the classical finite differencing, demonstrating the effectiveness of the filter on synthetic data with a realistic level of noise. Future investigations will include: A performance comparison with other filtering approaches (e.g., Savitzky-Golay filtering using Euler-like angles), derivation of the filter for unit quaternions and left multiplicative noise (in this paper, we consider right multiplicative noise), investigation of filter parameters tuning depending on noise level, and application of the filter on experimental noisy rotation signals. 
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 1 Fig. 1: Orientation errors e R and e R as function of time.

Fig. 2 :

 2 Fig. 2: Numerical solutions of the orientation, showing the analytical solution R, the noisy measurement R, and the estimation of the Savitzky-Golay filter R. To visualize the orientations, we have plotted Rv j on the unit sphere with {v j } 3 j=1 given by (42). The figures correspond to v 1 (left), v 2 (middle), and v 3 (right). The asterisks indicate the starting point of the simulation.

Fig. 3 :

 3 Fig. 3: Simulation results showing the x-component (left), y-component (middle), and z-component (right) of the angular velocity as obtained by the analytical solution, finite differencing, and the Savitzky-Golay filter.

Fig. 4 :

 4 Fig. 4: Simulation results showing the x-component (left), y-component (middle), and z-component (right) of the angular acceleration as obtained by the analytical solution, finite differencing, and the Savitzky-Golay filter.
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