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Design of a new measurable approach for the qualification of the
behaviour of an autonomous vehicle

Yacine Mezali1, Mohamed Idriss Khaledi1, Loı̈c Coquelin12, Rémi Régnier12,Jordan Martin13

Abstract— The safety assessment of autonomous driving sys-
tem is a major challenge in the automotive industry and the
role of simulation in development and testing of autonomous
vehicles has become predominant to significantly reduce the
hundreds of millions of miles required to demonstrate the safety
performance of such systems.
In this paper, a novel methodology is presented to assess
automated vehicles safety performance based on a multi-
factorial analysis of severity indicators in the vicinity of the
under test self-driving car. The set of severity indicators includes
commonly used time intervals (Inter Vehicular Time, Time to
Collision, Time to Steer, ...), distance-based indicators, traffic
congestion indicators and a newly developed indicator relying
on overlapping geometrical regions. Unsupervised clustering
techniques are then used to investigate the correlations, depen-
dence among the whole set of indicators. To address the problem
of combining these heterogeneous quantities to derive a global
measure of dangerousness for a given scenario, appropriate
scaling is performed and various aggregation methods are tested
against cut-in, cut-out and cut-through scenarios.

I. INTRODUCTION

At the beginning of the 21st century, the arrival of au-
tonomous vehicles was predicted for 2020 but only several
Automated Driving Systems (ADS) aim to ensure driver
safety and comfort are on the road today. The most advanced
homologated system is the Honda Legend in Japan, which
only reaches level 3 autonomy, far from the level 5 hoped
for. Beyond the legal and ethical aspects, the lack of tools to
ensure the safety of autonomous vehicles is one of the major
obstacles. For example since 2014, EuroNCAP has integrated
several driver assistance systems during their evaluation
process, which are grouped under the title “Safety Assist” but
with very small number of use cases (three for AEB), or only
to work with data provided by car manufacturers. In view
of the diversity of the situations to be tested (considering
possible failure, degradation, adverse conditions and attacks,
climate, infrastructure, sensors, communication bus etc.),
it is increasingly difficult to perform these tests only on
real test tracks or open road (real controlled environment).
Indeed It is not realistic to test every combinations of sensor
input and driving situation from physical testing, only a
limited number of use cases that would be encountered on
a defined set of test routes is possible because the number
of miles an autonomous vehicle would have to accumulate
to be tested in all situations is incalculable, but likely be
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measured in billions. Consequently, complementary solutions
must be found in order to be able to consider a large number
of representative situations and data. For this, the use of
testing and simulation tools is becoming essential. But for
simulation testing, it is necessary to develop procedures,
measurement tools, and ground truth. Currently, there are
very few indicators and no standardized methods to perform
such simulated tests. The topic of the article is to study
this issue and to propose evaluation indicators providing
a first alternative and effective solution for evaluation and
validation of AV by simulation.

New problems are also brought about by simulation. One
of them is the need to quantify in a non-binary way the level
of success in a test (other than accident/no accident), in a
continuous way and allowing to compare between several
trajectories which one was the safest.

One of the examples of indicators that is beginning to
emerge is the Responsibility-Sensitive Safety (RSS) model
was developed and implemented by Intel/Mobileye [SS17]
but classically, ”Time to X” type measures stay the indicators
standard. RSS determine safe following distance to avoid
collisions in the worst possible conditions (hard braking of
the following vehicle during an acceleration phase of the
EGO vehicle). But these different indicators usually only
look at one aspect of safety such as the distance to the vehicle
in front in the lane and do not analyse the full complexity
of a scenario.his is why we propose in this article to write
a new metric capable of analysing the dangerousness of a
situation in a more global way.
The objective is to obtain a final metric capable of:

• Continuous metric (not binary and not limited to simple
thresholds)

• Translates the likelihood of a hazard or severity (acci-
dent)

• Translates the criticality of a behaviour associated with
a scenario

• Allows the comparison of several trajectories in order
to find the best one in a given situation.

• The metric must detect all dangerous sections.

To do this, we will use several microscopic indicators which
we will then aggregate into a global macroscopic metric. In
this chapter 2, we will present the selected indicators ans
will come back to the new metric developed in this work.
Then we will present the processing required for the aggrega-
tion of these indicators and the aggregation procedure itself
and finally we will present an example of the use of this
methodology for measuring dangerousness.



Name Type Variable Unit Description Reference

Inter vehicular time EGO centric IV T (s) Time required for the EGO vehicle to travel the
distance to the target at constant speed

Appendix (A)

Time to Break EGO centric TTB (s)
Time after which a braking maneuver has to be
started to prevent the collision. If the TTB is smaller
than 0, a collision can not be avoided by braking

[AIMK14]

Time to Steer EGO centric TTS (s)
Time after which an evasive maneuver has to be
started to prevent the collision. If the TTS is smaller
than 0, a collision can not be avoided by steering

[AIMK14]

Time to collision
advanced

EGO centric TTCa (s) Extension of the original Time To Collision
(TTC) [Hay72] in the 2D plane

[JW14]

Distance to Time to
collision advanced

EGO centric dTTCa (m) Distance calculated based on TTCa
Section (E)

Minimum Lateral
Distance

EGO centric MIN LAT D (m) Minimum distance between the EGO vehicle and the
target vehicles driving on its adjacent lanes

Appendix (H)

Region proportion Region centric R PROP (%) Occupancy rate of a danger zone Section (II-B)

Lateral avoidance
acceleration

EGO centric ACClat (m.s−2) Instantaneous lateral acceleration required to avoid a
vehicle in its lane

Appendix (F)

Longitudinal
avoidance deceleration

EGO centric DCClong (m.s−2) Instantaneous longitudinal deceleration required to
avoid a vehicle in its lane

Appendix (G)

Level of Velocity
Heterogeneity

Region centric LV H (#)
Ratio of targets speed standard deviation and targets
mean speed in the vicinity of the EGO vehicle (mean
and standard deviation calculations include the EGO
vehicle speed)

Appendix (I)

Mask Occupancy
Ratio

Region centric MOR (%) Occupancy rate of the road Appendix (J)

TABLE I
LIST OF MICROSCOPIC INDICATORS USED TO ASSESS THE SEVERITY FOR A GIVEN SCENARIO

II. MICROSCOPIC MEASURES USED TO ASSESS THE
SEVERITY OF A SITUATION

A. Selected metrics

Severity indicators are computed at each time step, they
mainly fall under two categories.
• EGO centric : these indicators assess the criticality

impacting the EGO directly, their computation involves
the actions and/or the reactions required for the EGO to
avoid the collision. The computation of the EGOcentric
indicators involves the target in front of the EGO
(vehicle in its path).

• Region centric : these indicators describe the severity
inside the region of interest (ROI) of the EGO, they as-
sess the overall criticality in the ROI, their computation
involve all the actors inside the ROI.

The list of severity indicators selected for the design of
a global measure of severity is shown in table I. Coming
section details a newly developed indicator, called RPROP ,
added to the list of more traditional severity indicators.

B. Region proportion metric

In classical dangerousness metrics, there are traditionally
two problems:
• They generally consider only one so-called priority

target;

• They do not allow for the coupling of lateral and
longitudinal dangerousness.

It is to address these two problems that we propose a
new approach with the region proportion metric (R PROP )
that can take into account several targets and their relative
position with respect to the trajectory of the EGO vehicle.

The construction of this metric is done in several steps:
1) At the level of the EGO vehicle will be positioned a

region of interest with rectangular or ellipsoidal shape
(deformable or not with respect to the curvature of
the road or the heading of the EGO vehicle), whose
length and width will be dependent on the dynamic
parameters of the vehicle (speed, acceleration, steer-
ing...). It’s the blue region in the figure 1. This area of
interest corresponds to a surface where it is considered
that the presence of obstacles leads to an increase in
the danger of the situation for the EGO vehicle. In
our implementation of this metric, we considered a
rectangular area (deformable following the shape of the
track) of length ”D” equal to to the maximum between
dTTCa (Appendix (E)) and a distance corresponding
to an IV T of 2.2s.

2) For each target crossing the area of interest, we look at
the portion of the area rendered unusable for the EGO
vehicle and then analyse what remains of the area not
impacted by the targets: the hatched area in the figure
1.



3) The metric is calculated as 1 minus the ratio of the
hatched area and the complete interest region (for a
single target, a score equal to 0 meaning no hazard
and 1 meaning collision). Let n the number of target,
R(D) the hazard interest area and Ri the area made
inaccessible by a i target (ground occupation of the
target and the area directly in front of the target),
R PROP can be written as :

R PROP = 1−
R(D)−R(D) ∩

⋃n
i=1Ri

R(D)
(1)

Fig. 1. Example of implementation of the metric, we build the zone of
danger here in blue according to the dynamic parameters of the vehicle
and we look at the space that remains once we remove the space made
inaccessible by the targets around the ego.

Let us illustrate this on a simple implementation case as
in the figure 2:

Fig. 2. Example of on a simplified case of generalisation on the lateral

Considering the geometry proposed in figure 2, for
the simple configuration of a target at a distance d1 (top
diagram) the formula amounts (because we are in a simple
case of a rectangle) here to S1 = 1 − d1/D. If we add
another target off-centre with respect to the trajectory of
the EGO vehicle (offset by a parameter e) as on the middle
geometry, this lateral target can also be taken into account
by our metric. Here we will have in addition to S1, a
second value to calculate corresponding to this second target
S2 = (1− 2 ∗ e/l)(1− d2/D).

Here the term in 1 − 2 ∗ e/l allows us to put a weight
on the lateral in relation to the longitudinal. For a smoother
approach, this linear term of eccentricity can also be
replaced by using a normal distribution. It is interesting to
note that the width of the danger zone l can be chosen to
be different from the width of the vehicle depending on the
choice of the designer and the importance given to taking
the lateral into account. The weight makes it possible to
give a greater danger to a target at an equivalent distance

from the axis of the EGO trajectory than to a target offset
from this axis. Finally, there could also be a second danger
zone covering the rear of the vehicle to take account of
vehicles behind the EGO vehicle, for which we will add a
weight factor.

The advantage of separating each target in this way is to
be able to look at the impact of each target on the metric
and to know which target is the most dangerous at a given
time, but the idea of the metric is still to be able to look at
the cumulative impact of all the targets on the interest region.

So in the case of n targets to be taken into account, three
analyses can be made:

1) An independent target analysis;
2) An analysis on the max of Si (max(Si(t)) to take into

account only the most dangerous target at each time t;
3) An analysis on the area resulting from the set of targets

intersecting the entire area to take into account in the
set of targets simultaneously (see figure 1).

III. PRE-PROCESSING OF SEVERITY INDICATORS

Severity indicators listed in table (I) are, by definition,
heterogeneous: different units, derived from different phys-
ical quantities (acceleration, time, distance, ...), etc. Prior
to combining such set of indicators, common practice is to
simply apply a specific scaling function, φ, so that they all
lie in a specific range. The shape and support of the scaling
function shall be designed carefully at this stage in order to
reflect the severity of each indicator individually.
Let sk(t) denotes the kth indicator value at time t, and
s̃k(t) = φk(sk(t)) the scaled version of sk(t) using scaling
function φk : R −→ [0, 1] is given by the following equation:

φk(sk(t);αk, βk) = 1{sk(t)∈[αk,βk]}φ(sk(t)) (2)

where the interval [αk, βk] stands for the studied severity
domain for the kth indicator. The shape of the scaling function
is purely defined by φ in equation (2). For sake of simplicity,
φ is either the cumulative distribution function (CDF) of the
Gamma distribution (φ(x) = γ(k,x/θ)

Γ(k) , where Γ(k) is the
gamma function evaluated at k, γ is the lower incomplete
gamma function, k and θ are the shape and scale param-
eter, respectively) or the CDF of the Gumbel distribution
(φ(x) = e−e

−(x−�)=�
where µ and β are the location and

scale parameter, respectively). Expert knowledge is clearly
required at this stage to set realistic severity domain [αk, βk]
for each indicator and also to model the scaling function
(setting (k, θ) for Gamma CDF or (µ, β) for Gumbel CDF).
Moreover, it should be noted that in the case of distance-
based indicators, the upper bound of the studied severity
domain will depend on the EGO speed.
To illustrate the scaling process, let’s consider the example of
IVT values: an IVT value higher than 2.2 s can be considered
as safe which can be modelled as supp(φk) = [0, 2.2] by
setting αk = 0 and βk = 2.2. Figure (3) shows the scaled



Fig. 3. Illustration of the scaling process for simulated IVT values

version of simulated IVT values when using Gamma CDF
as the scaling function for various set of parameters (k, θ).

Once they are properly scaled, next step is to investigate
the relationship among severity indicators prior to their
aggregation.

IV. UNSUPERVISED CLUSTERING

A set of microscopic metrics has been defined on which
some treatments have been applied to make them compara-
ble, so the last step for the construction of the global metric
is to aggregate them. Aggregating many severity indicators
to obtaining a single severity score is cumbersome task. In
order to address this issue, we need to understand the rela-
tionship between the different severity/criticality indicators.
In fact, some indicators may be express the same criticality,
others may bring complementary information. Therefore,
understanding the similarity/ dissimilarity of our indicators
is crucial. So the first task to do a efficient aggregation of
the indicators is to study the correlations, similarities and
orthogonalities between each microscopic metric. Two strate-
gies to do this based on time series clustering techniques are
described in the rest of this section.

A. Severity indicators clustering using time series imaging

It is well-known that Euclidean distance is not appro-
priate for time series clustering since it disregards time
miss alignment [S.A15] . An alternative to the Euclidean
distance is the Dynamic Time wrapping (DTW) [S.A15].
One major downside of DTW is that it is not a distance in
the mathematical sense but rather a measure besides DTW
is computationally expensive.

Imaging time series, that is transforming time series into
images. In fact, time-series can be characterized by a dis-
tinct recurrent behavior such as periodicities and irregular
cyclicities that can be encoded using The Gramian Angular
Fields (GAF) [ZT15]. The GAF matrices captures the tem-
poral correlations I(ti), I(tj) of each indicator[ZT15]. The
construction of GAF matrices requires normalizing the time
series −1 ≤ a < b ≤ 1 , computing the polar coordinates of
the normalized values by taking the arcos function. Finally
it computes the cosine of the sum of the angles for the

Gramian Angular Summation Field (GASF) or the sine of the
difference of the angles for the Gramian Angular Difference
Field (GADF).

φi = arcos(Ii(t))

GASFij = cos(φi + φj),∀i, j ∈ 1..n

GADFij = cos(φi − φj),∀i, j ∈ 1..n

(3)

We use the Kmeans algorithm to do clustering based on
the GADF matrix, the number of clusters is validated using
the elbow method that indicates two main clusters which are:
• Cluster 1: IV T , TTCa, dTTCa, MIN LAT D,
TTS, DCClong.

• Cluster 2: MOR, ACClat, LV H , R PROP , TTB.

B. Severity indicators clustering using Kolmogorov Smirnov
distance

Another technique that we used for time series clustering is
based on KS (Kolmogorov-Smirnov) tests [Hod58] and more
precisely (the two-sample KS test). In general a Kolmogorov-
Smirnov test is a non-parametric test of the equality of
continuous (or discontinuous) one-dimensional probability
distributions. This type of test can be used to compare a
sample with a reference probability distribution (one-sample
K–S test), or to compare two samples (two time series in
our case). The two main results provided by that test is the
p-value and the D-statistic which represents the maximum
distance between the CDFs of the two time series, the closer
this indicator is to zero, the more it’s probable that our
two series are derived from the same distribution. Reasoning
based on p-value or D-statistic leads to the same scientific
interpretation, but as a choice, we have chosen to work with
the D-statistic given its simplicity to explain and present it.
Figure 4 shows the KS score matrix with the different D-
statistic values for the indicators we have considered.

The next step consists in applying a hierarchical clustering
based on the KS-test score matrix that we have calculated.
The different steps of this clustering are as follows:

1) We start by calculating the dissimilarity between the
N indicators (using the KS tests) and we attribute each
indicator to a cluster;

2) The two closest indicators based on the KS score are
grouped together to form a new cluster;

3) The dissimilarity between this cluster and the remain-
ing N-2 indicators is recalculated using the KS score
and iteratively we repeat the same process from the
previous step until only a single cluster is left;

4) At each iteration, we are merging/adding the clusters
together (that’s why this algorithm is also known as
“the additive hierarchical clustering”). [Mul11][ZBJ01]

C. Clustering results analysis

Our clustering study uses three simulated drivings of
twenty minutes on motorways, each of which contains many



Fig. 4. KS score matrix (D statistic)

Fig. 5. Results of Time Series Clustering

critical maneuvers including dangerous cut-ins or danger-
ous cut-outs. Each simulated driving can be regarded as a
collection of time series : the dynamics of each actor, the
infrastructure, etc. Consequently, each simulated driving is
recorded in csv format. The computation of the entire set of
indicators is done offline.

We can easily notice that : the results of the two ap-
proaches presented above give similar results in terms of
clustering, which reassures us about the distribution between
the two classes.

Thus, KMeans of GADF and the KS clustering allowed
us to separate the indicators into two major classes. The first
class contains all the indicators that are related to the notion
of Mask Occupancy Ratio, traffic density, target avoidance,
and in the second class we find the metrics that are more
severe in terms of severity such as collision times, collision

distance. In addition, this clustering provided us with in-
formation about the complementarity/orthogonality between
the indicators to better aggregate them. The knowledge of
the similarity/ dissimilarity of our indicators will allow us to
create more complex aggregation models, which we will see
in the next section.

V. AGGREGATION TO OBTAIN GLOBAL MACROSCOPIC
INDICATORS

This section deals with the problem of combining the
pre-processed EGO and region centric severity indicators
proposed in section (II)-(III) to a single output time series to
reflect the severity at each time step for a studied scenario,
denoted s(t). One of the simplest multi-criteria decision
analysis is the weighted average model that consists in
defining relative weight of importance for each indicator
and taking the average of the weighted linear combination

as an indicator of the severity (s(t) = 1
K

K∑
k=1

wksk(t)).

Weighted average ensemble technique is related to voting
ensemble techniques where the arithmetic mean (s(t) =
K

√∏K
k=1 sk(t)) is commonly used in regression problems.

Other related data aggregation techniques can be directly
derived by replacing the average by other statistical measures
such as the median, nth percentile, etc. However, aggregation
methods in the context of safety assessment should at least be
a robust collision detection estimator. For that reason, naive
ensemble models cannot be considered alone. In order to
fulfill this requirement, the proposed aggregation technique,
denoted empirical aggregation hereafter, is hybrid since it
uses high-level priority rules among indicators and also
computes weighted combination of indicators.

The proposed empirical method has been derived based
on the analysis/interpretation of the results (EGO and region
centric indicators) obtained from a large set of scenarios.
It also account for the clustering results presented in sec-
tion (IV). So in this approach, we have four severity classes,
namely C1, C2, C3, C4 ranging from low to high severity:
• C1: low severity score varying from 0% to 50% ex-

cluded.
• C2: medium severity score ranging from 50% to 80%

excluded,
• C3: high severity score ranging from 80% to 100%

excluded (near accident cases),
• C4: maximum severity of 100% (collision occurred).

Algorithm 1 details how to calculate the global severity score
s(t) at each time step. First, we start by defining (δl)l=1...4,(
∆(l)−(l+1)

)
l=1...3

and (SCl)l=1...4 representing the severity
baseline for each class, the gap between consecutive classes
and the severity indicators chosen for each class, respectively
(lines 1-11).

The algorithm first checks for an eventual collision: if
any of the severity indicators in C4 has a value of 1 then
it returns s(t) = 1 (lines 12-14). If no collision occurred,
the algorithm computes the severity scores for the remaining
classes C1, C2, C3 (lines 15-27) and it returns the global



severity score as the maximum severity over these 3 classes
(line 28).

Algorithm 1 Empirical aggregation for a given time step t
1: δ1 = 0. . baseline severity C1
2: δ2 = 0.5 . baseline severity C2
3: δ3 = 0.8 . baseline severity C3
4: δ4 = 1 . baseline severity C4
5: ∆(1)−(2) = 0.5 . severity gap between C1 and C2
6: ∆(2)−(3) = 0.3 . severity gap between C2 and C3
7: ∆(3)−(4) = 0.2 . severity gap between C3 and C4
8: SC1 = { all indicators at time t }
9: SC2 = {IV T, TTCa, MIN LAT D, R PROP,ACClat, DCClong ,

TTS, TTB }
10: SC3 = {IV T, TTCa, MIN LAT D, R PROP}
11: SC4 = SC3

. CLASS C4
12: if any (s ∈ SC4) = 1 then
13: s(t)=1 return
14: end if

. CLASS Cl, l = 1, 2, 3
15: for l = 1..3 do
16: Kl = card(SCl )
17: SCl = {sk(t), k = 1, ..., Kl}
18: s

[k]
tmp(t) = 0, ∀k ≤ Kl

19: for k = 1..Kl do
20: if δl ≤ sk(t) < δl+1 then
21: wk = 1− (card(SCl )− 1) ∗ 0.1
22: wj = 0.1, ∀j 6= k

23: s
[k]
tmp(t) = δl + ∆(l)−(l+1)

KlP
k=1

wksk(t)

24: end if
25: end for
26: s[l](t) = max1≤k≤Kl (s

[k]
tmp(t))

27: end for
28: s(t) = max1≤l≤3(s[l](t))

We have tested our aggregation method against various
cut-in, cut-out, cut-through scenarios which were generated
using the simulation software SCANeR Studio. The simula-
tor enables as to record all the relevant information regarding
all the vehicles in the driving simulation. This information
includes all the parameters required to compute our severity
indicators. At each time stamp, we record the state vector of
each vehicle in the driving simulation. Figure (6) illustrates
a cut-in scenario, Figure (7) illustrates the same scenario and
the associated severity score computed using the empirical
aggregation method. In this particular example, the calculated
score reaches its maximum value in the middle of the cut-in
maneuver.

Fig. 6. Full-Cut-In

VI. CONCLUSION

Vehicle safety assessment in simulation remains a major
challenge for the approval of autonomous vehicles. Devel-
oping severity indicators and designing high level severity
scores help in assessing their safety. The proposed global
severity score combines commonly used severity indicators
as well as newly developed indicators in order to tackle
complex scenarios: multiple targets, longitudinal and/or lat-
eral hazard, ... The presented severity measure is used to
assess the under test vehicle safety (EGO vehicle here) yet

the methodology is applicable on the whole set of targets in a
given scenario allowing to derive a measure of dangerousness
for any given driving scenario.
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APPENDIX

A. Inter-Vehicle Time (IVT)

This metric is simply the calculation of the inter-vehicular
time between the EGO vehicle and the primary target, i.e.
the time required for the EGO vehicle to travel the distance
to the target at the current constant speed. Let v(t) be the
speed of the EGO vehicle and d(t) the distance to the target
then the mathematical formula is :

IV T (t) =
d(t)

v(t)
(4)

B. Time to Break (TTB)

Time after which a braking maneuver has to be started to
prevent the collision. If the TTB is smaller than 0, a collision
can not be avoided by braking [AIMK14].

C. Time to Steer (TTS)

Time after which an evasive maneuver has to be started to
prevent the collision. If the TTS is smaller than 0, a collision
can not be avoided by steering [AIMK14].



Fig. 7. Cut-in scenario example: calculation of the severity score s(t) at the beginning, middle and end of the maneuver; the blue rectangle represents
the ROI for the EGO vehicle.

D. Time to collision advanced (TTCa)

This metric is the calculation of the time to collision
between the EGO vehicle and a target. This extension of the
TTC collision time is used in Mobileye systems [MMM01].
Traditionally, the collision time is always calculated on one
dimension. One is usually interested in either the longitudinal
TTC or the lateral TTC, which is in itself a very important
simplification of the problem. [JW14] proposes to calculate
the collision time in the more realistic 2D plane between the
two closest points of each vehicle as illustrated in the figure
8:

Let (x(t), y(t)) the EGO vehicle position vector,
(vx(t), vy(t)) the EGO vehicle speed vector, (γx(t), γy(t))

Fig. 8. Calculating the distance between two vehicles

the EGO vehicle acceleration vector,
(
xT (t), yT (t)

)
the

target position vector,
(
vTx (t), vTy (t)

)
the velocity vector

of the target and
(
γTx (t), γTy (t)

)
the acceleration vector of



the target, we try to estimate X which corresponds to the
collision time, noted , in the following second order equation
[JW14] :

dij + ˙dijX +
1

2
d̈ijX

2 = 0 (5)

E. Distance to Time to Collision advanced (dTTCa)

This metric is the derivative of the previous one in that
it is based on the calculation of the pre-collision distance
between the EGO vehicle and a target and thus the distance
to the TTCa. The formulation is therefore

dTTCa(t) = TTCa(t)× vx(t)

F. Lateral Avoidance metrics

Here we model indicators that highlight the the instan-
taneous lateral acceleration ACClat or the instantaneous
deceleration required to avoid a vehicle in its lane DCClong

The lateral avoidance acceleration can be written as follow
([Jan05]):

ACClat(t) = γTy (t)− 2

TTCa(t)2
(−
(
yT (t)− y(t)

)
±

(
WT sin (δ(t)) +WT sin

(
δT (t)

))
2

−
(
vTy (t)− vy(t)

)
TTCa(t)) (6)

With W the width of the EGO vehicle and WT the width
of prior target

G. Longitudinal Avoidance metrics

The instantaneous deceleration required to avoid a vehicle
in its lane can be written :

DCClong(t) = min

(
γTx (t)−

(
vTx (t)− vx(t)

)2
2× d(t)

, 0

)
(7)

H. Minimum Lateral Distance

As part of measurement of the lateral dangerousness, we
introduce a new metric that allows to calculate the mininmum
distance between the EGO and the target vehicles that are
on its adjacent lanes (figure 9) at each time step t and then
take the minimum of these calculated distances, hence the
name Minimum Lateral Distance (MIN LAT D).

Fig. 9. Minimum lateral distances between the EGO vehicle and its targets

I. Traffic metrics

As part of the measurement of the dangerousness of
a situation, we also wanted to put forward indicators on
the condition of the traffic which add complementary in-
formation to the previous indicators drawing in particular
on the work of Hallerbach [S.H18]. The level of velocity
heterogeneity indicator (LV H) measures the homogeneity
of the speed behaviour of the road actors in the vicinity of
the EGO vehicle, as a high degree of heterogeneity increases
the chances of having risky situations due to the speed
differentials between the different actors.

A simple approach to calculate it is to make a ratio of the
standard deviation of speeds to the mean of speeds in the
vicinity of the EGO vehicle, i.e. :

LV H(t) =
σv(t)

µv(t)
(8)

with the mean value

µv(t) =
1

N

N∑
i=1

v[i](t)

and the standard deviation

σv(t) =

√√√√ 1

N − 1

N∑
i=1

(
v[i](t)− µv(t)

)2
J. Mask Occupancy Ratio

Among the metrics that were added, we find “Mask
Occupancy Ratio” (MOR), its principle role is to provide
information about the number of vehicles that are within a
well-defined area around the EGO taking into account its lon-
gitudinal speed. MOR is calculated using this mathematical
formula:

MOR(t) =
1

nbL

nbL∑
i=1

nbV ILi(t)

nbV ILmax(t)
(9)

with nbL the number of road lanes, nbV ILi represents the
number of vehicles that are within the considered proportion
of lane i at timestamp t, nbV ILmax is the max number of
vehicles that can exist in that proportion of lane length L
(e.g. L = 50m) at timestamp t and is calculated as:

nbV ILmax(t) =
L

Rd(t)
(10)

with Rd(t) is the required distance that depends on EGO
speed (see. 10).

Fig. 10. Security and required distances, respectively Sd and Rd, on a
lane section of length L
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