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Abstract: Despite breakthroughs in antiviral therapies, chronic viral hepatitis B and C are still the
major causes of liver fibrosis and hepatocellular carcinoma (HCC). Importantly, even in patients with
controlled infection or viral cure, the cancer risk cannot be fully eliminated, highlighting a persisting
oncogenic pressure imposed by epigenetic imprinting and advanced liver disease. Reliable and
minimally invasive biomarkers for early fibrosis and for residual HCC risk in HCV-cured patients are
urgently needed. Chronic infection with HBV and/or HCV dysregulates oncogenic and profibrogenic
signaling within the host, also displayed in the secretion of soluble factors to the blood. The study
of virus-dysregulated signaling pathways may, therefore, contribute to the identification of reliable
minimally invasive biomarkers for the detection of patients at early-stage liver disease potentially
complementing existing noninvasive methods in clinics. With a focus on virus-induced signaling
events, this review provides an overview of candidate blood biomarkers for liver disease and HCC
risk associated with chronic viral hepatitis and epigenetic viral footprints.
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1. Introduction

Chronic liver disease is a major health problem and globally associated with > 2 mil-
lion deaths per year [1]. The most important etiologies are chronic viral hepatitis, alcohol
abuse and metabolic dysfunction-associated fatty liver disease (MAFLD) [2], sharing a
similar pattern of liver disease progression from chronic inflammation, fibrosis to terminal
complications, such as decompensated liver cirrhosis and liver cancer [3–6]. Globally,
every fourth cancer-associated death is associated with liver cancer, most frequently hepa-
tocellular carcinoma (HCC), with a fast-rising incidence [7]. HCC typically arises in the
background of cirrhosis; however, in HCV patients, about 10% of cases can develop in a
noncirrhotic liver [8].

Despite tremendous advances in antiviral therapies, chronic viral hepatitis B and C
are still the major etiology for chronic liver disease. Worldwide, an estimated 180 million
people live with hepatitis B virus (HBV) and 75 million with hepatitis C virus (HCV),
and for most, testing and treatment remain beyond reach [9]. Both viruses share similar
as well as distinct mechanisms contributing to liver disease and cancer. In Europe, it is
estimated that 10–15% of HCCs are caused by HBV infection, while 70% are caused by
HCV infection, HCV being the major risk factor for HCC development [10]. Both viruses
contribute to liver fibrosis and HCC risk by multiple factors involving a dysregulation of
host signal transduction through viral proteins, miRNAs, virus-induced growth factor and

J. Clin. Med. 2021, 10, 977. https://doi.org/10.3390/jcm10050977 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-0348-9601
https://orcid.org/0000-0002-8864-2168
https://orcid.org/0000-0003-3996-3907
https://doi.org/10.3390/jcm10050977
https://doi.org/10.3390/jcm10050977
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10050977
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/10/5/977?type=check_update&version=1


J. Clin. Med. 2021, 10, 977 2 of 16

cytokine expression or antiviral responses that cumulate in a pro-fibrotic and pro-oncogenic
environment in the liver [11–17]. Liver fibrosis is characterized by an excessive production
of the extracellular matrix by hepatic stellate cells and myofibroblasts in response to the
inflammation and oxidative stress induced by viral infection [18].

The most important measure to reduce HCC risk is to eliminate the underlying etiology.
However, even though viral infection with HBV or HCV can be controlled or cured, the
risk of developing HCC cannot be fully eradicated due to multiple reasons, especially in
patients with already advanced liver disease. The mechanisms are not well understood,
but evidence points towards epigenetic viral footprints that maintain dysregulated pro-
oncogenic signal transduction. It is thus crucial to be able to identify patients with elevated
HCC risk to stratify for a more frequent liver screening. Today, liver disease diagnosis
and HCC risk assessment relies on a combination of imaging, blood markers and liver
biopsies. While liver tissue allows a detailed transcriptomic HCC risk assessment linked to
predictive transcriptomic signature [19,20], liver biopsies are associated with a significant
risk for the patients and, therefore, are not applicable for a tighter screening [21]. An
impressive number of approaches and “liquid biomarker” candidates for liver disease
are underway, studying extracellular vesicles, circulating tumor cells and cell-free nucleic
acids (reviewed in detail [22]) to improve prognostic power, minimize the risk for the
patients and provide additional tools for the screening of patients at risk. With a focus on
virus-induced signaling events, this review provides an overview of the candidate blood
biomarkers of fibrotic liver disease and HCC risk associated with chronic viral hepatitis.

2. Viral Hepatitis B and C

Although HBV and HCV are hepatotropic, causing similar liver disease, they are very
different viruses. HBV is an hepatotropic DNA virus of the Hepadnaviridae family, which
specifically infects hepatocytes via the recently discovered functional receptor sodium
taurocholate co-transporting polypeptide (NTCP) [23] and epidermal growth factor signal-
ing [24]. Following endocytosis, the nucleocapsid is released into the cytoplasm, and the
partially double-stranded viral relaxed circular DNA (rcDNA) is repaired and converted
to covalently closed circular DNA (cccDNA) in the nucleus (for a more detailed review,
see [25]). cccDNA is a replicative intermediate of the HBV life cycle, and it is crucial for
HBV persistence within the hepatocytes. It serves as a template for the transcription of
HBV RNA species and consequently for the translation of HBV proteins, i.e., three surface
proteins (L-HBsAg, M-HBsAg and S-HBsAg), core (HBc), E antigen (HBeAg), X protein
(HBx) and viral polymerase (Pol). Among them, HBx is believed to have key roles related
to HBV replication and signaling pathways [26].

HCV is a single-stranded, positive-sense RNA virus of the Flaviviridae family that
requires multiple host entry factors, including receptor tyrosine kinase signaling. After
endocytosis, the RNA genome is translated into a viral polyprotein at the endoplasmic
reticulum, leading to a massive reshaping of host membranes to a replication complex
termed the membranous web. De novo virus assembles at lipid droplets, which are
accumulated at the replication complex (for a more detailed review, see [27,28]). HCV
does not integrate into the host genome nor possesses a latent viral phase. Thus, HCV
requires a constant modulation of the host cell to evade the antiviral response and to
maintain its viral cycle [29–31]. In contrast to HBV, which is considered to be a stealth
virus that does not cause big changes in the host transcriptomics [32], HCV massively
re-orchestrates signaling pathways. A multiomics analysis of HCV infection studying gene
set enrichment analysis (GSEA) revealed that almost half of the ~2000 studied gene sets
from the molecular signature database (MSigDB) were dysregulated by HCV infection
involving pro-oncogenic pathways regulating proliferation (EGF/MAPK), inflammation
and stress (STAT3, NF-κB), hypoxia and angiogenesis (VEGFR) and fibrosis (TGF-β) [16,17].
Such massive remodulation of the signaling landscape holds the potential to derive novel
minimally invasive biomarkers.
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3. Antiviral Therapies

The most important measure to treat liver disease and prevent HCC formation is the
removal of the underlying etiology. The challenges to help patients with viral hepatitis are
heterogenous: while an efficient preventive HBV vaccine is available, established chronic
HBV infection can only be controlled but rarely eliminated due to a persistent chromosome-
like viral DNA species and genome integrations [33]. A “functional cure” of HBV infection
is defined by a sustained loss of hepatitis B surface antigen (HBsAg) in the blood, with or
without seroconversion to anti-HBsAg. However, it is not always achieved in individuals
with HBV. For this reason, the achievement of a sustained HBsAg seroclearance, even after
suspension of the antiviral therapy, is nowadays considered the most realistic endpoint for
the cure of individuals with chronic HBV. On the other hand, “virological cure”, defined
as the complete eradication of the virus, is too hard to reach, and it does not represent
a reasonable therapeutic goal to date. This is due to the integration of HBV DNA into
the host genome and the persistence of cccDNA within the hepatocytes [34]. Importantly,
a constant activation state of fibrotic signaling pathways is believed to persist even in
patients with undetectable HBV serum viral loads after therapy [35–37].

For HCV, no vaccine is in reach, but the novel generation of antiviral therapies with
direct acting antivirals (DAAs) can efficiently cure HCV infection [38]. A new generation of
interferon-free HCV drug regimens (sofosbuvir/velpatasvir and glecaprevir/pibrentasvir)
is pan-genotypic and, therefore, can be used to treat individuals without identifying
their HCV genotype and subtype [38]. Efficiency is very high (90–98% after 12 weeks;
ASTRAL-3 trial) even in patients with difficult to treat genotype 3 and advanced liver
disease [38]. However, the high price for HCV cure is still a barrier to guarantee treatment
programs worldwide. Even when prices vary across countries, there is no adjustment of
DAA prices with population income or viral infected population, making its accessibility
more complicated for the poorest sectors of society [39]. HCV cure markedly decreases
but cannot fully eliminate HCC risk, especially in patients with already advanced liver
disease [40].

4. Fibrosis and HCC Screening in the Clinics—State of the Art

The majority of HCCs arise from liver cirrhosis, and thus the current HCC risk assess-
ment is largely coupled to the staging of liver fibrosis. Despite the screening programs in
cirrhotic patients, often the HCCs are diagnosed at an advanced stage. Less than 30–40%
of them are eligible for a curative treatment using surgical approaches or radiological
ablation [41]. Currently, the trans-abdominal ultrasound surveillance of patients at risk is
the standard technique to detect HCC. However, the sensitivity of this method is not good
enough to detect small tumors. For this reason, other methods, e.g., computed tomography
(CT) or magnetic resonance imaging (MRI), are added, increasing cost, complexity and
time for early detection and diagnosis. Magnetic resonance elastography (MRE) can be
thought of as quantitative, noninvasive palpation. The use of this technique has become
widespread in the diagnosis and staging of liver fibrosis [42]. However, early detection
of HCC is complicated because of the co-existence with a chronic liver disease. The per-
formance of noninvasive methods is represented by the area under the receiver operator
characteristic (AUROC) curve, which provides information regarding the sensitivity and
specificity of the method. Based on this, several tests have been proposed, such as the
fibrosis-4 index or fibrotest, which may help clinicians in determining prognosis and risk
for future complications [43]. Another noninvasive method that helps in discriminating
cirrhotic patients from noncirrhotic patients is the measurement of liver stiffness using
transient elastography (TE), as the fibrotic tissue is much stiffer than healthy tissue. In
patients with advanced fibrosis, the liver function and patient prognosis is classified with
the Child–Pugh score summarizing biological and clinical features, i.e., bilirubin, albumin,
prothrombin time, ascites and hepatic encephalopathy. Child–Pugh comprises 3 classes
of severity: A, good liver functionality (median 2-year survival: 85%); B, moderate liver
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functionality (median 2-year survival: 57%); C, poor liver functionality (median 2-year
survival: 35%) [44].

Several patient-derived transcriptomic signatures that associate with HCC risk and
which are specific for certain etiologies or reflect a hepatic state of struggle in the liver
independently from the underlying etiology have been identified in recent years (for a
more detailed review, see [45]). Although a translation into minimally invasive biomarkers
is explored, these signatures largely depend on liver tissue from resections or liver biopsies,
which are still the gold standard to diagnose liver disease and assess HCC risk. However,
liver biopsies are costly, exhausting for the patients and associated with a significant risk,
reasons why this procedure is not applicable for a tighter screening [21].

Current guidelines recommend the screening of HCC in at-risk patients using ultra-
sonography (US) of the liver every 6 months with or without serum alpha-fetoprotein
(AFP) [46,47], the most commonly used biomarker for liver disease detection. Additional
conventional serum biomarkers are lectin-binding AFP-3 (AFP-L3) and des-carboxyprothrombin
(DCP), which are still evaluated [48–52]. A Japanese prospective study demonstrated that a
combination of DCP with AFP level is useful to detect HCC development and recurrence in
chronic liver disease patients [53]. This was recently consolidated by a retrospective study,
which showed that combining DCP and AFP serum levels in NUC-treated HBV Caucasian
cirrhotic individuals, represents a potential surveillance strategy for HCC [49]. Additional
candidate biomarkers for HCC in the blood have been suggested, i.e., proprotein conver-
tase subtilisin/kexin type 9 (PCSK9) [54,55], glypican 3 (GPC3), squamous cell carcinoma
antigen (SCCA), cytokeratine-19, osteopontin (OPN), Golgi protein-73 (GP73), alpha-L-
fucosidase (AFU) [56], heat shock 70 kD protein (HSP-70) [57], annexin A2, midkine (MDK),
aldo-keto reductase family 1 member B10 (AKR1B10) [58], and HCC-responsive miRNAs
and cell-free DNA (for a more detailed review, see [59]). However, even if these candidate
biomarkers are promising, to date, none of them have been adopted in the current clinical
practice, and they need to be externally validated.

Additional scoring systems have been predictive for HCC risk in patients with chronic
liver disease. The GALAD score [60,61] is derived from the combination of different
parameters and single biomarkers, such as gender, age, AFP-L3, AFP and DCP, and has
been validated in several patient cohorts [62]. The ALBI score evaluates the liver function
of patients with HCC of different stages based on albumin and bilirubin levels in the
blood [63]. However, the complex mathematical calculation of the ALBI score has limited
its use, and new scores based on it have been developed, e.g., EZ-ALBI [64] or the modified
ALBI (mALBI) which is used in clinical practice [65]. The enhanced liver fibrosis (ELF)
score assesses a range of liver disease in conjunction with liver biopsy [66]. It provides a
single score combining in an algorithm the measurement of three indirect biomarkers: HA,
PIIINP and TIMP-1. The algorithm detects accurately liver fibrosis in patients with chronic
HCV [67]; however, it is limited in low disease prevalence [68].

5. Signaling Pathways Associated with Candidate Serum Biomarkers

Signal transduction is an essential process involved in almost every step of cellular
homeostasis. Signaling is tightly controlled, transmitting signals between cellular compart-
ments and regulating gene transcriptional responses. Thus, the chronic dysregulation of
signaling pathways is involved in the majority of diseases, including cancer [69]. Viruses
including HBV and HCV make use of host signaling to maintain their life cycles or to
evade the host antiviral response. The resulting persistent dysregulation of host signaling
pathways by chronic viral infection promotes viral pathogenesis and malignant transfor-
mation [70]. Therefore, the study of virus-dysregulated signaling pathways may contribute
to identify efficient minimally invasive biomarkers for liver disease (Figure 1).
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Mechanistic Target Of Rapamycin Kinase; PD-1, Programmed Cell Death 1; STAT3, Signal Trans-
ducer and Activator of Transcription 3; TGF-β, Transforming Growth Factor Beta; Wnt, Wnt Fam-
ily Member. 

Despite differences in terms of structure and life cycle, HBV and HCV are believed 
to share common pathways which influence hepatic fibrosis and promote hepatocarcino-
genesis [71,72]. It became evident that HBV infection does not trigger the innate immune 
response and thus behaves as a stealth virus in the liver [73,74]. Nevertheless, chronic 
HBV infection impacts host signaling with potential relevance to markers of liver disease 
progression. The HCC biomarker AFP is also a regulator of growth signaling via 
PI3K/AKT signaling in hepatoma cells [75]. The viral protein HBx induces the expression 
of AFP, potentially driving the malignant transformation of hepatocytes in vivo via acti-
vation of the PI3K/AKT/mTOR pathway [76,77]. Moreover, members of the mTOR signal-
ing pathway and eukaryotic translation initiation factors (eIFs) have recently been identi-
fied as potential biomarkers for HCC, and their expression patterns depend on different 
HCC aetiologias, such as HBV, HCV and non-virus-related HCC [78]. Another potential 
HBV-responsive risk marker is the protein Dickkopf WNT Signaling Pathway Inhibitor 1 
(DKK1) involved in embryonic development as an inhibitor of Wnt signaling. DKK1 is a 
secreted protein whose mechanism of action is centered in binding and isolating the low-
density lipoprotein receptor-related protein 6 (LRP6) co-receptor avoiding its role in acti-
vating the Wnt signaling pathway. DKK1 promotes HCC development by the modulation 
of the Wnt/β-catenin signaling pathway [79] and interaction with TGF-β signaling [80,81]. 
High serum levels of DKK1 may distinguish HCC associated with chronic HBV infection 
from HCC associated with nonviral liver cirrhosis. Moreover, DKK1 may allow early-
stage HCC detection even in patients with AFP negative status [82]. DKK1 is also gaining 
interest as a potential biomarker for HCV-associated HCC. Although HCV core protein 

Figure 1. Dysregulation of signaling pathways by chronic viral hepatitis and epigenetic imprinting
impact the secretion of circulating candidate biomarkers to the blood. Abbreviations: AFP, alpha-
fetoprotein; AFP-L3, Lectin-Binding AFP-3; Akt, AKT Serine/Threonine Kinase; DKK1, Dickkopf
WNT Signaling Pathway Inhibitor 1; Disse, Space of Disse; EGFR, Epidermal Growth Factor Receptor;
GPC3, Glypican 3; GP73, Golgi Membrane Protein 1; HIF2α, Hypoxia-Inducible Factor 2 Alpha;
M2BPGi, mac-2-binding protein glycan isomer; MMP-2, Matrix Metallopeptidase 2; mTOR, Mecha-
nistic Target Of Rapamycin Kinase; PD-1, Programmed Cell Death 1; STAT3, Signal Transducer and
Activator of Transcription 3; TGF-β, Transforming Growth Factor Beta; Wnt, Wnt Family Member.

Despite differences in terms of structure and life cycle, HBV and HCV are believed
to share common pathways which influence hepatic fibrosis and promote hepatocarcino-
genesis [71,72]. It became evident that HBV infection does not trigger the innate immune
response and thus behaves as a stealth virus in the liver [73,74]. Nevertheless, chronic
HBV infection impacts host signaling with potential relevance to markers of liver disease
progression. The HCC biomarker AFP is also a regulator of growth signaling via PI3K/AKT
signaling in hepatoma cells [75]. The viral protein HBx induces the expression of AFP, po-
tentially driving the malignant transformation of hepatocytes in vivo via activation of the
PI3K/AKT/mTOR pathway [76,77]. Moreover, members of the mTOR signaling pathway
and eukaryotic translation initiation factors (eIFs) have recently been identified as potential
biomarkers for HCC, and their expression patterns depend on different HCC aetiologias,
such as HBV, HCV and non-virus-related HCC [78]. Another potential HBV-responsive
risk marker is the protein Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1) involved
in embryonic development as an inhibitor of Wnt signaling. DKK1 is a secreted protein
whose mechanism of action is centered in binding and isolating the low-density lipoprotein
receptor-related protein 6 (LRP6) co-receptor avoiding its role in activating the Wnt signal-
ing pathway. DKK1 promotes HCC development by the modulation of the Wnt/β-catenin
signaling pathway [79] and interaction with TGF-β signaling [80,81]. High serum levels of
DKK1 may distinguish HCC associated with chronic HBV infection from HCC associated
with nonviral liver cirrhosis. Moreover, DKK1 may allow early-stage HCC detection even
in patients with AFP negative status [82]. DKK1 is also gaining interest as a potential
biomarker for HCV-associated HCC. Although HCV core protein promotes the activation
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of the Wnt signaling protein and the suppression of Wnt pathway inhibitors [83,84], DKK1
abundance seems to be significantly decreased in the blood of patients with HCV [85].
However, DKK1 is spiking in patients with HCV who also have HCC [86].

GP73 has been suggested as a serum biomarker for liver cirrhosis in individuals with
chronic HBV [87]. Moreover, GP73 seems to be a good predictor of liver inflammation and
fibrosis in HBV patients with normal or slightly raised alanine aminotransferase (ALT) [88].
The biological function of GP73 is not completely understood but it is assumed to be
involved in protein secretion and signaling. Moreover, its expression is linked to different
pathological conditions [89]. HBV modulates various signaling pathways converging in
GP73 modulation [90,91]. For example, it promotes GP73 expression by the activation
of hypoxia-inducible factor-2α (HIF-2α) signaling [91], which is a hallmark of chronic
infection and HCC development. Moreover, GP73 influences the immune response to
HBV infection, as an increased production of GP73 can be observed in HBV-stimulated
leukocytes [90], in peripheral blood mononuclear cells isolated from healthy donors and
in macrophages derived from human acute monocytic leukemia cells (THP-1). In the
same study using hepatoma cell lines, the authors demonstrated that GP73 represses the
expression of the p50 subunit of NF-κB, promoting HBV replication and thus highlighting
the role of GP73 as a potential antiviral modulator [90]. Immune dysregulation and T-cell
exhaustion are among the major hallmarks of chronic HBV infection and the associated
pathological development [92]. On this basis, the presence of HBV-specific T cells has been
recently proposed as an immunological biomarker for safely monitoring therapy in chronic
HBV patients [93] and programmed cell death protein (PD-1) expression as a potential
marker for liver fibrosis in patients with chronic HBV [93].

Recently, mac-2-binding protein glycan isomer (M2BPGi) has been shown to enhance
the aggressiveness of HCC via the activation of the mTOR signaling pathway [94], harbor-
ing potential as a minimally invasive biomarker. Glycoproteomic analysis has revealed that
mac-2-binding protein (M2BP), an extracellular matrix protein that interacts with collagens,
fibronectin and integrin [95], may undergo specific changes in its glycan structure correlat-
ing with fibrosis development [95,96]. M2BPGi has been suggested as a valid predictor of
fibrosis and HCC in HBV patients [97–100]. Moreover, according to a prospective study
conducted in China, M2BPGi serum level decreases in chronic HBV patients treated with
nucleos(t)ide analogues (NAs), indicating its potential role in predicting HCC development
in NA-treated populations [101]. In addition, M2BP-modified molecules have been studied
as biomarkers of fibrosis in patients with chronic HCV infection [102]. Its cut-off values
differ between etiologies, and M2BP levels decrease after viral cure [103]. Interestingly,
M2BPGi has been introduced as a novel and noninvasive biomarker for the assessment of
liver fibrosis in chronic HCV patients treated with DAAs [104].

Signaling pathways play a pivotal role during viral hepatitis and liver fibrosis. Epider-
mal growth factor receptor (EGFR) signaling is required by HBV and HCV for entry [24,105],
where it orchestrates entry factor complex formation and endocytosis [24,106]. Importantly,
HCV itself promotes EGFR signaling [12,16,107] to maintain its life cycle and to attenuate
the host antiviral response [106] with important consequences for liver disease progres-
sion. Indeed, EGFR signaling has been identified as a major driver of liver fibrosis and
HCC in animal models and patients [13,19]. Additionally, TGF-β signaling is induced
by HCV infection in hepatocytes [16] and in activated Kupffer cells, which are resident
liver macrophages activated during liver injury [108]. Like EGF and Wnt signaling, TGF-β
is a major regulator of cell proliferation, differentiation and apoptosis. It is essential for
the induction of epithelial–mesenchymal transition (EMT) and the activation of stellate
cells [108]. TGF-β is a cytokine suppressing tumor activity at early stages by arresting cell
growth and inducing apoptosis. However, at later tumor stages, it promotes the prolifera-
tion and survival of malignant cells (for a more detailed review, see [109]). HCV infection
induces TGF-β signaling indirectly via NF-kB and unfolded protein response (UPR) [110]
and directly via the interaction of HCV core protein with SMAD3 [111]. HCV core protein
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increases intrahepatic and circulating levels of endoglin, which is a TGF-β1 co-receptor
associated with progressive hepatic fibrosis during chronic HCV infection [112].

Persistent oxidative stress is an important factor in virus-induced liver fibrosis. Espe-
cially HCV infection, and its massive reorganization of cellular membranes to the replica-
tion complex, is a major cause of UPR and oxidative stress [113]. HCV protein core, NS3
and NS5, block heme oxygenase-1 (HO-1) in hepatocytes accumulating oxygen radicals in
the cell [114]. This activates NF-kB and STAT3 [113], which are key players in inflammation
and cancer [115]. During HCV infection, STAT3 activity is further intensified by a suppres-
sion of negative regulators, i.e., the STAT3 phosphatase PTPRD via miR135a-5p [17] and
SOCS3 by enhancing EGFR signaling [106]. Consequently, STAT3 signaling impairs peroxi-
somal function, leading to an accumulation of very-long-chain fatty acids and peroxides in
the HCV-infected hepatocyte [16]. Moreover, HCV-induced STAT3 signaling also triggers
the upregulation and secretion of the metalloprotease MMP-2 [116], which is involved in
remodeling the extracellular matrix and has been previously suggested as a prognostic
marker for liver fibrosis [117].

HCV infection induces hypoxia in infected cells and stabilizes HIFs [118], which is also
a hallmark of HCC development linked to a stimulation of angiogenesis. In patients with
HCV-associated cirrhosis and HCC, several angiogenesis soluble factors were significantly
upregulated in the blood plasma, including TIMP-1, TIMP-2, HGF, angiopoietin 1, an-
giopoietin 2, VEGFA, IP-10, PDGF, KGF and FGF. AUROC analysis highlighted especially
the potential of angiopoietin 2, a growth factor that belongs to the angiopoietin/Tie sig-
naling pathway [119–121]. Additionally, CCL20, a secreted chemokine detected in HCCs,
promotes blood vessel formation during chronic HCV infection [122]. CCL20 and VEGF
correlate in patients with cirrhosis and HCV-induced HCC, highlighting their potential
as biomarkers for HCV-induced HCC [123–125]. Moreover, the serum level of TIMP-1
has been found to be significantly correlated with fibrosis development in chronic HBV
patients [126]. Interestingly, a previous study demonstrated that TIMP-1 and hyaluronic
acid (HA) are good predictors of advanced liver fibrosis in chronic hepatitis B and D
patients [127] and bases for the earlier mentioned ELF score.

Glypican-3 (GPC3) is an heparan sulfate proteoglycan that regulates cell morphology
via the Hippo/YAP pathway. In a normal liver, the HCV entry factor CD81 interacts
with GPC3 and inhibits the Hippo/YAP pathway. HCV E2 protein mimics the role of
CD81 stimulating Hippo/YAP by engaging GPC3. In a chronically inflamed liver, HCV is
thus likely to promote hepatic neoplasia by the growth of early CD81-negative neoplastic
hepatocytes, which are resistant to HCV infection [128]. Given its upregulation in the blood
of patients with HCV-associated HCC, GPC3 had been suggested as a biomarker [129].

6. Virus-Induced Epigenetic Changes as Biomarkers

Epigenetic imprinting acts as a memory for environmental influences and disease [130].
This has long-term consequences to the cellular homeostasis and pathogenesis relevant
not only for therapeutic strategies but which may also be instrumental to identify specific
biomarkers. Epigenetic modifications comprise DNA methylation and posttranslational
modification of histones, which directly regulates the accessibility of genes to the transcrip-
tional machinery but also posttranscriptional regulation via noncoding RNAs [131]. The
discovery of new epigenetic modulators is paving the way to the identification of new
epigenetic biomarkers for the development of diagnostic and prognostic tools for hepatic fi-
brosis. It has been demonstrated that aberrant epigenetic signatures associated with fibrosis
and HCC are released into the blood stream, providing blood-based biomarkers that could
be used for advancing the diagnosis and prognosis of liver-associated diseases [132,133].
During chronic viral hepatitis, specific DNA methylation patterns in the genes of periph-
eral blood mononuclear cells (PBMCs) suggest a role in the progression of liver disease
to HCC [134]. Methylation of cytosine-phospho-guanine (CpG) dinucleotides island in
regulatory gene elements correlates with the silencing of the gene expression. Thus, a
methylome analysis can identify dysregulated disease-relevant signaling pathways. This
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strategy highlighted a role of dysregulated IL-15, IL-8, as well as nitric oxide signaling in
PBMCs from HBV patients and cirrhotic livers causing reprogramming of the immune
and inflammatory responses [135]. HBV causes a virus-specific DNA methylation pattern
in the hepatocyte DNA [136], which, however, in a study from 2015 on primary human
hepatocytes had only limited overlap with the transcriptional pattern [137]. Circulating
methylated DNA fragments are explored as a noninvasive diagnostic tool for early-stage
liver cancer prevention [138–140]. Interestingly, this also includes methylated fragments of
the SOCS3 gene [139], which is a negative regulator of the IL-6/STAT3 signaling pathway.

Epigenetic regulation of gene expression by HCV has been observed at the histone
level. Such epigenetic footprints have been identified in cell lines and patients with chronic
HCV infection and NASH [141–143], suggesting a lasting dysregulation of signaling path-
ways even after the underlying cause has eased. Indeed, comparative ChIP-seq and
RNA-seq analysis of DAA-cured HCV patients identified epigenetic histone modifications.
These were associated with the dysregulated pro-oncogenic transcriptional pattern, sug-
gesting a persistently dysregulated signal transduction after viral cure [141]. Comparative
analysis with HCV-infected and DAA-cured human liver chimeric mice highlighted an
HCV-specific viral footprint, since these mice do not develop liver fibrosis, which also
involves the STAT3 phosphatase PTPRD [141]. Moreover, a liver fibrosis-specific footprint
of cancer-risk genes has been identified in HCV- and NASH-associated fibrotic patients’
livers [142]. However, a translation of these footprint signatures into blood born biomarkers
is pending.

HCV infection and liver disease largely impact miRNA expression [11], which influ-
ences signaling pathway activity and liver disease progression [17]. Circulating miRNAs
harbor the potential of being developed into minimally invasive biomarkers [144,145]. miR-
NAs are enriched and well protected in extracellular vesicles (EVs) in the blood. Exosomal
miRNAs have been evaluated in clinics, such as miR-122 and miR-21, for the early detection
and prediction of HCC [146], and let-7s for the detection of liver fibrosis in patients with
chronic hepatitis C infection [145,147].

7. Discussion and Perspectives

Although HBV and HCV cause both liver disease progression and HCC, the clinical
challenges differ substantially. HBV infection can only be controlled but not eradicated
because of a persisting chromosome-like cccDNA and genome integration [36]. HCV
infection is now curable; however, chronic infection is leaving an epigenetic footprint
that manifests the dysregulation of the pro-oncogenic signal beyond viral eradication. In
both cases, patients remain at considerable risk to develop HCC over the years, which
highlights the importance of reliable and minimally invasive biomarkers to stratify these
risk patients for tighter HCC screening. A combination of circulating signaling components,
secondary markers (e.g., gut microbiome [148,149]), with noninvasive imaging biomarkers
will hold the biggest potential. However, it is important to remark that although some
of these signaling-linked candidate biomarkers show promising results, almost all of
them are still in development, and only AFP has reached phase V (Table 1). Moreover, it is
generally difficult to draw a line between biomarkers derived from the pro-fibrotic signaling
events and carcinogenesis markers during end stage liver disease. While the dysregulated
signaling and epigenetics in diseased livers partially overlap between etiologies, e.g., HCV
and MAFLD [13,16,141,142,150], hepatocarcinogenesis is a highly heterogenous event even
within a specific etiology [151,152]. This, we need novel concepts, which differentiate
those markers that “simply” predict increased fibrogenesis from those that are definitively
associated with risk of carcinogenesis.
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Table 1. Promising minimally invasive biomarker candidates with links to virus-induced signaling
(HBV, HCV) and predictive of liver fibrosis and HCC. Biomarker research is categorized into phases
I–V [153]: phase V (evaluates the effect of the biomarker screening in the burden of the disease in the
population), phase IV (prospective evaluation of the biomarker to assess its clinical performance),
phase III (testing in patients before their diagnosis to determine the performance of the biomarker in
detecting pre-clinical disease), phase II (testing in patients at high risk to determine the performance
of the biomarker in distinguishing between patients with and without the disease), phase I (discovery
of new biomarkers by investigating gene expression and protein levels in pathological tissue and
patient samples).

Biomarker Specificity Viral Etiology Development
ReferenceStatus

AFP HCC HBV, HCV Phase V [41,46,47,51,52,77,101]

DCP HCC HBV, HCV Phase IV [48–53]

M2BPGi HCC HBV, HCV Phase IV [95–104]

MDK HCC HCV Phase III [81,154]

OPN HCC, fibrosis HBV, HCV Phase III [155–157]

Annexin A2 HCC, fibrosis HBV, HCV Phase II [158,159]

DKK1 HCC HBV, HCV Phase II [81,82,85,86]

GPC3 HCC HCV Phase II [128,129]

HSP-70 HCC HBV, HCV Phase II [57]

PCSK9 HCC HCV Phase II [54,55]

SCCA HCC, fibrosis HCV Phase II [160,161]

TIMP-1 Fibrosis HBV, HCV Phase II [119,126]

Angiopoietin-2 HCC, fibrosis HCV Phase I [119–121]

CCL20 HCC HCV Phase I [122,123]

Endoglin Fibrosis HCV Phase I [112]

VEGF HCC, fibrosis HCV Phase I [119,123–125]

While HCV infection was rendered a curable disease due to efficient direct antiviral
therapies, an important unmet medical need is to identify the fraction of patients with
elevated HCC risk. In future, etiology-specific epigenetic markers, including histone
modifications and miRNAs, will provide new perspectives for translation into correlating
secreted biomarkers, which may be used for personalized approaches targeting specific
groups of patients, e.g., biomarkers for HCC risk in HCV-cured patients.
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