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Originalities in Implicit Computational Complexity. Automatic performance analysis
and optimization is a critical for systems with resource constraints. The field of Implicit Com-
putational Complexity (ICC) [12] pioneers in embedding in the program itself a guarantee of
its resource usage, using e.g. bounded recursion [10, 18] or type systems [8, 17]. It drives better
understanding of complexity classes, but also introduces original methods to develop resources-
aware languages, static source code analyzers and optimizations techniques, often relying on
informative and subtle type systems. Among the methods developed, themwp-flow analysis [16]
certifies polynomial bounds on the size of the values manipulated by an imperative program,
obtained by bounding the transitions between states instead of focusing on states in isolation,
and is not concerned with termination or tight bounds on values. It introduces a new way of
tracking dependencies between “chunks” of code by typing each statement with a matrix listing
the way variables relate to each others.

Having introduced such novel analysis techniques, and, as opposed to traditional complexity,
by utilizing models that are generally expressive enough to write down actual algorithms [20,
p. 11], ICC provides a conceivable pathway to automatable complexity analysis and optimiza-
tion. However, the approaches have rarely materialized into concrete programming languages
or program analyzers extending beyond toy languages, with a few exceptions [7, 15]. Absence
of realized results reduces ability to test the true power of these techniques, limits their ap-
plication in general, and understanding their capabilities and potential expressivity remains
underexplored.

We present an ongoing effort to address this deficiency by applying the mwp-flow analysis,
that tracks dependencies between variables, in three different ways, at different stages of matu-
ration, in their temporal order. The first and third projects bend this typing discipline to gain
finer-grained view on statements independence, to optimize loops by hoisting invariant [21] and
by splitting loops “horizontally” to parallelize them [5]. The second project refines, extends
and implements the original analysis to obtain a fast, modular static analyzer [6]. All three
projects aim at pushing the original type system to its limits, to assess how ICC can in practice
lead to original, sometimes orthogonal, approaches. We also discuss our intent and motivations
behind formalizing this analysis using Coq proof assistant [22], in a spearheading endeavour
toward formalizing complexity analysis.

1. Loop Quasi-Invariant Chunk Detection. Loop peeling for hoisting (quasi-)invariants
can be used to optimize generated code [1, p. 641], and is implemented e.g. in LLVM as the
licm pass. This work [21] leverages an ICC-inspired dependency analysis to provide a trans-
formation method to compilers. It enables detection of quasi-invariants of arbitrary degree in
composed statements called “chunks”. It reuses the mwp’s matricial system and typed data
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flows to generate dependency graphs, to compute an invariance degree for each statement or
chunks of statements. It then finds the maximum (worst) dependency graph for loops, and
recognizes whether an entire block is quasi-invariant. If this block is an inner loop, it can be
hoisted, and the computational complexity of the overall program can be decreased. A pro-
totype analysis pass [3] has been designed, proven correct and successfully implemented using
a toy C parser, and as a prototype pass for the LLVM. This is the first known application of
introducing ICC techniques in mainstream compilers.

2. Improved and Implemented mwp-Analysis. In an ongoing development, we im-
proved and implemented the mwp-bounds analysis [16], which certifies that the values computed
by an imperative program are bounded by polynomials in the program’s input, represented in a
matrix of typed flows, characterizing controls from one variable to another. While this flow anal-
ysis is elegant and sound, it is also computationally costly–it manipulates non-deterministically
a potentially exponential number of matrices in the size of the program [6, 2.3]—and missed an
opportunity to leverage its built-in compositionality. We addressed both issues by expanding
the original flow calculus, and adjusting its internal machinery to enable tractable analysis [6],
and further extended the theory with analysis of function definitions and calls—including recur-
sive ones, a feature not widely supported [14, p. 359]. Our effort and theoretical development
is realized in an open-source tool pymwp [4], capable of automatically analyzing complexity of
programs written in a subset of the C programming language.

3. Splitting Loops Horizontally to Improve Their Parallel Treatment. Our most
recent effort is directed toward program optimization through loop parallelization. Using an
ICC-inspired data flow-based variable dependency analysis, we can reproduce the tour de force

of detecting opportunities for loop fission that have been missed by other standard analyses [21].
In particular, the dependency analysis allows optimizing loops by splitting them “horizontally”,
e.g. from for (int i = 1; i < 10; i++){a[i] = a[i-1] + i; b[i] = b[i-1] + i;} to:

for (int i = 1; i < 10; i++){a[i] = a[i-1] + i;}

for (int i = 1; i < 10; i++){b[i] = b[i-1] + i;}

Our approach can process loop-carried dependencies [11, 3.5.2]–such as the one illustrated
above–and optimizes while loops [5, Sect. 5].—and, more generally, loops whose trip-count
cannot be known at compilation time—that are completely ignored by OpenMP [11, 3.2.2],
and generally present great difficulty and often prevent optimization [5, Sect. A]. Combined
with OpenMP pragma directives, this approach gives a speed-up “as good as” AutoPar-Clava—
which “compare[s] favorably with closely related auto-parallelization compilers” [2, p. 1]—when
both are applicable that can be integrated in automatic parallelization pipelines [5, Sect. B].
Our benchmark, shared at https://github.com/statycc/icc-fission, substantiate experi-
mentally those claims and provides further evidence.

. . . and Pushing Even Further. From there, many other directions can be explored.
Since ICC techniques tend to be designed for simpler program syntax, compiler intermediate
representations present an ideal location and point of integration for performing analyses. Im-
plementing the analysis in certified tools such as the CompCert compiler [19] (or, more precisely,
its static single assignment version [9]) naturally necessitates certifying the complexity analysis,
and we plan to pursue this effort using the Coq proof assistant [22]. The plasticity of both
compilers and of the implemented analysis should facilitate porting our results to support fur-
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ther programming languages in addition to C. As complexity analysis is difficult in Coq [13], we
believe a push would be welcome, and that ICC provides the necessary tools for it.
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