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Han-Mai Lin* and Florence Merlevéde!
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Abstract

In this paper, we study the weak invariance principle for stationary ortho-martingales
with values in 2-smooth or cotype 2 Banach spaces. Then, with the help of a suitable
maximal ortho-martingale approximation, we derive the weak invariance principle for sta-
tionary random fields in L' under a condition in the spirit of Hannan. As an application, we
get an asymptotic result for the L'-Wasserstein distance between the common distribution
function and the corresponding empirical distribution function of stationary random fields.

2020 Mathematics Subject Classification. 60F17, 60G60, 60F25.
Key words and phrases. Invariance principle, Brownian sheet, random field, ortho-martingale
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1 Introduction
Let (X;)icz be a stationary random sequence. If one may represent (X;);cz in the form
X =d;i + G, (1.1)

where (d;);cz is a stationary sequence of martingale differences, and ((;)ez is a coboundary,
which means that it can be written as (; = 6; — 6, with (6;);cz a stationary random sequence,
then one may derive the CLT as well as other limit theorems from the corresponding ones for
the martingale differences (d;);cz. This method is usually called the martingale approximation,
but also known as the Gordin’s method (see [I1]]). Note that as a variation of this method, the
sequence ((;)ez needs not to be coboundary, but suitably normalized still negligible, for instance
in probability. This kind of approach has been developed in many papers. We refer to Chapter 4
in Merlevede et al. [I7] for a survey concerning Gaussian approximation via martingale methods.

In this paper, we will use an adaptation of the martingale approximation method to prove
the CLT and its functional form for the partial sums associated with multi-indexed sequences
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(also called random fields) with values in some Banach spaces X'. Let us first recall some recent
results concerning the limiting behavior of the partial sums associated with random sequences
in Banach spaces.

Let (2, A,IP) be a probability space, T be an invertible bi-measurable measure preserving
transformation on €. Let F C A be a o-algebra such that 7' C F, and define a non-
decreasing filtration F; = T~%(F). We also define the stationary sequence of random elements
X = (Xi)iez by X; = XgoT'. Let X = L'(R, uu), where u is a o-finite measure on the real
line, and L= (R, i) be its dual space. When (X;);cz is a L'-valued stationary ergodic sequence
of martingale differences (m.d.s.), Dede [4] proved the following CLT: If

/R 1Xo(8)], dt) < oo, (1.2)

then

1 < :

— Y XoT'=,,,GinL" 1.3
Here and along the paper, = stands for the convergence in distribution and G is a centered
Gaussian random variable with covariance operator Kx (see definition [3.1)). Then, with the help
of a martingale approximation, she extended the CLT to stationary and ergodic sequences of
regular random elements with values in L*(R, u) provided that (1.2)) holds and

> [ IR @)t < (1)

where Py(-) = E (|Fo) — E(-|]F-1). Her condition is in the spirit of Hannan’s condition [13].

Later, Cuny [2] has proved the CLT and its functional form for stationary and ergodic
sequences of m.d.s. with values in more general Banach spaces than L', namely cotype 2 or
2-smooth Banach spaces. Next, again with the help of a martingale approximation, he derived
sufficient conditions in the spirit of the Maxwell-Woodroofe’s condition [16] ensuring the weak
invariance principle for a stationary and ergodic sequence with values in either 2-smooth or
cotype 2 Banach spaces. Note that when applied to the L!'-space, his condition and have
a different area of applications.

The first aim of this paper is to generalize the functional CLT for martingale differences
sequences with values in some Banach spaces as stated in |2, Prop 3.2] to higher dimension in
the sense of multi-indexed sequences. Since there is no natural ordering in higher dimension, we
choose to use the notion of completely commuting filtration (see Section [2|for a definition of this
notion). It follows that the generalization of |2l Prop 3.2] will mean extending the functional
CLT to ortho-martingale sequences with values in a 2-smooth or cotype 2 Banach spaces (see
Section . Then, in Section , with the help of a suitable ortho-martingale approximation, we
derive a functional CLT for L'-valued stationary random fields. As in [4], our conditions are
in the spirit of Hannan’s condition. Hence, our theorem can be viewed as a generalization
of the results stated in [4] in two directions. First, it proves the functional form of |4, Th 2.3].
Secondly, it extends it to multi-indexed random sequences. As an application, in Section [3]



we give asymptotic results for the L!'-Wasserstein distance between the common distribution
function and the corresponding empirical distribution function for stationary random fields.
Section [6]is devoted to a suitable maximal ortho-martingale approximation in 2-smooth Banach
spaces and has interest in itself. All the proofs are postponed to Section [7]

2 Notations and definitions

We will use the same notations as in [3] and [I9]. We shall consider Banach-valued random fields.
Hence, in all the paper, (X, |-|;) will be a real separable Banach space. We denote by X the
topological dual of X'. We shall also denote by L°(X’) the space of functions from Q — X that
are limits P-a.s. of simple functions. In addition, for every p > 1, we define the usual Bochner
spaces LP as follows

LP(Q, AP, X) = [P(X) = {Z € L°(X) : E(|Z[5) < o0} .

For every Z in LP(X), write [|Z][, , = (E (|Z|p)P = [1Z]|l,- To define now random fields, we
start by introducing Z? actions. With this aim, we denote elements of Z¢ by i := (iy ... ,iq). Let
(T3),czq be a Z% action on (2, A,P) generated by commuting invertible and measure-preserving
transformations {T,,...,T.,}, where, for 1 <i < d, ¢; is a Z¢ vector with 1 at i-th place and 0
elsewhere. We denote those transformations by {T(l), e ,T(d)}. By U; we denote the operator
in LP(X) (1 < p < oo) defined by U;f = foT;. We assume that the filtration (Fj)geza is
completely commuting, i.e. there exists a o-algebra F such that F; =T, F, for i < j we have
Fi CFj (2 < j means i, < j, for all 1 < ¢ < d) and for an integrable X, we have

id) |‘E1 ----- jd) =E (X|‘Fi1/\j17---id/\jd) )

-----

where ¢ A j = min{i,j}. Note that a filtration defined by an independent and identically
distributed (i.i.d.) random field is completely commuting. This kind of filtrations can also be
constructed using stationary random fields with independent rows or columns (see [10]).

For a fixed ¢ € {1,...,d} and a fixed ¢ € Z, we denote by ]—"(Z(q) the o-algebra generated by
all F; with i such that i, < £. For every 1 < ¢ < d, define also F\9 = A,_, F\, and Fo, =

VieZd‘Fi'
" For o-algebras G € F C Aand 1 < p < 00, we denote by LP(F,X) S LP(G,X) the

space of X € LP(F,X) for which E (X|G)
LP(FP X))o LP(FY, X) by P(X) = E(X ]Féq ) —E(X|F”). Those operators commute and
for 0 # k, Pe(q)Pqu) = 0 (see [20, Lemma 2.4]). We now define the projections P; = P( ) Pi(dd)
onto Mcgea L)), ) & D(FL, X).

. We can define projection operators Pz(q) onto

Definition 2.1. Let X € LY(X). The stationary random fields (Ui X )ieza is said to be reqular
if X is Foo-measurable, and for every 1 < q <d, E(X|.7-"£qo)o) =0 a.s.

Next we give the definition of ortho-martingales.



Definition 2.2. Let D € L'(X) . We say that (U;D);cza is a field of ortho-martingale differences
with respect to a completely commuting filtration (F;);eza, if D is Fo-measurable and for all
1,j € 7%, such that j, < i, for some q € {1,...,d}, we have

E(DoTiF;) = 0.
In addition, M,, = 7" ---> " Do is said to be an ortho-martingale.
Since our results are stated for random fields in Banach spaces that are 2-smooth or of cotype
2, let us recall their definitions from [2]. We say that X" is 2-smooth, if there exists L > 1, such

that
x4y + |z —yl3 =2 (x> + Lly%) Vr,y € X. (2.1)

For a such L, we say that X is (2, L)-smooth. We shall also recall the following inequality for
m.d.s. in 2-smooth Banach space (|I, Prop 1]): Assume that & is (2, L)-smooth, then for every
m.d.s. (D;)iez, we have

N
E(|Dy+---+Dyly) <2L*Y E(|D;3) forall NeN. (2.2)

i=1

For example, for p > 2 the spaces LP(R) are (2,+/p — I)-smooth. As a counterpart, we recall
that a separable Banach space X is said of cotype 2 if there exists L > 0 such that for every
independent random variables dy,...,dy € L*(X), with E(d;) = ... = E(dy) = 0, holds
in the reverse direction. As an example, note that for 1 < p <2, LP(R) is of cotype 2.

3 Functional CLT for ortho-martingales in Banach spaces

Let X be a random element from 2 to X'. Define its associated partial sum S,(X) by

Sn(X):i---iU,-X.

=1 ig=1

In addition, for t = (t1,...,t4) € [0, 1]¢, we set

1
T (X) = ———— S (X)), 3.1
where [nt] = ([nit1], ..., [n4ts]). Before stating the main result of this section, as in 2], we need

to recall the definitions of Gaussian and pregaussian random elements.

Definition 3.1. Let K be a bounded symmetric bilinear operator from X* x X* to R. We say
that IC = Kx s the covariance operator associated with X if

Vot yt e X K(z*,y*) =E[z*(X)y*(X)].

4



Definition 3.2. The random variable W € L°(X) is said to be Gaussian if, for every r* € X*,
x*(W) has a normal distribution. We say that a random variable X € L°(X) such that for every
r* € X*, E(2*(X)?) < 0o and E (2*(X)) = 0, is pregaussian, if there exists a Gaussian variable
W € LX) with the same covariance operator. We denote by G(X) the Gaussian variable
having the same covariance operator as X.

Definition 3.3. Let G(Q2, A, P, X) = G(X) be the set of pregaussian random elements that are
in L*(X). For every X € G(X), denote || X|gx) = I Xlox + 1G(X) ]l 2-

We are now in position to state the functional form of the CLT for sequences of ortho-
martingale differences with values in some Banach spaces as well as a L2-maximal inequality for
the corresponding partial sums. Below and all along the paper, n — oo means min(ny, ..., ng) —
00.

Theorem 3.4. Let X be a real separable Banach space that is either 2-smooth or of cotype
2. Let D € L*(X) be such that (UD), 5. is a field of ortho-martingale differences w.r.t. a
completely commuting filtration <Fi)iezdi Assume in addition that D € G (Fy, X) and that at
least one of the T(; for 1 < i < d is ergodic. Then, as n — oo, {T@(D)}ze[o,l]d converges in
distribution in D([0, 1], X) (equipped with the uniform topology) to a Brownian motion (Wy)e(o 14
with covariance Kp associated with D. In addition, there exists C' > 0, such that

max |Sg(D)

1<k<n |X

< C(m--1a)' 1Dl gy - (3:2)
2

4 Application to stationary random fields in L'

In this section we consider (S, S, ) be a o-finite measure space such that X := L'(S,S, u) is
separable. Recall that L'(S, i) is a Banach space of cotype 2. Let L>(S, i) be its dual space.

In all this section, X is a random variable in L°(Q2, A, P, L*(S, i) and (F;)seze with F; =
T_;F is a completely commuting filtration. Let also X; = U; X.

Theorem combined with a suitable ortho-martingale approximation (see Proposition
stated in Section []) leads to the following result.

Theorem 4.1. Assume that X is reqular,

/S 1X ()1 i(ds) < oo, (4.1)

and

> [ IRl ) < . (12)

iCZ4



Then there exists a stationary random field of ortho-martingale differences (U;D);cza w.r.t (F);ezd
such that D € G(Fo, L'(S, i) and

\/nl---nd ‘\/nl".nd

o SUX(s)  SD(s)

max
1<k<n

p(ds) = 0. (4.3)

2

Suppose, in addition, that at least one of the transformations T for 1 < i < d is ergodic, then
{T4(X),t €[0,1]"} =00 W in D([0,1], X), (4.4)

where W is a X-valued centered Brownian motion with covariance operator Kp that can be

defined as follows: for all f and g in L*(S, ),

Ko(f.9) =E(f(D)g(D)) =) > Cou(f(Xy), g(Xy)). (4.5)

i€Zd kezd
Remark 4.2. Note that by [2, Lemma 2.4], condition (4.1]) implies that X € G(L'(S, p)).
Next result gives sufficient conditions for (4.2)) to hold.

Corollary 4.3. Let X := (X})peza be a reqular centered random variable in L°(Q, A, P, L*(S, 1)),
such that [ || Xo(s)|, p(ds) < co. If the following conditions hold:

> [ = BT () < . (46)
and o
1
5 [ S () — B (o) Bl ) < @)

then (4.2)) is satisfied.

Comment 4.4. Using Proposition a similar result as Theorem can be obtained when
X e L°(Q, AP, X) where X = LP(S, ) with p > 2. More precisely if || Xoll2.x < oo and

1/p
3 ( / |P0<Xi<s>>|pu<ds>) < oo, (48)
i€Z4 S 2
then
d
lim [[n "2 sup |S, — M, =0,
n_moil_‘[ i 1§EE@| k E|X )

and the convergence (4.4)) holds in X.
When p = 2, using Lemma adapted to dimension d with u; = ||[|P-;(Xo)||z2||2 and the



fact that L? is 2-convex, we infer that (4.8) holds provided

Z Z\/ﬁ“HE “7:0 HL2H2<OO

11=1 ig=1

and
>y #HHL — E(Xi()F) 2], < -
i1=1 ig=1

Note that if Xo(s) = Y .cqa aiY—-i(s) where (Y;);eza is an ortho-martingale differences, (4.8)
holds as soon as .
[Yolly p < 00 and » la;| < oc. (4.9)

i€Z4

Our condition (4.8)) and condition (3) in [2] have a different range of applications. For instance
(4.9) is not enough for [2, Condition (3)] to hold.

5 Application to empirical processes

In this section, S := R and g is the Lebesgue measure on the real line denoted by A. Let
Y € LYQ, Fy,P, LY (R, )\)). For every i € Z¢ we define Y; := U;Y and for every s € R,
Xi(s) = ly,<s — F(s), where F(s) = P(Y < s). Let S,(X)(s) := le Ll Xi(s). We
also denote by F), the empirical distribution function of (Y});cz4:

Vs e R F,(s) = - ! Z Z Ty, <s-

111 tg=1

We are interested in deriving the asymptotic behavior of

J

Note that (5.1)) is the L'-Wasserstein distance between F the distribution function of Y, and F,
the corresponding empirical distribution function.

1
——Sn(

nl-..n

) ds = / IFy(s) — F(s)|ds. (5.1)

The following result is a direct application of Theorem [4.1] combined with Corollary [4.3]

Corollary 5.1. Assume that Y defined as above is reqular and that

/ VF(s)(1— F(s))ds < oo (5.2)

and

Z Z ﬁ/ P (Y; < s|Fo) — F(s)]l,ds < oc. (5.3)

i1=1 ig=1



Suppose, in addition, that at least one of the transformations T(;) for 1 <1 < d is ergodic. Then
Then {s — \/ni - ng(Fa(s) — F(s)),s € R} converges in L1 to a centered Gaussian random
variable G, with covariance operator KC,, defined by: for every f,g € L*(R,\):

u(f,9) = ZE(//f ) (Tyyes — F(s)) (Ty,<e — F (1)) dsdt).

v/

In particular, as n — oo,
Vi [ 15 - Folds = [ 166 ds.
R R

Note that by Remark [4.2] condition (5.2) implies that Y € G(Fo, L*(R, A)). Next we give a
b.3)

sufficient condition for (5.3)) to hold, in terms of dependence coefficients. With this aim, in the
spirit of [9], define
¢(i) = sup [P (Y; < s[Fo) =P (Y; < 5] - (5.4)

As a direct application of [5, Prop 2.1|, we get the following proposition:
Proposition 5.2. Condition (5.3 holds as soon as (5.2)) holds and

Z Z (i) < oo. (5.5)

i1=1 iq= 1

Comment 5.3. Note that by Item 3 in [9, Lemma 2/, we get that if the distribution function F'
of Yy is continuous then
o(i) < K [|F(Y;) - F(Y])

a

o (5.6)
where Y™ is a random element distributed as Y and independent of Fy, and Y;* :=Y* o T;.

6 Ortho-martingale approximation in Banach spaces

The following result allows to derive a useful ortho-martingale approximation in 2-smooth Ba-
nach spaces. It is an extension to multidimensional index sets and to 2-smooth Banach spaces of
the estimate (3.3) in [7]. It can also be viewed as an extension in several directions of [21, Th. 1
(ii)] and gives a more precise estimate than |7, Theorem 8|. Below (F;);cz« defined by F; = U, F
is assumed to be a completely commuting filtration and denote by X; = U;X. By min;(n) we
mean the infimum of all possible different products of size i constructed from {ni,...,ns}. So,
for instance, miny(n) = ny A--- Ang, ming(n) = nyng A+~ Angng A -+ Ang_1ng, and so on.

Proposition 6.1. Let X' be a (2, L)-smooth Banach spaces. Let p > 2 and Xy be a regular r.v.
with values in X such that ||| Xo|x||, < co. Assume that

> IP(Xlxlp < oo (6.1)

€74



Then setting Dy, = Y50 Pr(Xi), (Di)peza are stationary LP(X) ortho-martingale differences
with respect to (Fi)reza and the corresponding ortho-martingale My, = Y " - 225:1 Dy, satis-
fies the following mazimal inequality: there exists a positive constant C' only depending on (L, p)

such that for any positive integers nq,...,nq, m and for any positive real X > m,
d
—1/2
[Tn™"| sup |Se— M, | <C SYOY IR,
i=1 n 1=1 |k;|>m k\{k;}€Z-1
A 23
2 —1
+ 0 Zm (mm 57+ mmyearas) (1Xalall + 1 Dalxll)
d—1 1
+CO ) m* DL (11Xl Lttt I + Dol Lgputsessimatat ) - (6:2)
i=1 1=

The proof of this result is posponed to Section

7 Proofs

7.1 Proof of Theorem [3.4]

The idea of this proof is essentially the same as the proof of |2, Prop 2.3|, except for the
convergence of finite dimensional laws.

We first prove (3.2). By the Caroli’s strong (p,p) inequality for ortho-submartingales [14]

Th. 2.3.1], we have
2

< 2 [[1Su(D)l; -
2

s 15u(D)l

Assume first that X" is (2, L)-smooth, then applying (2.2)) to each index, we derive

lSu(D)Rl2 < 2223 - S R (D)

=1 ig=1

Recall that any 2-smooth Banach space is of type 2. Therefore holds by stationarity and
the fact that, in Banach spaces of type 2, the norms |[-[|gy) and ||-||, y are equivalent (see [15,
Prop 9.24]).

Suppose now that X is of cotype 2. Since D is assumed to be pregaussian, so is S, (D). In
addition, by the orthogonality of ortho-martingale increments, we get G(S,(D)/y/n1 - nq) =
G(D). Hence by [15, Prop 9.25], we deduce that

1Su(D)lly 0 < CNGSu(D)y 0 = Cvia - na |G(D)lly 0 < O/ nal|Dllga,



This ends the proof of (3.2)).

Now we prove the functional central limit theorem by first proving the tightness and then
the convergence of finite dimensional laws. For the tightness, the idea in [2] Proof of Prop 3.2
also applies in higher dimension. For reader convenience, let us give the details.

Since X is separable, then o(D) is countably generated. Thus there exists an increasing
filsration (G, )men+, such that G, is finite for every m > 1 and o(D) = {5, Gm- We set

D,, :==E(D|G,,). Since Qm is finite, there exist A{™, ... A,(c:) € G, and 2{™ ... (m) € X such
that D,,, = > ;" xk A0 Using [2, Lemma 2.3], we have

Now, setting 3
Dy, .= Py(Dy,) .

One can see that (UiDm)l‘ezd is a sequence of ortho-martingale differences with respect to
the completely commuting filtration (F;);cz. Then using [2, Lemma 2.2| and the fact that
E(D|F-.,) =---=E(D|F_.,) = 0, we deduce that (U;D,,);>1 converges in G(X) to D.

By [3l Theorem 1|, for every m > 1, {(nl . .nd)71/25[nt](l~)m)} o is tight in D([0, 1], X).
- te[o,1

Indeed Dm takes only a finite number of values and therefore we can work on the finite dimen-
sional vector space generated by these values. Note that Theorem 1 in [3] is stated for reversed
ortho-martingale differences, but it is also obviously true in case of ortho-martingales in the
usual sense. Now, by , we deduce that

1 .
0st21 nl---nd< o) (D) = Stag( )) AL
1 .
T g |15k (Su(Dm) = (D)), 2
<(JHD —DH 5 0asm — 0.

G(X)

Hence the tightness of {(n; -- ~nd)_1/25[m](D)}t€[0 o follows (see [2, Lemma B.1]).

We turn now to the proof of the convergence of the finite dimensional laws. Recall the
notation for T,,;(D). When no confusion is possible, we will denote T,:(D) by T,:. Let
tk) = (tgk), o ,t&k)). Our aim is to prove that for any m > 1 and any (0,0,...,0) <tM) < ... <
tm < (1,1,...,1),

(TM(I), . 7Tm(m)) = (Wt(l)’ . ,Wi(m)) s (71)
where (W3),cp0,17¢ is a Brownian sheet with covariance operator Kp. For reader convenience, we
shall give the complete proof in case d = 2, noticing that the general case can be proved by

induction. Since either T(yy or T(y is ergodic, let us assume from now that 7\, is. Using the
Cramer-Wold device, it is sufficient to prove that for any m > 1, any (0,0) <t < ... < ¢ <

10



(1,1) and any z7,-- -z € X*,

m m

ij (T@(i)) = ij (Wt(i)) . (7.2)

i=1 i=1

With this aim we shall use similar arguments as those developed in |3, Section 3.2| and, in a sake
of clarity, we shall give most of the details. Notice first that > | 27 (T}, ) can be written as a
weighted sum over disjoint and adjacent rectangles. Hence proving is equivalent to show
that for any positive integer m, any 0 =tg <t; < ---<t, <1,0=50< 8 <--- < S, <1 and
(@] 1<ij<m € X

m m [n1ti] [n2s;]
1 *
Vins 1= 2 Z DY >, Doy
=1 j=1 k=[nit;i_1]4+1 l=[nas;_1]+1 (73)
= Z Z x:j (Wti,Sj + Wti,17sj~,1 - Wti,ijl - th‘fhsj‘) )

as ny Ang — oo. Notice that the random variable on the right-hand side is distributed according
to N'(0,0?%) with
O'2 = Z (tz — ti—l) (Sj — Sj—l) E (ZL‘;](D)Q) .

i=1 j=1

Clearly, it suffices to prove the convergence (7.3]) when ny, ny — oo along any sequence (n,, N, ),>1.
Hence, let us fix a sequence (n,, N,),>1 such that n,, N, — oo as r — oo. It remains to prove

that
1 m [nrt;] [Nrsj]

Vr= m;;% > Y. DoTy | = N(0,0%. (7.4)

k:[nrt¢,1]+1 e:[Nfrsj‘,lH»l

As in [3], the proof of is based on the usual central limit theorem for triangular arrays of
martingale differences due McLeish (see [12, Theorem 3.2] for an easy reference). The rest of
the proof then follows the lines of [3, Section 3.2] by noticing that sup;<; ;<,, | a:;f‘,j(D)H2 < 00
and the following modification of |3, Lemma 4].

Lemma 7.1. Let A; = Y77 (s; — s;1)E (2;;(D)?) and ¢ > 0 . If Ty, is ergodic, there ewist

integers v > 0 (large enough) and p(v) (large enough), such that for every n > p(v)

[ns;] 2

ST Y wmen) - <= (75)

k=1 ]:1 K:[n5j71]+l 1

Proof of Lemmoa . Note first that for any fixed 7, j € Nand k£ € Z, we have that (l‘;k](D) o TW)KEZ
is a sequence of martingale differences with respect to the filtration <}}(2)>£ . Let dy (i, j) =
€z

11



x} (D) o T}, and define

17]

Dy(i,§) = (di,e(i, 5), .., due(i, )"

Note that (Dy(i,7)),, is a stationary and ergodic (since T{) is ergodic) sequence of R-valued
martingale differences. Therefore from the functional form of the central limit theorem for R"-
valued stationary and ergodic L? martingale differences, we get that for any positive integer m,
and any 0 <s1<...<s5, <1

[ns1 [nsm]

]
1 1
_ZDK(ZL])aa_ Z D€<Z7j)
\/ﬁ /=1 \/ﬁ {=[nsm—1]+1
converges in distribution to (G, ..., Gy, ), where (G, )1<u<m are independent and centered Gaus-

sian random variables with respective covariance matrix
o . . 2
E (GgGZ) = (sp— s0-1)E (Dl(z,])Dl(Z,j)t) = (S¢ — Sp—1) Hx”(d)H2 Id,

and for any 1, j, k, (n‘l mMax,<p (Z;le dk’g(i,j>>2)n>1 is uniformly integrable. In particular, we
have B
[ns;]

1 & i}
NG YD an(d)oThy (7.6)
j=1 Z:[n5j71]+1 1§k§v
converges in distribution to (NVi)i<k<, where Ny are i.i.d random variables with common distri-
bution N <0, Sor(s; = sj1)E (2] (d)2)> Now using the notations

,J

[ns;]

UL |
Fign=)_ 7 > ap(d)oThp and Vigy = Fy, — A,
Jj=1 n l=[nsj_1]+1

note that A; = E (F?, ) = E(N}). To soothe the notation, we will drop the index i in the rest

of the proof. Let ¢ > 0, M > 0 and define

1 — 1 — 1 — 1 —
A=E|=) Vil (‘—Zv,m §g>  B=E|-) Vil <5< =Y Vin §M>'
v k=1 v k=1 v k=1 v k=1
and
1 & 1 &
C=E ;men(;ZVkm >M>'.
k=1 k=1
We have

E <A+B+C.

1 v
;;Vk,n

12



Clearly A < e. Next,

B§MP<

%;Vk,n > 8)

Since (Fjxn)i<k<o = (Nk)1<k<v, we get that, for any € > 0,

1 o I .9
IP’(;ZVM >g> —>n_>OOIP<;;N,€—Ai

k=1
which converge to zero as v — oo by the law of large numbers.

M

Let us now deal with C. Letting hy(z) = <|x| - 7) , where z, = x1,-0, and noticing
+

that || Lizj>m < 2k (), we get

C <2E <hM (%ZVM>> :
k=1

Since hy; is a convex function, we deduce that
1 v
C<2- > B (har (Vi) -
k=1

But since for cach ¢ and k, (F?

i,k’n)n> | 1s an uniformly integrable family,

lim limsupE (hp(Vin)) = 0.

M—=oo p oo

So overall the lemma follows by letting ¢ — 0. O]

7.2 Proof of Theorem

By applying Proposition [6.1]to Xy(s) and X = R, it follows that there exists a positive constant
C' only depending on (L, d) such that for any positive integers ny, ..., nq, m and for any positive
real A > m,

13



< C’Z Z Z /HPk; (Xo(s))l, pu(ds)

=1 |k;|>m k\{k;}ezd—1
d

O3 5+ 55) [ (¥l + 1Dalo)l) )

=1 "%

(n1 -~ na) /2 s | max S,(X(s)) = Su(D(s))l|2p(ds)

2d
+0m /S (HXﬁl{\Xg(s)|>Auxg(s>|\z}||2 + DQ(S)1{|Dg(s)|>x||Dg<s>||2}”2>/‘(d5)
= [1 -+ [2 -+ [3 .

Letting first n — oo, then A — oo and after m — oo, the R.H.S. is tending to zero. Indeed,
I; is tending to zero as m — oo by taking into account condition . 15 is tending to
zero by letting first n — oo, then A — oo and by taking into account that (| . implies that
S 1Do(s)||214(ds) < oo. Finally, I3 is tendlng to zero by lettlng A — oo and using dominated
convergence theorem and conditions ) and (4.2). Hence ) holds. Then the convergence
in distribution follows by using together with Theorem Next to prove ([4.9]), as in
the proof of |3, Th 8] we use |3, Lemma 7|. Hence it suffices to prove that for any f € L>(S, u)

we have

Z [ Po(f (X)), <

icZ4
which is implied by (4.2)). Note that [3, Lemma 7] is stated for reversed ortho-martingales, but
it holds also for ortho-martingales in the usual sense. ]

7.3 Proof of Corollary

For the sake of clarity, we shall give the complete proof in the case d = 2 (the case d > 2 can
be proved with similar arguments). We shall need the following lemma, whose proof follows by
applying two times [0, Lemma 6.1].

Lemma 7.2. For any double indexed sequence (u; ;)i jen of non-negative numbers, there exists
a positive constant C' such that

Sy I8y

=1 j=1 i=1 j=1 k=i (=j

14



From Lemma [7.2) with w; ; = || P_; —j(Xo,0(5))]l,, we get:

ZZ/H 5 (Xoo(9))], 1(ds) <CZZ/<”ZZHP—IC (Koo )>|,2> QMS,

i=1 j=1 i=1 j=1 k=i {=j

But by orthogonality and regularity

ZZHP—k ~(Xoo(); =

k=i {=j

ZP—k —e(Xoo(s )

k=i {=j

||]E(Xi7j(3)’-7:0,0)|| :

Hence
ZZ/IIP—Z —i(Xo,0())ly u(ds) <CZZ/\/—I|E 1i(8)|Fo.0) |l u(ds) -
=1 j=1 i=1 j=1
which is finite by condition (4.6]) in case d = 2. It remains to prove that:
zz/mo” Montds) < o0, 33 [ 1ol X s latds) <o, (07
i=1 =0 j=1

and

S5 [ 1Al sl uta) < 79

=0 5=0

By Lemma [7.2] again,

oo oo 1/2
ZZ/”Poo ii—5(8)lly n(ds) < ZZL( Z ZHPk “o(Xools )Ib) u(ds) .

k=i+1 l=j
(7.9)
But, for any 5 > 0, by stationarity,

D> NP Xoo(s); < Z Z 1P—e(Xoo())ll3 < D IPH X_imi()I -

k=i+1 {=j k=it+1l=—j k=1 f=—

Next, by orthogonality,

[e's] 0 2
SN P X))l = Z Z Proo(X-i—(s))
k=1 f=—c0 k=1 l=—c 2

15



But, note that,

X_imi(s) = B(Xi ()| Foo) = DD PralXij(s))

k=1 (=1
0 00 e’} 0
+ 3D PeeXei () YD Pl X 4(s))
k=—o00 (=1 k=1 f=—o0
= [1 —|— [2 + Ig .

Hence, by orthogonality, it follows that
1X i —5(s) = B(X i ()| Foo)lly = I1Ll5 + %2115 + 1 7515 -

So, overall,

D D 1Pe—eXoo())l; < Islly < 1X—i—s(s) = E(X—im ()| Fo0) I - (7.10)

k=i+1 (=j

Therefore, starting from and taking into account (7.10), it follows that the first part of
holds provided condition (4.7) (in case d = 2) is assumed. Using similar arguments, we
derive that the second part of as well as are satisfied provided holds. This ends
the proof of the corollary in case d = 2. ]

7.4 Proof of Proposition 6.1

In the proof the notation ¢ < b means that there exists a universal constant C' (here only
depending on (L, p)) such that a < Cb.
For reader’s convenience, let us consider the case d = 2. In this situation (6.1 reads as

> Poo(Xig)llly < oo (7.11)
ijez
Then Dy =3, icp Pro(Xij). (Dre)re is a stationary LP(X) ortho-martingale differences with

respect to (Fi,¢)k0ezz and the corresponding ortho-martingale M, ,, = >, Z;‘il D, ;. Next
(6.2) reads as: there exists a positive constant C' only depending on (L,p) such that for any
positive integers ni, no, m and for any positive real A > m,

16



(n1na)"/?|| sup |Ske—Mkz|XH
1<k<ng
1<e<ny
<C Y MPwXKoo)lxly+C D Pus(Xoo)lxlly
|u|>m,veZ u€Z,|v|>m
som (ot Y (ool + 11 Daolal)
m
m3
O o A ) 7 (H‘XO0’X1{|X00|x>>\|||X00|X||p}Hp+ 119002 1410,01: > 1Do ol )}
(7.12)
To prove (7.12)), we proceed as follows. Since X is regular, we can write Xy o = Zmez P, ;(Xoy)-

Let m be a fixed positive integer, and define

2m—22m—2 m—1 m—1
0o =D, > D D PulXu) and 67 =07 o T,y
k=0 ¢=0 i=k—m+1j=f—m—+1

By simple algebra we have

1:=003 — 670 — 657 + o
2m—1

m—1 m—1
= E § Pké XOO
k=—m+14f=—m+1

2m—1 m—1

DIEDY

u=1 j=—m+1

Z ZszXOv

i=—m+1 v=1
2m—12m—1

+ 3 Pon(Xuw

u=1 wv=1

On another hand setting

2m—12m—-2 m—1

=3 > Y PuddXun) and g =g o Ty

u=1 b=0 ¢=b—m—+1

and
2m—12m—2 m—1
g =3 D Y Pun(Xew) and B = h{y o Ty,
v=1 a=0 k=a—m+1
we have
2m—1 m—1 2m—1
N DIENERED SENER Y
u=1 j=—m+1 v=1

17



and

2m—1 m—1 orn—1
2 ( 2 Pin(Xow) = 2 P ka)=héf'8)—h§fz).

v=1 i=—m+1

So, overall, for any positive integer m, the following decomposition is valid:

Xo0 = Doo © T =T+ (g5 — g5 () + (R — h{))
+Yoo! = 288, (7.13)

where we used the following notation:

Yy = > Pyo(Xop) and 237 = > Proym(Xuw) -

7 (k,0)€Z2\[—m+1,m—1]2 (u,0)€Z2\[1,2m—1]2

Let Rng = Sk7g — M]%g. We then derive that

k 4
Rig==>_Y (Dij—DijoTnm)+ (05 — 9;&@1,1 - 9%11 + 91&?1 +1)
=1

= j:l
k l
+> () =gl + Y (Y = h )
i=1 j=1
k l
+ZZY(O 0Ty — Y Y Z§ oT;.
i=1 j=1 i=1 j=1
Therefore
k V4
| max [Ruel o, < || max | 3> (D Tmm)!XHp+4 (67 !pr
1<0<ng 1<t<ng i=1 j=1 1<£<ng+1
k y4
m) (m)
SRR RS F WL VIN |
<ngt+1l  i=1 no j=1
l k l
e ZZYO( mas |20 A o Tl - (719
<ng i=1 7=1 =1 j=1

Let YZ(Jm) = YO(,B”) oT; ;. Since Xg is regular,

=3 P (V).

uWEZ

18



Hence

k l
(m)
max E g E max g E Py v i (Y .
1<k<ng 73 ’ - 1<k<nj u=nv J( 1,7 )X »
1<t<ng  i=1 uWEZ  1<t<ng =1 j=1

Denoting by Uy, = ‘ZZ ) Z] L Pu—i— ](Y(m))‘ , note that (Uge)re is a ortho-submartinagle
X

w.r.t. the completely commuting filtration (Fj,)re. By [14, Prop. 2.2.1], it follows that

(maxi<k<n, Uke)e>1 and (maxy<s<n, Uks)r>1 are both one parameter submartingales. There-

fore, for any fixed pair (n,ny) of natural numbers, applying twice Doob’s maximal inequality,
max

1<k<ng ZZY ‘ S( —1) ZH‘ZZPUMJ ))X

1<t<ng =1 u,vEZ i=1 j=1

Next, since X is (2, L)—smooth, using twice I8, Th. 2.6] (see also [8, Th. 2.2]), we get

ni ng n1 no
1> Pu—im*j(y;gn))‘x ; <> I3 Pufi,vfj@éf;”))‘x
i=1 j=1 purll

p

2

p
ny n2
<SS P (V)12
i=1 j=1
Hence, by stationarity,
k 14
max |33 V| | < vimn Y 1Pl
1<t<ng i=1 j=1 u,VEZL
Since P, ,Py(-) = 0 for (u,v) # (i,7), it follows that
k 4
Y(m)’
max | > Vil ||
1<t<ng =1 j=1
< vama( Y S MPueXoo)lxly + > D I1Pu(Xoo)lxlly) - (7.15)

|u|>m veZ u€Z |v|>m

Similarly, we get

kL
max [ SN2 || < v Y Pw(Xu)lel
1<¢<ng  i=1 j=1 (u,v)€Z?\[1,2m—1]?

19



implying that

k
max

l
max | >3 27

1<t<ng  i=1 j=1

< ng( S S P Kool + 30 3 NPwe(Xop)lally) - (7.16)

|u|>m vEZ U€Z |v|>m

We handle now the first term in the R.H.S. of decomposition ((7.14]). Note first that

k 4 m k+m l+m
22 (Dig=DisoTum) =3 % Dij= 3 > Di
i=1 j=1 =1 j=1 i=k+1j=m+1
k m k l+m
+ 33 D= > 3 Dby (1.17)
i=m+1 j=1 i=m+1 j=~0+1

Since for j fixed (D; ;); is a martingale differences sequence, (‘ Z§:1 D, ; ‘X)Z is a submartingale.
Then, by stationarity and Doob’s maximal inequality,

m l n9
p
- < _r ,
I [0l ] <2550,

P
Next, using that X is (2, L)-smooth and [I8, Th. 2.6] , we derive
m ¢ 2 n2
2 2 2 2
|5 s [0 0u ], < m* D012l < Dol ol (7.18)
Similarly, we obtain
- 2 2 2
H max Di,j H <m 7’L1|||D07oygg||p . (719)
mA1<k<ng | xllp
J]= =m

To deal with the quantity coming from the second term in the R.H.S. of (7.17)), we first note

20



that for any positive real A,

k+m {4+m
max

1<k<nq Z Z

1<t<ng i=k+1 j=m+1

.l

k+m €+m

max E ‘
1<k<nq

1<t<ng i=k+1 j=m+1

1
{maX1<1’<n2 |Z] m+1

k+m l+m

max E ’ E
1<k<n;

1<t<ng i=k+1 j=m+1

{maX1<I<n2 |ZJ m+1

The first term in the R.H.S. is less than 4mA/n, whereas to deal with the second one we note
that, by stationarity,

k+m l+m

max g ‘ g D;;
1<k<nj

1<t<ng 1=k+1 j=m+1

p
¥ {maX1<z<n2\ZJ o1 Dijla>4Ay/mz} »

l4+m »
P .
<nm 122%2 Z DO,] Xl{max1§g§n2 ‘Zfiﬁ+l Do, j|x>4A\/n2} »
j=m+1
But, by [17, Corollary 2.10| and stationarity,
l+m »
1%2}52 Z Do, Xl{maX1gzgn2|Z§iE+1 Do,jla>4Ay/m2} ||
== j=m
p S P
p . n
= (p —~ 1) H ’ Z;Do’j LIS, Do 24y} p
=

Let B be a positive real and define

dj = Do 1{ipy s1x<8y = E(DoLno v <5y F0,-1) Z 4
and
n2
dj = Doy, le>5) — E(Do1(ny 1>y Foj-1), My, = ) dj.
j=1

Observe that M, = Y "2, Dy; = M' -+ M" and that for any nonnegative reals a, b and &,
2 j=1 5J ng ng g
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(@ +b)Pligrp>o:y < 2PaP1{g>ey + 2PWP1yp>.y. Therefore

na
|32 Da;
Jj=1

p
LHUS2 Doslas2avmm ||

< 2[|[My, |21 gy, sy [, + 271V, e L ez, s -
Using that X is (2, L)-smooth, [I8, Th. 2.6] and stationarity, we get
107, |XH < na/l| Doola g ole>m ;-

Next, using again that X is (2, L)-smooth and [I8, Th. 2.6], we derive

1 1
[t ssy, ooy < o E(ML[F) < W(X; ltilelz,)”
=

(m2)?"? by o (M2
11D001 pnate<i el < 2] [ Dol

<

So, overall, for any positive reals A and B,

1/p n\'?\ /B
< mAy/ng +mny /ol Doolx Lol + m————Il[Doolx[l,. (7.20)

k+m {+m

[max |32 > 0
1<k<ng

1<t<ng  i=k+1j=m+1

Similarly, we get

l+m

max ‘ E E
1<k<ng

1<t<ngy  i=m+1 j=¢+1

.,

1/p
n,'"v/m B
< mAy/m + mny "/ [| Do ol aLipofasyllp + m—=—=—Il|Doolxll,. (7.21)

A

Let A > 0. Starting from ([7.17), taking into account ((7.18)-(7.21)) and selecting A = X?|||Doolx ||,
and B = A/\, we derive

k V4
max |33 (Diy = Diy o T | < m32+ D+ VI Doolly
1<t<ng =1 j=1
1 1/2 1/2 1
+m(ny""ny® + 1120y Dool 21 Do ol A1 Dol o

1/p 1/2+n1/2 l/p)
A

m(n,

I Doolxlly - (7.22)
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Next note that, for any positive real M,

max
1<u<ng
1<v<ng

2], < aem -1t

2m—22m—2 m—1

(mana)/? > 3" Y Z 1P (Xke 1100125003 | 2 lp -

k=0 /(=0 i=—m+1j=—m+1

Hence, by stationarity, setting M = M|||Xo0|x|p, we get

hax 05 ‘X” < Am* ||| Xoolxllp + m* (n1n2) P ||| Xo,0l 2 1( Xo.0lx Al Xo w1} I - (7.23)
1<v<ng

We deal now with the third and fourth term in the R.H.S of decomposition (7.14). For any
positive real A, using stationarity, we infer that

2m—12m—-2 m—1
(m)
Ogi%}n{l ZQMH XH < Z Z Z Og%%i(l Z-Pm—‘rzv Xu—l—zb)oTOE-l—l‘ H
0<tZny  i=1 P u=1 =0 v=b-m+1  0<t<n, =1 P
< 4(2m —1)3Ayn; + (2m — 1)(ny + 1)/P Z Z A(ny,u,v),
u=1-mv=—m+1
where i
A(n]" U/, U) = 12;3521 Z Pi’v (Xu+i’0) ‘Xlﬂ Z?:l Pi,v(Xu+i,O)|X

Note that (| SF L P(X,
stationarity,

+iv0>‘X)k>1 is a submartingale. Therefore, by [I7, Corollary 2.10] and

A(ny,u,v) < 2( )1/p

‘ Z KXutip) ‘ 1{\221 Pi o (Xuti,0)
Next noticing that for any real B,

Pio(Xui0) = Pio(XugiolgXusiolx<By) + Pio(Xutiol{xuiiolx>B})

and, proceeding as to get (7.20) and selecting A = \?||| Xo|x||, and B = A/, we infer that, for
any A > 0,

s [ S, < vt
1<4<ng =1
m®(ny)'/?(ny) /7
+m® (1) (n2) 7| | Xo,0l 110 0l > M X0l I} Ip + : 11 Xo0lxllp. (7.24)
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With similar arguments, we obtain

Z hk+1j

+m®(n1) Y7 (n2) 2| | Xo0l 2 110 0l > M X0l I} Ip +

max
1<k<nj
1<t<ng

H < m3\?

m3 (nl)l/p(n2)1/2
A

Starting from decomposition (7.14) and considering the upper bounds (7.15), (7.16), (7.22),

(7.23), (7.24) and (7.25)), the inequality (7.11)) follows.

Let us now indicate the main argument to extend ((7.12)) to dimension d > 2 and then get
(6.2). By simple induction we infer that the following extension of (7.13) holds:

[ Xo0lxllp (7.25)

Xo—DooTn= Y [[(I-U)dS" +vi™ — 25", (7.26)
OGJC(d) s€J
where
Y = > Pu(Xp) and Z§W = > Pu(X,),
keZI\[-m+1,m—1]¢ weZ4\[1,2m—1]¢

and ggm) € LP(X). Even if it is not an easy task to give a rigorous formulation for ¢} let us
describe them for some given sets J: for J = J; = {1} we have

m—1 m—1

2m—12m—2 2m—2
ng § : E : T § : e E : Pm7b2,~~-,bd(XU1,G2,-~~,ad) )
1=1 a2=0 ag=

0 bo=ag—m+1 bag=aq—m+1
for J = Jy = {1,2} we have

2m—12m—12m—2

2m—2 m—1 m—1
ng Z Z Z Z Z T § : Pm7m7b37~--,bd(XU1,U27a3,---,ad> )
aqg=0 b

u1=1 us=1 az=0 3=az—m+1 bg=aq—m-+1

for J = J3 = {1,3} we have

2m—12m—12m—22m—2 m—1
TZED 55 55 35 ST S SEND SIS RTINS
u1=1 uz=1 a2=0 a4=0 ag=0 ba=a2—m+1 bg=as—m+1 bg=aq—m-+1

and so on. Inequality (6.2]) then follows using the decomposition (7.26)) and the arguments used

to prove (7.12)). O
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