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In this paper, we study the weak invariance principle for stationary ortho-martingales with values in 2-smooth or cotype 2 Banach spaces. Then, with the help of a suitable maximal ortho-martingale approximation, we derive the weak invariance principle for stationary random elds in L 1 under a condition in the spirit of Hannan. As an application, we get an asymptotic result for the L 1 -Wasserstein distance between the common distribution function and the corresponding empirical distribution function of stationary random elds.

Introduction

Let (X i ) i∈Z be a stationary random sequence. If one may represent (X i ) i∈Z in the form

X i = d i + ζ i , (1.1) 
where (d i ) i∈Z is a stationary sequence of martingale dierences, and (ζ i ) ∈Z is a coboundary, which means that it can be written as ζ i = θ i -θ i-1 with (θ i ) i∈Z a stationary random sequence, then one may derive the CLT as well as other limit theorems from the corresponding ones for the martingale dierences (d i ) i∈Z . This method is usually called the martingale approximation, but also known as the Gordin's method (see [START_REF] Gordin | The central limit theorem for stationary processes[END_REF]). Note that as a variation of this method, the sequence (ζ i ) ∈Z needs not to be coboundary, but suitably normalized still negligible, for instance in probability. This kind of approach has been developed in many papers. We refer to Chapter 4 in Merlevède et al. [START_REF] Merlevède | Functional Gaussian Approximation for Dependent Structures[END_REF] for a survey concerning Gaussian approximation via martingale methods.

In this paper, we will use an adaptation of the martingale approximation method to prove the CLT and its functional form for the partial sums associated with multi-indexed sequences (also called random elds) with values in some Banach spaces X . Let us rst recall some recent results concerning the limiting behavior of the partial sums associated with random sequences in Banach spaces.

Let (Ω, A, P) be a probability space, T be an invertible bi-measurable measure preserving transformation on Ω. Let F ⊂ A be a σ-algebra such that T -1 F ⊂ F, and dene a nondecreasing ltration F i = T -i (F). We also dene the stationary sequence of random elements X := (X i ) i∈Z by X i = X 0 • T i . Let X = L 1 (R, µ), where µ is a σ-nite measure on the real line, and L ∞ (R, µ) be its dual space. When (X i ) i∈Z is a L 1 -valued stationary ergodic sequence of martingale dierences (m.d.s.), Dede [START_REF] Dede | An empirical central limit theorem in L1 for stationary sequences[END_REF] proved the following CLT: If

R ∥X 0 (t)∥ 2 µ(dt) < ∞, (1.2) 
then 1 √ n n i=1 X • T i ⇒ n→∞ G in L 1 . (1.3)
Here and along the paper, ⇒ stands for the convergence in distribution and G is a centered Gaussian random variable with covariance operator K X (see denition 3.1). Then, with the help of a martingale approximation, she extended the CLT to stationary and ergodic sequences of regular random elements with values in L 1 (R, µ) provided that (1.2) holds and

i∈Z R ∥P 0 (X i (t))∥ 2 µ(dt) < ∞, (1.4) 
where P 0 (•) = E (•|F 0 ) -E (•|F -1 ). Her condition is in the spirit of Hannan's condition [START_REF] Hannan | Central limit theorems for time series regression[END_REF]. Later, Cuny [START_REF] Cuny | Invariance principles under the MaxwellWoodroofe condition in Banach spaces[END_REF] has proved the CLT and its functional form for stationary and ergodic sequences of m.d.s. with values in more general Banach spaces than L 1 , namely cotype 2 or 2-smooth Banach spaces. Next, again with the help of a martingale approximation, he derived sucient conditions in the spirit of the Maxwell-Woodroofe's condition [START_REF] Maxwell | Central limit theorems for additive functionals of Markov chains[END_REF] ensuring the weak invariance principle for a stationary and ergodic sequence with values in either 2-smooth or cotype 2 Banach spaces. Note that when applied to the L 1 -space, his condition and (1.4) have a dierent area of applications.

The rst aim of this paper is to generalize the functional CLT for martingale dierences sequences with values in some Banach spaces as stated in [2, Prop 3.2] to higher dimension in the sense of multi-indexed sequences. Since there is no natural ordering in higher dimension, we choose to use the notion of completely commuting ltration (see Section 2 for a denition of this notion). It follows that the generalization of [2, Prop 3.2] will mean extending the functional CLT to ortho-martingale sequences with values in a 2-smooth or cotype 2 Banach spaces (see Section 3). Then, in Section 4, with the help of a suitable ortho-martingale approximation, we derive a functional CLT for L 1 -valued stationary random elds. As in [START_REF] Dede | An empirical central limit theorem in L1 for stationary sequences[END_REF], our conditions are in the spirit of Hannan's condition. Hence, our theorem 4.1 can be viewed as a generalization of the results stated in [START_REF] Dede | An empirical central limit theorem in L1 for stationary sequences[END_REF] in two directions. First, it proves the functional form of [START_REF] Dede | An empirical central limit theorem in L1 for stationary sequences[END_REF]Th 2.3]. Secondly, it extends it to multi-indexed random sequences. As an application, in Section 5, we give asymptotic results for the L 1 -Wasserstein distance between the common distribution function and the corresponding empirical distribution function for stationary random elds. Section 6 is devoted to a suitable maximal ortho-martingale approximation in 2-smooth Banach spaces and has interest in itself. All the proofs are postponed to Section 7.

Notations and denitions

We will use the same notations as in [START_REF] Cuny | A functional clt for elds of commuting transformations via martingale approximation[END_REF] and [START_REF] Volný | Martingale-coboundary decomposition for stationary random elds[END_REF]. We shall consider Banach-valued random elds. Hence, in all the paper, (X , |•| X ) will be a real separable Banach space. We denote by X * the topological dual of X . We shall also denote by L 0 (X ) the space of functions from Ω → X that are limits P-a.s. of simple functions. In addition, for every p ≥ 1, we dene the usual Bochner spaces L p as follows

L p (Ω, A, P, X ) = L p (X ) = Z ∈ L 0 (X ) : E (|Z| p X ) < ∞ .
For every Z in L p (X ), write ∥Z∥ p,X = (E (|Z| p X )) 1/p = ∥|Z| X ∥ p . To dene now random elds, we start by introducing Z d actions. With this aim, we denote elements of Z d by i := (i 1 . . . , i d ). Let (T i ) i∈Z d be a Z d action on (Ω, A, P) generated by commuting invertible and measure-preserving transformations {T e 1 , . . . , T e d }, where, for 1 ≤ i ≤ d, e i is a Z d vector with 1 at i-th place and 0 elsewhere. We denote those transformations by T (1) , . . . , T (d) . By U i we denote the operator in

L p (X ) (1 ≤ p < ∞) dened by U i f = f • T i .
We assume that the ltration (F k ) k∈Z d is completely commuting, i.e. there exists a σ-algebra F such that F i = T -i F, for i ≤ j we have F i ⊂ F j (i ≤ j means i q ≤ j q for all 1 ≤ q ≤ d) and for an integrable X, we have

E (E (X|F i 1 ,...,i d ) |F j 1 ,...,j d ) = E (X|F i 1 ∧j 1 ,...i d ∧j d ) ,
where i ∧ j = min {i, j} . Note that a ltration dened by an independent and identically distributed (i.i.d.) random eld is completely commuting. This kind of ltrations can also be constructed using stationary random elds with independent rows or columns (see [START_REF] Machkouri | A central limit theorem for stationary random elds[END_REF]).

For a xed q ∈ {1, . . . , d} and a xed ℓ ∈ Z, we denote by F (q) ℓ the σ-algebra generated by all F i with i such that i q ≤ ℓ. For every 1 ≤ q ≤ d, dene also

F (q) -∞ = i∈Z F (q) i , and F ∞ = i∈Z d F i .
For σ-algebras G ⊂ F ⊂ A and 1 ≤ p < ∞, we denote by L p (F, X ) ⊖ L p (G, X ) the space of X ∈ L p (F, X ) for which E (X|G) = 0. We can dene projection operators

P (q) ℓ onto L p (F (q) ℓ , X ) ⊖ L p (F (q) ℓ-1 , X ) by P (q) ℓ (X) = E(X|F (q) ℓ ) -E(X|F (q)
ℓ-1 ). Those operators commute and for ℓ ̸ = k, P [START_REF] Volný | An invariance principle for stationary random elds under Hannan's condition[END_REF]Lemma 2.4]). We now dene the projections P i = P

(q) ℓ P (q) k = 0 (see
(1)

i 1 • • • P (d) i d onto 1≤q≤d L p (F (q) iq , X ) ⊖ L p (F (q) iq-1 , X ). Denition 2.1. Let X ∈ L 1 (X ).
The stationary random elds (U i X) i∈Z d is said to be regular if X is F ∞ -measurable, and for every 1 ≤ q ≤ d, E(X|F (q) -∞ ) = 0 a.s.

Next we give the denition of ortho-martingales.

Denition 2.2. Let D ∈ L 1 (X ) . We say that (U i D) i∈Z d is a eld of ortho-martingale dierences with respect to a completely commuting ltration (F i ) i∈Z d , if D is F 0 -measurable and for all i, j ∈ Z d , such that j q < i q for some q ∈ {1, . . . , d}, we have

E D • T i |F j = 0 .
In addition,

M n := n 1 i 1 =1 • • • n d i d =1 D
• T i is said to be an ortho-martingale.

Since our results are stated for random elds in Banach spaces that are 2-smooth or of cotype 2, let us recall their denitions from [START_REF] Cuny | Invariance principles under the MaxwellWoodroofe condition in Banach spaces[END_REF]. We say that X is 2-smooth, if there exists

L ≥ 1, such that |x + y| 2 X + |x -y| 2 X = 2 |x| 2 X + L |y| 2 X ∀x, y ∈ X . (2.1)
For a such L, we say that X is (2, L)-smooth. We shall also recall the following inequality for m.d.s. in 2-smooth Banach space ([1, Prop 1]): Assume that X is (2, L)-smooth, then for every m.d.s. (D i ) i∈Z , we have

E |D 1 + • • • + D N | 2 X ≤ 2L 2 N i=1 E |D i | 2 X for all N ∈ N . (2.2)
For example, for p ≥ 2 the spaces L p (R) are (2, √ p -1)-smooth. As a counterpart, we recall that a separable Banach space X is said of cotype 2 if there exists L > 0 such that for every independent random variables d 1 , . . . , d N ∈ L 2 (X ), with E (d 1 ) = . . . = E (d N ) = 0, (2.2) holds in the reverse direction. As an example, note that for

1 ≤ p ≤ 2, L p (R) is of cotype 2.
3 Functional CLT for ortho-martingales in Banach spaces Let X be a random element from Ω to X . Dene its associated partial sum S n (X) by

S n (X) = n 1 i 1 =1 • • • n d i d =1 U i X .
In addition, for t = (t 1 , . . . , t d ) ∈ [0, 1] d , we set

T nt (X) := 1 √ n 1 • • • n d S [nt] (X) , (3.1) 
where

[nt] = ([n 1 t 1 ], . . . , [n d t d ]
). Before stating the main result of this section, as in [START_REF] Cuny | Invariance principles under the MaxwellWoodroofe condition in Banach spaces[END_REF], we need to recall the denitions of Gaussian and pregaussian random elements.

Denition 3.1. Let K be a bounded symmetric bilinear operator from X * × X * to R. We say that K = K X is the covariance operator associated with X if

∀x * , y * ∈ X * K(x * , y * ) = E [x * (X)y * (X)] .
Denition 3.2. The random variable W ∈ L 0 (X ) is said to be Gaussian if, for every x * ∈ X * , x * (W ) has a normal distribution. We say that a random variable X ∈ L 0 (X ) such that for every x * ∈ X * , E (x * (X) 2 ) < ∞ and E (x * (X)) = 0, is pregaussian, if there exists a Gaussian variable W ∈ L 0 (X ) with the same covariance operator. We denote by G(X) the Gaussian variable having the same covariance operator as X.

Denition 3.3. Let G(Ω, A, P, X ) = G(X ) be the set of pregaussian random elements that are in L 2 (X ). For every X ∈ G(X ), denote ∥X∥ G(X ) = ∥X∥ 2,X + ∥G(X)∥ 2,X .

We are now in position to state the functional form of the CLT for sequences of orthomartingale dierences with values in some Banach spaces as well as a L 2 -maximal inequality for the corresponding partial sums. Below and all along the paper, n → ∞ means min(n 1 , . . . , n d ) → ∞.

Theorem 3.4. Let X be a real separable Banach space that is either 2-smooth or of cotype 2. Let D ∈ L 2 (X ) be such that (U i D) i∈Z d is a eld of ortho-martingale dierences w.r.t. a completely commuting ltration (F i ) i∈Z d . Assume in addition that D ∈ G (F 0 , X ) and that at least one of the

T (i) for 1 ≤ i ≤ d is ergodic. Then, as n → ∞, {T nt (D)} t∈[0,1] d converges in distribution in D([0, 1] , X ) (equipped with the uniform topology) to a Brownian motion (W t ) t∈[0,1] d with covariance K D associated with D. In addition, there exists C ≥ 0, such that max 1≤k≤n |S k (D)| X 2 ≤ C(n 1 • • • n d ) 1/2 ∥D∥ G(X ) . (3.2) 
4 Application to stationary random elds in L 1

In this section we consider (S, S, µ) be a σ-nite measure space such that X := L 1 (S, S, µ) is separable. Recall that L 1 (S, µ) is a Banach space of cotype 2. Let L ∞ (S, µ) be its dual space.

In all this section, X is a random variable in L 0 (Ω, A, P, L 1 (S, µ)) and

(F i ) i∈Z d with F i = T -i F is a completely commuting ltration. Let also X i = U i X.
Theorem 3.4 combined with a suitable ortho-martingale approximation (see Proposition 6.1 stated in Section 6) leads to the following result. Theorem 4.1. Assume that X is regular,

S ∥X(s)∥ 2 µ(ds) < ∞ , (4.1) 
and

i∈Z d S ∥P 0 (X i (s))∥ 2 µ(ds) < ∞ . (4.2)
Then there exists a stationary random eld of ortho-martingale dierences

(U i D) i∈Z d w.r.t (F i ) i∈Z d such that D ∈ G(F 0 , L 1 (S, µ)) and lim n→∞ S max 1≤k≤n S k (X(s)) √ n 1 • • • n d - S k (D(s)) √ n 1 • • • n d 2 µ(ds) = 0. (4.3)
Suppose, in addition, that at least one of the transformations

T (i) for 1 ≤ i ≤ d is ergodic, then {T nt (X), t ∈ [0, 1] d } =⇒ n→∞ W in D([0, 1] , X ), (4.4) 
where W is a X -valued centered Brownian motion with covariance operator K D that can be dened as follows: for all f and g in L ∞ (S, µ),

K D (f, g) = E(f (D)g(D)) = i∈Z d k∈Z d Cov(f(X i ), g(X k )) . (4.5) Remark 4.2. Note that by [2, Lemma 2.4], condition (4.1) implies that X ∈ G(L 1 (S, µ)).
Next result gives sucient conditions for (4.2) to hold.

Corollary 4.3. Let X := (X k ) k∈Z d be a regular centered random variable in L 0 (Ω, A, P, L 1 (S, µ)), such that S ∥X 0 (s)∥ 2 µ(ds) < ∞.
If the following conditions hold:

∞ i=1 S 1 √ i 1 • • • i d ∥E(X i (s)|F 0 )∥ 2 µ(ds) < ∞, (4.6) 
and

∞ i=1 S 1 √ i 1 • • • i d ∥X -i (s) -E(X -i (s)|F 0 )∥ 2 µ(ds) < ∞, (4.7) 
then (4.2) is satised.

Comment 4.4. Using Proposition 6.1, a similar result as Theorem 4.1 can be obtained when

X ∈ L 0 (Ω, A, P, X ) where X = L p (S, µ) with p ≥ 2. More precisely if ∥X 0 ∥ 2,X < ∞ and i∈Z d S |P 0 (X i (s))| p µ(ds) 1/p 2 < ∞, (4.8) 
then

lim n→∞ d i=1 n -1/2 i sup 1≤k≤n |S k -M k | X 2 = 0 ,
and the convergence (4.4) holds in X . When p = 2, using Lemma 7.2 adapted to dimension d with

u i = ∥∥P -i (X 0 )∥ L 2 ∥ 2 and the fact that L 2 is 2-convex, we infer that (4.8) holds provided ∞ i 1 =1 • • • ∞ i d =1 1 √ i 1 • • • i d ∥E(X i (s)|F 0 )∥ L 2 2 < ∞,
and

∞ i 1 =1 • • • ∞ i d =1 1 √ i 1 • • • i d ∥X -i (s) -E(X -i (s)|F 0 )∥ L 2 2 < ∞. Note that if X 0 (s) = i∈Z d a i Y -i (s) where (Y i ) i∈Z d is an ortho-martingale dierences, (4.8) holds as soon as ∥Y 0 ∥ 2,X < ∞ and i∈Z d |a i | < ∞. (4.9)
Our condition (4.8) and condition (3) in [START_REF] Cuny | Invariance principles under the MaxwellWoodroofe condition in Banach spaces[END_REF] have a dierent range of applications. For instance (4.9) is not enough for [2, Condition (3)] to hold.

Application to empirical processes

In this section, S := R and µ is the Lebesgue measure on the real line denoted by λ.

Let Y ∈ L 0 (Ω, F 0 , P, L 1 (R, λ)). For every i ∈ Z d , we dene Y i := U i Y and for every s ∈ R, X i (s) := 1 Y i ≤s -F (s), where F (s) = P(Y ≤ s). Let S n (X)(s) := n 1 i 1 =1 • • • n d i d =1 X i (s). We also denote by F n the empirical distribution function of (Y i ) i∈Z d : ∀s ∈ R F n (s) := 1 n 1 • • • n d n 1 i 1 =1 • • • n d i d =1 1 Y i ≤s .
We are interested in deriving the asymptotic behavior of

R 1 n 1 • • • n d S n (X)(s) ds = R |F n (s) -F (s)| ds. (5.1) 
Note that (5.1) is the L 1 -Wasserstein distance between F the distribution function of Y , and F n the corresponding empirical distribution function.

The following result is a direct application of Theorem 4.1 combined with Corollary 4.3.

Corollary 5.1. Assume that Y dened as above is regular and that

R F (s) (1 -F (s))ds < ∞ (5.2)
and

∞ i 1 =1 • • • ∞ i d =1 1 √ i 1 • • • i d R ∥P (Y i ≤ s|F 0 ) -F (s)∥ 2 ds < ∞. (5.3)
Suppose, in addition, that at least one of the transformations

T (i) for 1 ≤ i ≤ d is ergodic. Then Then s → √ n 1 • • • n d (F n (s) -F (s)) , s ∈ R converges in L 1
to a centered Gaussian random variable G, with covariance operator K µ dened by: for every f, g ∈ L ∞ (R, λ):

K µ (f, g) = i∈Z d E R R f (s)g(t) 1 Y 0 ≤s -F (s) 1 Y i ≤t -F (t) dsdt .
In particular, as n → ∞,

√ n 1 • • • n d R |F n (s) -F (s)| ds ⇒ R |G(s)| ds.
Note that by Remark 4.2, condition (5.2) implies that Y ∈ G(F 0 , L 1 (R, λ)). Next we give a sucient condition for (5.3) to hold, in terms of dependence coecients. With this aim, in the spirit of [START_REF] Dedecker | New dependence coecients. examples and applications to statistics[END_REF], dene

ϕ(i) = sup s∈S ∥P (Y i ≤ s|F 0 ) -P (Y i ≤ s)∥ ∞ . (5.4)
As a direct application of [5, Prop 2.1], we get the following proposition:

Proposition 5.2. Condition (5.3) holds as soon as (5.2) holds and

∞ i 1 =1 • • • ∞ i d =1 1 √ n 1 • • • n d ϕ(i) < ∞. (5.5) 
Comment 5.3. Note that by Item 3 in [9, Lemma 2], we get that if the distribution function F of Y 0 is continuous then

ϕ(i) ≤ K F (Y i ) -F (Y * i ) ∞ , (5.6) 
where Y * is a random element distributed as Y and independent of F 0 , and

Y * i := Y * • T i .
6 Ortho-martingale approximation in Banach spaces

The following result allows to derive a useful ortho-martingale approximation in 2-smooth Banach spaces. It is an extension to multidimensional index sets and to 2-smooth Banach spaces of the estimate (3.3) in [START_REF] Dedecker | Rates in the strong invariance principle for ergodic automorphisms of the torus[END_REF]. It can also be viewed as an extension in several directions of [21, Th. 1 (ii)] and gives a more precise estimate than [START_REF] Dedecker | Rates in the strong invariance principle for ergodic automorphisms of the torus[END_REF]Theorem 8]. Below (F i ) i∈Z d dened by F i = U i F is assumed to be a completely commuting ltration and denote by X i = U i X. By min i (n) we mean the inmum of all possible dierent products of size i constructed from {n 1 , . . . , n d }. So, for instance, min 

1 (n) = n 1 ∧ • • • ∧ n d , min 2 (n) = n 1 n 2 ∧ • • • ∧ n 1 n d ∧ • • • ∧ n d-1 n d ,
| X ∥ p < ∞. Assume that i∈Z d ∥|P 0 (X i )| X ∥ p < ∞ . (6.1)
Then setting D k = i∈Z d P k (X i ), (D k ) k∈Z d are stationary L p (X ) ortho-martingale dierences with respect to (F k ) k∈Z d and the corresponding ortho-martingale

M n = n 1 k 1 =1 • • • n d k d =1
D k satises the following maximal inequality: there exists a positive constant C only depending on (L, p) such that for any positive integers n 1 , . . . , n d , m and for any positive real λ ≥ m,

d i=1 n -1/2 i sup 1≤k≤n |S k -M k | X p ≤ C d i=1 |k i |>m k\{k i }∈Z d-1 |P k (X 0 )| X p + Cλ 2 d-1 i=1 m 2d-i 1 min i (n) 1/2 + λ -3 min i (n) (p-2)/(2p) ∥|X 0 | X ∥ p + ∥|D 0 | X ∥ p ) + C d-1 i=1 m 2d-i 1 min i (n) (p-2)/(2p) ∥|X 0 | X 1 {|X 0 | X >λ∥|X 0 | X ∥p} ∥ p + ∥|D 0 | X 1 {|D 0 | X >λ∥|D 0 | X ∥p} ∥ p . (6.2)
The proof of this result is posponed to Section 7.4 7 Proofs

7.1

Proof of Theorem 3.4

The idea of this proof is essentially the same as the proof of [2, Prop 2.3], except for the convergence of nite dimensional laws.

We rst prove (3.2). By the Caroli's strong (p, p) inequality for ortho-submartingales [14, Th. 2.3.1], we have

max 1≤k≤n |S k (D)| X 2 2 ≤ 2 2d |S n (D)| X 2 2 .
Assume rst that X is (2, L)-smooth, then applying (2.2) to each index, we derive

|S n (D)| X 2 2 ≤ 2 d L 2d n 1 i 1 =1 • • • n d i d =1 E |D i | 2 X .
Recall that any 2-smooth Banach space is of type 2. Therefore (3.2) holds by stationarity and the fact that, in Banach spaces of type 2, the norms ∥•∥ G(X ) and ∥•∥ 2,X are equivalent (see [START_REF] Ledoux | Probability in Banach Spaces: isoperimetry and processes[END_REF]Prop 9.24]). Suppose now that X is of cotype 2. Since D is assumed to be pregaussian, so is S n (D). In addition, by the orthogonality of ortho-martingale increments, we get

G(S n (D)/ √ n 1 • • • n d ) = G(D).
Hence by [START_REF] Ledoux | Probability in Banach Spaces: isoperimetry and processes[END_REF]Prop 9.25], we deduce that

∥S n (D)∥ 2,X ≤ C ∥G(S n (D))∥ 2,X = C √ n 1 • • • n d ∥G(D)∥ 2,X ≤ C √ n 1 • • • n d ∥D∥ G(X ) .
This ends the proof of (3.2). Now we prove the functional central limit theorem by rst proving the tightness and then the convergence of nite dimensional laws. For the tightness, the idea in [2, Proof of Prop 3.2] also applies in higher dimension. For reader convenience, let us give the details.

Since X is separable, then σ(D) is countably generated. Thus there exists an increasing ltration (G m ) m∈N * , such that G m is nite for every m ≥ 1 and σ(D) = m≥1 G m . We set

D m := E (D|G m ). Since G m is nite, there exist A (m) 1 , • • • A (m) km ∈ G m and x (m) 1 , • • • x (m) km ∈ X such that D m = km k=1 x (m) k 1 A (m) k . Using [2, Lemma 2.3], we have ∥D m -D∥ G(X ) -→ 0 as m → ∞.

Now, setting

Dm := P 0 (D m ) .

One can see that (U i Dm ) i∈Z d is a sequence of ortho-martingale dierences with respect to the completely commuting ltration (F i ) i∈Z . Then using [2, Lemma 2.2] and the fact that

E(D|F -e 1 ) = • • • = E(D|F -e d ) = 0, we deduce that (U i Dm ) i≥1 converges in G(X ) to D. By [3, Theorem 1], for every m ≥ 1, (n 1 • • • n d ) -1/2 S [nt] ( Dm ) t∈[0,1] d is tight in D([0, 1], X ).
Indeed Dm takes only a nite number of values and therefore we can work on the nite dimen- sional vector space generated by these values. Note that Theorem 1 in [START_REF] Cuny | A functional clt for elds of commuting transformations via martingale approximation[END_REF] is stated for reversed ortho-martingale dierences, but it is also obviously true in case of ortho-martingales in the usual sense. Now, by (3.2), we deduce that

sup 0≤t≤1 1 √ n 1 • • • n d S [nt] ( Dm ) -S [nt] (D) X 2 = 1 √ n 1 • • • n d max 1≤k≤n S k ( Dm ) -S k (D) X 2 ≤ C Dm -D G(X ) -→ 0 as m → ∞ .
Hence the tightness of (n

1 • • • n d ) -1/2 S [nt] (D) t∈[0,1] d follows (see [2, Lemma B.1]).
We turn now to the proof of the convergence of the nite dimensional laws. Recall the notation (3.1) for T nt (D). When no confusion is possible, we will denote T nt (D) by T nt . Let

t (k) = (t (k) 1 , . . . , t (k) d ).
Our aim is to prove that for any m ≥ 1 and any (0, 0, . . . , 0) < t (1) 

< . . . < t (m) ≤ (1, 1, . . . , 1), T nt (1) , . . . , T nt (m) ⇒ W t (1) , . . . , W t (m) , (7.1) 
where (W t ) t∈[0,1] d is a Brownian sheet with covariance operator K D . For reader convenience, we shall give the complete proof in case d = 2, noticing that the general case can be proved by induction. Since either T (1) or T (2) is ergodic, let us assume from now that T (2) is. Using the Cramer-Wold device, it is sucient to prove that for any m ≥ 1, any (0, 0) < t (1) 

< • • • < t (m) ≤ (1, 1) and any x * 1 , • • • x * m ∈ X * , m i=1 x * i T nt (i) ⇒ m i=1 x * i W t (i) . (7.2)
With this aim we shall use similar arguments as those developed in [3, Section 3.2] and, in a sake of clarity, we shall give most of the details. Notice rst that m i=1 x * i T nt (i) can be written as a weighted sum over disjoint and adjacent rectangles. Hence proving (7.2) is equivalent to show that for any positive integer m, any

0 = t 0 < t 1 < • • • < t m ≤ 1, 0 = s 0 < s 1 < • • • < s m ≤ 1 and (x * i,j ) 1≤i,j≤m ∈ X * V n 1 n 2 := 1 √ n 1 n 2 m i=1 m j=1 x * i,j   [n 1 t i ] k=[n 1 t i-1 ]+1 [n 2 s j ] ℓ=[n 2 s j-1 ]+1 D • T k,ℓ   ⇒ m i=1 m j=1 x * i,j W t i ,s j + W t i-1 ,s j-1 -W t i ,s j-1 -W t i-1 ,s j , (7.3) 
as n 1 ∧ n 2 → ∞. Notice that the random variable on the right-hand side is distributed according to N (0, σ 2 ) with

σ 2 = m i=1 m j=1 (t i -t i-1 ) (s j -s j-1 ) E x * i,j (D) 2 .
Clearly, it suces to prove the convergence (7.3) when n 1 , n 2 → ∞ along any sequence (n r , N r ) r≥1 . Hence, let us x a sequence (n r , N r ) r≥1 such that n r , N r → ∞ as r → ∞. It remains to prove that

V r = 1 √ n r N r m i=1 m j=1 x * i,j   [nrt i ] k=[nrt i-1 ]+1 [Nrs j ] ℓ=[N -rs j-1 ]+1 D • T k,ℓ   ⇒ N (0, σ 2 ) . (7.4)
As in [START_REF] Cuny | A functional clt for elds of commuting transformations via martingale approximation[END_REF], the proof of (7.4) is based on the usual central limit theorem for triangular arrays of martingale dierences due McLeish (see [START_REF] Hall | Martingale limit theory and its application[END_REF]Theorem 3.2] for an easy reference). The rest of the proof then follows the lines of [3, Section 3.2] by noticing that sup 1≤i,j≤m x * i,j (D) 2 < ∞ and the following modication of [3, Lemma 4]. Lemma 7.1. Let ∆ i = m j=1 (s j -s j-1 )E (x i,j (D) 2 ) and ε > 0 . If T 0,1 is ergodic, there exist integers v > 0 (large enough) and p(v) (large enough), such that for every n ≥ p(v)

1 v v k=1   m j=1 1 √ n [ns j ] ℓ=[ns j-1 ]+1 x * i,j (D) • T k,ℓ   2 -∆ i 1 < ε . (7.5)
Proof of Lemma 7.1. Note rst that for any xed i, j ∈ N and k ∈ Z, we have that x * i,j (D) • T k,ℓ ℓ∈Z is a sequence of martingale dierences with respect to the ltration

F (2) ℓ ℓ∈Z . Let d k,ℓ (i, j) = x * i,j (D) • T k,ℓ and dene D ℓ (i, j) = (d 1,ℓ (i, j), . . . , d v,ℓ (i, j)) t .
Note that (D ℓ (i, j)) ℓ≥1 is a stationary and ergodic (since T (2) is ergodic) sequence of R v -valued martingale dierences. Therefore from the functional form of the central limit theorem for R vvalued stationary and ergodic L 2 martingale dierences, we get that for any positive integer m, and any 0 ≤ s

1 < . . . < s m ≤ 1   1 √ n [ns 1 ] ℓ=1 D ℓ (i, j), . . . , 1 √ n [nsm] ℓ=[ns m-1 ]+1 D ℓ (i, j)   converges in distribution to (G 1 , . . . , G m )
, where (G u ) 1≤u≤m are independent and centered Gaussian random variables with respective covariance matrix

E G ℓ G t ℓ = (s ℓ -s ℓ-1 )E D 1 (i, j)D 1 (i, j) t = (s ℓ -s ℓ-1 ) x * i,j (d) 2 2 Id,
and for any i, j, k, n -1 max u≤n u ℓ=1 d k,ℓ (i, j)

2
n≥1 is uniformly integrable. In particular, we have

  1 √ n m j=1 [ns j ] ℓ=[ns j-1 ]+1 x * i,j (d) • T k,ℓ   1≤k≤v (7.6)
converges in distribution to (N k ) 1≤k≤v where N k are i.i.d random variables with common distribution N 0, m j=1 (s j -s j-1 )E x * i,j (d) 2 . Now using the notations

F i,k,n = m j=1 1 √ n [ns j ] ℓ=[ns j-1 ]+1 x * i,j (d) • T k,ℓ and V i,k,n = F 2 i,k,n -∆ i , note that ∆ i = E F 2 i,k,n = E (N 2 k ).
To soothe the notation, we will drop the index i in the rest of the proof. Let ε > 0, M > 0 and dene

A = E 1 v v k=1 V k,n 1 1 v v k=1 V k,n ≤ ε , B = E 1 v v k=1 V k,n 1 ε < 1 v v k=1 V k,n ≤ M and C = E 1 v v k=1 V k,n 1 1 v v k=1 V k,n > M .
We have

E 1 v v k=1 V k,n ≤ A + B + C . Clearly A ≤ ε. Next, B ≤ M P 1 v v k=1 V k,n > ε Since (F i,k,n ) 1≤k≤v ⇒ (N k ) 1≤k≤v
, we get that, for any ε > 0, 

P 1 v v k=1 V k,n > ε → n→∞ P 1 v v k=1 N 2 k -∆ i > ε which converge to zero as v → ∞
C ≤ 2E h M 1 v v k=1 V k,n .
Since h M is a convex function, we deduce that

C ≤ 2 1 v v k=1 E (h M (V k,n )) .
But since for each i and k, F 2 i,k,n n≥1 is an uniformly integrable family,

lim M →∞ lim sup n→∞ E (h M (V k,n )) = 0.
So overall the lemma follows by letting ε → 0. By applying Proposition 6.1 to X 0 (s) and X = R, it follows that there exists a positive constant C only depending on (L, d) such that for any positive integers n 1 , . . . , n d , m and for any positive real λ ≥ m,

(n 1 • • • n d ) -1/2 S ∥ max 1≤k≤n S n (X(s)) -S n (D(s))∥ 2 µ(ds) ≤ C d i=1 |k i |>m k\{k i }∈Z d-1 S ∥P k (X 0 (s))∥ 2 µ(ds) + Cλ 2 m 2d d i=1 1 n 1/2 i + 1 λ 3 S ∥X 0 (s)∥ 2 + ∥D 0 (s)∥ 2 µ(ds) + Cm 2d S ∥X 0 1 {|X 0 (s)|>λ∥X 0 (s)∥ 2 } ∥ 2 + D 0 (s)1 {|D 0 (s)|>λ∥D 0 (s)∥ 2 } ∥ 2 µ(ds) := I 1 + I 2 + I 3 .
Letting rst n → ∞, then λ → ∞ and after m → ∞, the R.H.S. is tending to zero. Indeed, I 1 is tending to zero as m → ∞ by taking into account condition (4.2). I 2 is tending to zero by letting rst n → ∞, then λ → ∞ and by taking into account that (4.2) implies that S ∥D 0 (s)∥ 2 µ(ds) < ∞. Finally, I 3 is tending to zero by letting λ → ∞ and using dominated convergence theorem and conditions (4.1) and (4.2). Hence (4.3) holds. Then the convergence in distribution (4.4) follows by using (4.3) together with Theorem 3.4. Next to prove (4.5), as in the proof of [START_REF] Cuny | A functional clt for elds of commuting transformations via martingale approximation[END_REF]Th 8] we use [START_REF] Cuny | A functional clt for elds of commuting transformations via martingale approximation[END_REF]Lemma 7]. Hence it suces to prove that for any f ∈ L ∞ (S, µ) we have

i∈Z d ∥P 0 (f (X i ))∥ 2 < ∞ ,
which is implied by (4.2). Note that [3, Lemma 7] is stated for reversed ortho-martingales, but it holds also for ortho-martingales in the usual sense.

7.3

Proof of Corollary 4.3

For the sake of clarity, we shall give the complete proof in the case d = 2 (the case d > 2 can be proved with similar arguments). We shall need the following lemma, whose proof follows by applying two times [6, Lemma 6.1].

Lemma 7.2. For any double indexed sequence (u i,j ) i,j∈N of non-negative numbers, there exists a positive constant C such that

∞ i=1 ∞ j=1 u i,j ≤ C ∞ i=1 ∞ j=1 1 ij ∞ k=i ∞ ℓ=j u 2 k,ℓ 1/2 
. From Lemma 7.2 with u i,j = ∥P -i,-j (X 0,0 (s))∥ 2 , we get:

∞ i=1 ∞ j=1 S ∥P -i,-j (X 0,0 (s))∥ 2 µ(ds) ≤ C ∞ i=1 ∞ j=1 S 1 ij ∞ k=i ∞ ℓ=j ∥P -k,-ℓ (X 0,0 (s))∥ 2 2 1/2 µ(ds) .
But by orthogonality and regularity

∞ k=i ∞ ℓ=j ∥P -k,-ℓ (X 0,0 (s))∥ 2 2 = ∞ k=i ∞ ℓ=j P -k,-ℓ (X 0,0 (s)) 2 2 = ∥E (X i,j (s)|F 0,0 )∥ . Hence ∞ i=1 ∞ j=1 S ∥P -i,-j (X 0,0 (s))∥ 2 µ(ds) ≤ C ∞ i=1 ∞ j=1 S 1 √ ij ∥E (X i,j (s)|F 0,0 )∥ µ(ds) .
which is nite by condition (4.6) in case d = 2. It remains to prove that:

∞ i=1 ∞ j=0 S ∥P 0,0 (X i,-j (s))∥ 2 µ(ds) < ∞ , ∞ i=0 ∞ j=1 S ∥P 0,0 (X -i,j (s))∥ 2 µ(ds) < ∞ , (7.7) 
and

∞ i=0 ∞ j=0 S ∥P 0,0 (X -i,-j (s))∥ 2 µ(ds) < ∞ . (7.8) 
By Lemma 7.2 again, ∞ i=1 ∞ j=0 S ∥P 0,0 (X i,-j (s))∥ 2 µ(ds) ≤ C ∞ i=1 ∞ j=1 S 1 ij ∞ k=i+1 ∞ ℓ=j ∥P k,-ℓ (X 0,0 (s))∥ 2 2 1/2
µ(ds) .

(7.9) But, for any j ≥ 0, by stationarity,

∞ k=i+1 ∞ ℓ=j ∥P k,-ℓ (X 0,0 (s))∥ 2 2 ≤ ∞ k=i+1 ∞ ℓ=-j ∥P k,-ℓ (X 0,0 (s))∥ 2 2 ≤ ∞ k=1 0 ℓ=-∞ ∥P k,ℓ (X -i,-j (s))∥ 2 2 .
Next, by orthogonality,

∞ k=1 0 ℓ=-∞ ∥P k,ℓ (X -i,-j (s))∥ 2 2 = ∞ k=1 0 ℓ=-∞ P k,ℓ (X -i,-j (s)) 2 2 
.

(n

1 n 2 ) -1/2 sup 1≤k≤n 1 1≤ℓ≤n 2 S k,ℓ -M k,ℓ X p ≤ C |u|>m,v∈Z ∥|P u,v (X 0,0 )| X ∥ p + C u∈Z,|v|>m ∥|P u,v (X 0,0 )| X ∥ p + Cm 3 λ 2 1 √ n 1 ∧ n 2 + λ -3 (n 1 ∧ n 2 ) (p-2)/(2p) ∥|X 0,0 | X ∥ p + ∥|D 0,0 | X ∥ p ) + C m 3 (n 1 ∧ n 2 ) (p-2)/(2p) ∥|X 0,0 | X 1 {|X 0,0 | X >λ∥|X 0,0 | X ∥p} ∥ p + ∥|D 0,0 | X 1 {|D 0,0 | X >λ∥|D 0,0 | X ∥p} ∥ p . (7.12) 
To prove (7.12), we proceed as follows. Since X 0,0 is regular, we can write X 0,0 = i,j∈Z P i,j (X 0,0 ). Let m be a xed positive integer, and dene

θ (m) 0,0 = 2m-2 k=0 2m-2 ℓ=0 m-1 i=k-m+1 m-1 j=ℓ-m+1 P i,j (X k,ℓ ) and θ (m) u,v = θ (m) 0,0 • T u,v .
By simple algebra we have

I := θ (m) 0,0 -θ (m) 1,0 -θ (m) 0,1 + θ (m) 1,1 = m-1 k= 
-m+1 m-1 ℓ=-m+1 P k,ℓ (X 0,0 ) - m-1 i=-m+1 2m-1 v=1 P i,m (X 0,v ) - 2m-1 u=1 m-1 j=-m+1 P m,j (X u,0 ) + 2m-1 u=1 2m-1 v=1 P m,m (X u,v ) .
On another hand setting

g (m) 0,0 = 2m-1 u=1 2m-2 b=0 m-1 ℓ=b-m+1 P m,ℓ (X u,b ) and g (m) i,j = g (m) 0,0 • T i,j , and 
h (m) 0,0 = 2m-1 v=1 2m-2 a=0 m-1 k=a-m+1 P k,m (X a,v ) and h (m) i,j = h (m) 0,0 • T i,j , we have 2m-1 u=1 m-1 j=-m+1 P m,j (X u,0 ) - 2m-1 v=1 P m,m (X u,v ) = g (m) 0,0 -g (m) 0,1 and 2m-1 v=1 m-1 i=-m+1 P i,m (X 0,v ) - 2m-1 k=1 P m,m (X k,v ) = h (m) 0,0 -h (m) 1,0 .
So, overall, for any positive integer m, the following decomposition is valid:

X 0,0 -D 0,0 • T m,m := I + (g (m) 0,0 -g (m) 0,1 (u)) + (h (m) 0,0 -h (m) 1,0 ) + Y (m) 0,0 -Z (m) 0,0 , (7.13) 
where we used the following notation: 

Y (m) 0,0 := (k,ℓ)∈Z 2 \[-m+1,m-1] 2 P k,ℓ (X 0,0 ) and Z (m) 0,0 := (u,v)∈Z 2 \[1,2m-1] 2 P m,m (X u,v ) . Let R k,ℓ = S k,ℓ -M k,ℓ . We then derive that R k,ℓ = - k i=1 ℓ j=1 D i,j -D i,j • T m,m + (θ (m) 1,1 -θ (m) k+1,1 -θ (m) 1,ℓ+1 + θ (m) k+1,ℓ+1 ) + k i=1 (g (m) i,1 -g (m) i,ℓ+1 ) + ℓ j=1 (h (m) 1,j -h (m) k+1,j ) 
+ k i=1 ℓ j=1 Y (m) 0,0 • T i,j - k i=1 ℓ j=1 Z (m) 0,0 • T i,j . Therefore max 1≤k≤n 1 1≤ℓ≤n 2 R k,ℓ X p ≤ max 1≤k≤n 1 1≤ℓ≤n 2 k i=1 ℓ j=1 D i,j -D i,j • T m,m X p + 4 max 1≤k≤n 1 +1 1≤ℓ≤n 2 +1 θ (m) k,ℓ X p + 2 max 1≤k≤n 1 1≤ℓ≤n 2 +1 k i=1 g (m) i,ℓ X p + 2 max 1≤k≤n 1 +1 1≤ℓ≤n 2 ℓ j=1 h (m) k,j X p + max 1≤k≤n 1 1≤ℓ≤n 2 k i=1 ℓ j=1 Y (m) 0,0 • T i,j X p + max 1≤k≤n 1 1≤ℓ≤n 2 k i=1 ℓ j=1 Z (m) 0,0 • T i,j X p . (7.14) Let Y (m) i,j = Y (m) 0,0 • T i,j . Since X 0,0 is regular, Y (m) i,j = u,v∈Z P u-i,v-j (Y (m) i,j ) . Hence max 1≤k≤n 1 1≤ℓ≤n 2 k i=1 ℓ j=1 Y (m) i,j X p ≤ u,v∈Z max 1≤k≤n 1 1≤ℓ≤n 2 k i=1 ℓ j=1 P u-i,v-j (Y (m) i,j ) X p . Denoting by U k,ℓ = k i=1 ℓ j=1 P u-i,v-j (Y (m) i,j ) X , note that (U k,ℓ ) k,
Y (m) i,j X p ≤ p p -1 2 u,v∈Z n 1 i=1 n 2 j=1 P u-i,v-j (Y (m) i,j ) X p .
Next, since X is (2, L)-smooth, using twice [18, Th. 2.6] (see also [START_REF] Dedecker | Moment bounds for dependent sequences in smooth Banach spaces[END_REF]Th. 2.2]), we get

n 1 i=1 n 2 j=1 P u-i,v-j (Y (m) i,j ) X 2 p ≪ n 1 i=1 n 2 j=1 P u-i,v-j (Y (m) i,j ) X 2 p ≪ n 1 i=1 n 2 j=1 ∥|P u-i,v-j (Y (m) i,j )| X ∥ 2 p .
Hence, by stationarity,

max 1≤k≤n 1 1≤ℓ≤n 2 k i=1 ℓ j=1 Y (m) i,j X p ≪ √ n 1 n 2 u,v∈Z ∥|P u,v (Y (m) 0,0 )| X ∥ p .
Since P u,v P k,ℓ (•) = 0 for (u, v) ̸ = (i, j), it follows that

max 1≤k≤n 1 1≤ℓ≤n 2 k i=1 ℓ j=1 Y (m) i,j X p ≪ √ n 1 n 2 |u|>m v∈Z ∥|P u,v (X 0,0 )| X ∥ p + u∈Z |v|>m ∥|P u,v (X 0,0 )| X ∥ p . (7.15)
Similarly, we get

max 1≤k≤n 1 1≤ℓ≤n 2 k i=1 ℓ j=1 Z (m) i,j X p ≪ √ n 1 n 2 (u,v)∈Z 2 \[1,2m-1] 2 ∥|P m,m (X u,v )| X ∥ p , implying that max 1≤k≤n 1 1≤ℓ≤n 2 k i=1 ℓ j=1 Z (m) i,j X p ≪ √ n 1 n 2 |u|>m v∈Z ∥|P u,v (X 0,0 )| X ∥ p + u∈Z |v|>m ∥|P u,v (X 0,0 )| X ∥ p . (7.16)
We handle now the rst term in the R.H.S. of decomposition (7.14). Note rst that Since for j xed (D i,j ) j is a martingale dierences sequence, ℓ j=1 D i,j X ℓ is a submartingale. Then, by stationarity and Doob's maximal inequality,

m i=1 max 1≤ℓ≤n 2 ℓ j=1 D i,j X p ≤ m p p -1 n 2 j=1 D 0,j X p .
Next, using that X is (2, L)-smooth and [18, Th. 2.6] , we derive

m i=1 max 1≤ℓ≤n 2 ℓ j=1 D i,j X 2 p ≪ m 2 n 2 j=1 ∥|D 0,j | X ∥ 2 p ≪ m 2 n 2 ∥|D 0,0 | X ∥ 2 p . (7.18) 
Similarly, we obtain

m j=1 max m+1≤k≤n 1 k i=m+1 D i,j X 2 p ≪ m 2 n 1 ∥|D 0,0 | X ∥ 2 p . (7.19) 
To deal with the quantity coming from the second term in the R.H.S. of (7.17), we rst note that for any positive real A,

max 1≤k≤n 1 1≤ℓ≤n 2 k+m i=k+1 ℓ+m j=m+1 D i,j X p ≤ max 1≤k≤n 1 1≤ℓ≤n 2 k+m i=k+1 ℓ+m j=m+1 D i,j X 1 {max 1≤ℓ≤n 2 | ℓ+m j=m+1 D i,j | X ≤4A √ n 2 } p + max 1≤k≤n 1 1≤ℓ≤n 2 k+m i=k+1 ℓ+m j=m+1 D i,j X 1 {max 1≤ℓ≤n 2 | ℓ+m j=m+1 D i,j | X >4A √ n 2 } p .
The rst term in the R.H.S. is less than 4mA √ n 2 whereas to deal with the second one we note that, by stationarity,

max 1≤k≤n 1 1≤ℓ≤n 2 k+m i=k+1 ℓ+m j=m+1 D i,j X 1 {max 1≤ℓ≤n 2 | ℓ+m j=m+1 D i,j | X >4A √ n 2 } p p ≤ n 1 m p max 1≤ℓ≤n 2 ℓ+m j=m+1 D 0,j X 1 {max 1≤ℓ≤n 2 | ℓ+m j=m+1 D 0,j | X >4A √ n 2 } p p .
But, by [17, Corollary 2.10] and stationarity, max

1≤ℓ≤n 2 ℓ+m j=m+1 D 0,j X 1 {max 1≤ℓ≤n 2 | ℓ+m j=m+1 D 0,j | X >4A √ n 2 } p p ≤ 2 p p p -1 n 2 j=1 D 0,j X 1 {| n 2 j=1 D 0,j | X >2A √ n 2 } p p .
Let B be a positive real and dene

d ′ j = D 0,j 1 {|D 0,j | X ≤B} -E(D 0,j 1 {|D 0,j | X ≤B} |F 0,j-1 ) , M ′ n 2 = n 2 j=1 d ′ j and d ′′ j = D 0,j 1 {|D 0,j | X >B} -E(D 0,j 1 {|D 0,j | X >B} |F 0,j-1 ) , M ′′ n 2 = n 2 j=1 d ′′ j .
Observe that M n 2 = n 2 j=1 D 0,j = M ′ n 2 + M ′′ n 2 and that for any nonnegative reals a, b and ε,

(a + b) p 1 {a+b≥2ε} ≤ 2 p a p 1 {a≥ε} + 2 p b p 1 {b≥ε} . Therefore n 2 j=1 D 0,j X 1 {| n 2 j=1 D 0,j | X >2A √ n 2 } p p ≤ 2 p |M ′ n 2 | X 1 {|M ′ n 2 | X >A √ n 2 } p p + 2 p |M ′′ n 2 | X 1 {|M ′′ n 2 | X >A √ n 2 } p p .
Using that X is (2, L)-smooth, [18, Th. 2.6] and stationarity, we get

|M ′′ n 2 | X 2 p ≪ n 2 ∥|D 0,0 | X 1 {|D 0,0 | X >B} ∥ 2 p .
Next, using again that X is (2, L)-smooth and [18, Th. 2.6], we derive

|M ′ n 2 | X 1 {|M ′ n 2 | >A √ n 2 } p p ≤ 1 A p (n 2 ) p/2 E |M ′ n 2 | 2p X ≪ 1 A p (n 2 ) p/2 n 2 j=1 ∥|d ′ j | X ∥ 2 2p p ≪ (n 2 ) p/2 A p ∥|D 0,0 1 {|D 0,0 | X ≤B} | X ∥ 2p 2p ≪ (n 2 ) p/2 B p A p ∥|D 0,0 | X ∥ p p .
So, overall, for any positive reals A and B,

max 1≤k≤n 1 1≤ℓ≤n 2 k+m i=k+1 ℓ+m j=m+1 D i,j X p ≪ mA √ n 2 + mn 1/p 1 √ n 2 ∥|D 0,0 | X 1 {|D 0,0 | X >B} ∥ p + m n 1/p 1 √ n 2 B A ∥|D 0,0 | X ∥ p . (7.20)
Similarly, we get

max 1≤k≤n 1 1≤ℓ≤n 2 k i=m+1 ℓ+m j=ℓ+1 D i,j X p ≪ mA √ n 1 + mn 1/p 2 √ n 1 ∥|D 0,0 | X 1 {|D 0,0 | X >B} ∥ p + m n 1/p 2 √ n 1 B A ∥|D 0,0 | X ∥ p . (7.21)
Let λ > 0. Starting from (7.17), taking into account (7.18)-(7.21) and selecting A = λ 2 ∥|D 0,0 | X ∥ p and B = A/λ, we derive We deal now with the third and fourth term in the R.H.S of decomposition (7.14). For any positive real A, using stationarity, we infer that max P i,v (X u+i,0 )

max 1≤k≤n 1 1≤ℓ≤n 2 k i=1 ℓ j=1 D i,j -D i,j • T m,m X p ≪ m(λ 2 + 1)( √ n 1 + √ n 2 )∥|D 0,0 | X ∥ p + m(n 1/p 1 n 1/2 2 + n 1/2 1 n 1/p 2 )∥|D 0,0 | X 1 {|D 0,0 | X >λ∥|D 0,0 | X ∥p} ∥ p + m(n 1/p 1 n 1/2 2 + n 1/2 1 n 1/p 2 ) λ ∥|D 0,0 | X ∥ p . ( 7 
X 1 {| n 1 i=1 P i,v (X u+i,0 )| X >2A √ n 1 } p .
Next noticing that for any real B, P i,v (X u+i,0 ) = P i,v (X u+i,0 1 {|X u+i,0 | X ≤B} ) + P i,v (X u+i,0 1 {|X u+i,0 | X >B} )

and, proceeding as to get (7.20) and selecting A = λ 2 ∥|X 0,0 | X ∥ p and B = A/λ, we infer that, for any λ > 0, Let us now indicate the main argument to extend (7.12) to dimension d > 2 and then get (6.2). By simple induction we infer that the following extension of (7.13) holds: ∈ L p (X ). Even if it is not an easy task to give a rigorous formulation for g m J let us describe them for some given sets J: for J = J 1 = {1} we have g (m) and so on. Inequality (6.2) then follows using the decomposition (7.26) and the arguments used to prove (7.12).

J 1 = 2m-1 u 1 =1 2m-2 a 2 =0 • • •

DD

  i,j -D i,j • T m,m = i,j .(7.17) 

≪ λm 4

 4 .22) Next note that, for any positive real M ,∥|P i,j (X k,ℓ 1 {|X k,ℓ | X >M } )| X ∥ p .Hence, by stationarity, setting M = λ∥|X 0,0 | X ∥ p , we getmax ∥|X 0,0 | X ∥ p + m 4 (n 1 n 2 ) 1/p ∥|X 0,0 | X 1 {|X 0,0 | X >λ∥|X 0,0 | X ∥p} ∥ p .(7.23)

PX 1

 1 m+i,v (X u+i,b ) • T 0,ℓ+1 X p ≤ 4(2m -1) 3 A √ n 1 + (2m -1)(n 2 + 1) {| k i=1 P i,v (X u+i,0 )| X >4A √ n 1 } p . Note that k i=1 P i,v (X u+i,0 ) Xk≥1 is a submartingale. Therefore, by [17, Corollary 2.10] and stationarity, A(n 1 , u, v)

≪ m 3 λ 2 √ n 1 ≪ m 3 λ 2 √ n 2

 2122 ∥|X 0,0 | X ∥ p + m 3 (n 1 ) 1/2 (n 2 ) 1/p ∥|X 0,0 | X 1 {|X 0,0 | X >λ∥|X 0,0 | X ∥p} ∥ p + m 3 (n 1 ) 1/2 (n 2 ) 1/p λ ∥|X 0,0 | X ∥ p . (7.24)With similar arguments, we obtainmax ∥|X 0,0 | X ∥ p + m 3 (n 1 ) 1/p (n 2 ) 1/2 ∥|X 0,0 | X 1 {|X 0,0 | X >λ∥|X 0,0 | X ∥p} ∥ p + m 3 (n 1 ) 1/p (n 2 ) 1/2 λ ∥|X 0,0 | X ∥ p . (7.25)Starting from decomposition(7.14) and considering the upper bounds (7.15), (7.16), (7.22), (7.23), (7.24) and (7.25), the inequality (7.11) follows.

X 0 -=

 0 D 0 • T m = ∅⊊J⊆⟨d⟩ s∈J (I -U s )g k∈Z d \[-m+1,m-1] d P k (X 0 ) and Z (m) 0 := u∈Z d \[1,2m-1] d P m (X u ) ,

bbb

  d =a d -m+1 P m,b 2 ,...,b d (X u 1 ,a 2 ,...,a d ) , for J = J 2 = {1, 2} we have g d =a d -m+1 P m,m,b 3 ,...,b d (X u 1 ,u 2 ,a 3 ,...,a d ) , for J = J 3 = {1, 3} we have g d =a d -m+1 P m,b 2 ,m,b 4 ,...,b d (X u 1 ,a 2 ,u 3 ,a 4 ,...,a d ) ,

  and so on. Proposition 6.1. Let X be a (2, L)-smooth Banach spaces. Let p ≥ 2 and X 0 be a regular r.v. with values in X such that ∥|X 0

  by the law of large numbers. Let us now deal with C. Letting h M (x) = |x| -M 2 + , where x + = x1 x>0 , and noticing that |x| 1 |x|>M ≤ 2h M (x), we get

  ℓ is a ortho-submartinagle w.r.t. the completely commuting ltration (F k,ℓ ) k,ℓ . By [14, Prop. 2.2.1], it follows that (max 1≤k≤n 1 U k,ℓ ) ℓ≥1 and (max 1≤ℓ≤n 2 U k,ℓ ) k≥1 are both one parameter submartingales. Therefore, for any xed pair (n 1 , n 2 ) of natural numbers, applying twice Doob's maximal inequality, we get

		k	ℓ
	max 1≤k≤n 1 1≤ℓ≤n 2	i=1	j=1

But, note that,

Hence, by orthogonality, it follows that

So, overall,

Therefore, starting from (7.9) and taking into account (7.10), it follows that the rst part of (7.7) holds provided condition (4.7) (in case d = 2) is assumed. Using similar arguments, we derive that the second part of (7.7) as well as (7.8) are satised provided (4.7) holds. This ends the proof of the corollary in case d = 2.

7.4

Proof of Proposition 6.1

In the proof the notation a ≪ b means that there exists a universal constant C (here only depending on (L, p)) such that a ≤ Cb. For reader's convenience, let us consider the case d = 2. In this situation (6.1) reads as

Then D k,ℓ = i,j∈Z P k,ℓ (X i,j ). (D k,ℓ ) k,ℓ is a stationary L p (X ) ortho-martingale dierences with respect to (F k,ℓ ) (k,ℓ)∈Z 2 and the corresponding ortho-martingale M n 1 ,n 2 = n 1 i=1 n 2 j=1 D i,j . Next (6.2) reads as: there exists a positive constant C only depending on (L, p) such that for any positive integers n 1 , n 2 , m and for any positive real λ ≥ m,