N
N

N

HAL

open science

Controlling Cloud-Based Systems for Elasticity Test
Reproduction

Michel Albonico, Gerson Sunyé, Frederico Alvares, Jean-Marie Mottu

» To cite this version:

Michel Albonico, Gerson Sunyé, Frederico Alvares, Jean-Marie Mottu. Controlling Cloud-Based Sys-
tems for Elasticity Test Reproduction. Cloud Computing and Service Science, 864, Springer In-
ternational Publishing, pp.200-222, 2018, Communications in Computer and Information Science,
10.1007/978-3-319-94959-8 11 . hal-03603307

HAL Id: hal-03603307
https://hal.science/hal-03603307v1
Submitted on 9 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03603307v1
https://hal.archives-ouvertes.fr

Controlling Cloud-Based Systems
for Elasticity Test Reproduction

Michel Albonico!®) Jean-Marie Mottu?, Gerson Sunyé?,
and Frederico Alvares?

! Federal University of Technology - Parand, Francisco Beltrio, Brazil
michelalbonico@utfpr.edu.br
2 Tnria/IMT-Atlantique/LS2N, AtlanModels, Nantes, France
{jean-marie.mottu,gerson.sunye}@inria.fr
3 Inria/IMT-Atlantique/LS2N, Ascola Teams, Nantes, France

frederico.alvares@inria.fr

Abstract. Systems deployed on elastic infrastructures deal with
resource variations by adapting themselves, which is error-prone. There-
fore, we must test Cloud-Based Systems (CBS) throughout elasticity.
Such tests may be re-executed regularly to diagnose and fix CBS bugs,
which requires to design tests to execute in a deterministic manner.
In this paper, we identify three main challenges that testers face when
reproducing elasticity tests: to control the elasticity behaviour, to select
specific resources to be deallocated, and to coordinate events parallel
to elasticity. Since elasticity tests can last long, we consider the test
execution time as a secondary challenge. In this paper, we propose an
approach that meets such challenges. Experimental results show that the
proposed approach successfully reproduces elasticity-related bugs that
face the listed challenges while reducing the execution time.

Keywords: Cloud computing * Elasticity - Elasticity testing
Test reproduction - Speediness

1 Introduction

Elasticity is one of the main reasons that make cloud computing an emerging
trend. It allows to allocate or deallocate system resources according to demand
[1,2]. Therefore, Cloud-Based Systems (CBS) must adapt themselves according
to resource variations. These adaptations are not trivial and may affect the CBS
execution. According to Bersani et al. [2]:

“Scaling resources may incur in non-trivial operations inside the system.
Component synchronization, registration, and data migration and data
replication are just the most widely known examples|...], which may
degrade system QoS.”

Therefore, to guarantee their quality, we must test CBSs in the presence of
elasticity, i.e., elasticity testing.

During CBSs development, tests may be regularly re-executed [3] to detect,
diagnose, and correct bugs, where each execution must reproduce the same
behaviour. This requires to design elasticity tests to be deterministic, which
raises four challenges that we have identified: three functional and one non-
functional. The first challenge (functional) is to repeat the CBS elastic behaviour
by managing sequences of resource allocations and deallocations. In this case,
the same elastic behaviour leads the CBS to repeat its adaptations over the
multiple test executions. As a consequence, this reproduces the issues related to
those adaptations, in case such issues have not been corrected. Looking into two
CBSs bug tracking, i.e., MongoDB! and ZooKeeper?, we measure that as soon
as bugs are related to elasticity, all of them require to be able to repeat the CBS
elastic behaviour.

By analysing further MongoDB and ZooKeeper bug tracking, we realize
that other elasticity-related bug reproductions require to combine the elastic
behaviour along with two further conditions, which we consider as second and
third challenges. At least one of them is required 70% and 67% of the MongoDB
and ZooKeeper bugs respectively.

The second challenge (functional) is to repeat time-based events, where
elasticity tests may require to repeat an elastic behaviour, and to synchronize
time-based events with specific CBS states. This is required when testing ~40%
of MongoDB and ~33% of ZooKeeper elasticity-related bugs. An example is
the MongoDB NoSQL database bug 7974 [4], where two time-based events are
required to reproduce the bug: (1) to create a unique index before one of the
MongoDB nodes is removed by a resource deallocation, and (2) to upload a
document after a new node is added by a resource allocation.

The third challenge (functional) is to repeat a specific CBS components
variation, what we call selective elasticity. Elasticity tests may require repeat
an elastic behaviour, and to remove a specific CBS component during a resource
deallocation. This is the case when testing ~44% of both MongoDB and
ZooKeeper elasticity-related bugs. An example is the Apache ZooKeeper bug
2164 [5], which only occurs when the ZooKeeper leader component is removed
by a resource deallocation.

Finally, reproducing elasticity tests has a fourth challenge (non-functional),
to reduce elasticity test execution time. Reducing the execution time can also
save money since in cloud computing the billing model is pay-as-you-go, where
customers are charged by the time they use resources. One way to do this is
to anticipate the reaction to resource demands. Indeed, driving CBSs is time
consuming since elastic controllers take a while (at least 60 s) to react to a
resource demand. This, summed to the time to allocate or deallocated a resource,
result in test executions that last hours, or even days, depending on the length
of the elasticity states sequence.

! https://www.mongodb.com/.
2 https:/ /zookeeper.apache.org/.

In this paper, we present an approach and a prototype to address the three
functional listed challenges in reproducing elasticity tests: the reproduction of
an elastic behaviour, the scheduling of time-based events, and the reproduction
of CBS components variation. The approach also addresses the non-functional
challenge by anticipating the reaction to resource demand, and as a consequence,
accelerating the test reproduction.

To support our claims, we conduct five experiments with two different CBS
case studies. The first two experiments aim at measuring the test execution
time reduction when using the proposed approach. The other three experiments
aim at reproducing three existing elasticity-related bugs by controlling the test
reproduction with the proposed approach.

The remainder of this paper is organized as follows. In the next section, we
remind the major aspects of cloud computing elasticity, and a previous work of
part of the authors in driving CBSs throughout elasticity. Section 3 details the
challenges in elasticity test reproduction and introduces the proposed approach.
The experiments and their results are described in Sect.4. Section 5 discusses
the related work. Finally, Sect. 6 concludes.

2 Cloud Computing Elasticity

This section defines the main concepts related to Cloud Computing Elasticity,
which will help the understanding of our approach.

2.1 Typical Elastic Behavior

Figure 1 presents the typical behavior of elastic cloud computing applications.

m Legend -
8 ‘g - - — Resource Allocation Scale-in Threshold
3| & —— Resource Demand @ Scale-out Threshold Breaching
§ § == Scale-out Threshold = Scale-in Threshold Breaching
24 g-/ — — — —
1.6
1.5

i scale-out time l‘ ________ L.
I :
scale-out reaction time I
]

04 : _————) -

Fig. 1. Typical elastic behavior [6].

In this figure, the resource demand (continuous line) varies over time, increas-
ing from 0 to 1.5 then decreasing back to 0. A resource demand of 1.5 means that
the application demands 50% more resources than the current allocated ones.

When the resource demand exceeds the scale-out threshold and remains
higher during the scale-out reaction time, the cloud elasticity controller assigns
a new resource. The new resource becomes available after a scale-out time, the
time the cloud infrastructure spends to allocate it. Once the resource is avail-
able, the threshold values are updated accordingly. This behavior is similar when
considering a resource scale-in, respectively. Except that, as soon as the scale-in
begins, the threshold values are updated and the resource is becomes unavailable.
Nonetheless, the infrastructure needs a scale-in time to release the resource.

2.2 Elasticity States

Workload fluctuations lead to resource variations (elasticity) that drive the
CBS throughout elasticity-related states. Figure2 depicts the possible transi-
tions between elasticity states.

.\ _
@— ready (ry) T

scaling so reaction| (steady)_(si reaction scaling
-out (so) (ry_sor) (ry_s) (ry_sir) -in (si)

Fig. 2. Elasticity states [6].

At the beginning the CBS is at the ready state (ry), when the resource
configuration is steady (ry_s substate). Then, if the CBS is exposed for a certain
time (scale-out reaction time, ry_sor substate) to a pressure that breaches the
scale-out threshold, the cloud elasticity controller starts adding a new resource.
At this point, the CBS moves to the scaling-out state (so) and remains in this
state while the resource is added. After a scaling-out, the CBS returns to the
ready state, and can move either back to a scaling-out state or to a scaling-in
state (si).

2.3 Elasticity Control

When testing CBSs throughout elasticity, testers should be able to drive the
CBS in a deterministic way, controlling its elastic behaviour. Thus, they can be
more specific and model situations they judge as critical. Furthermore, this can
also reduce testing execution time since the elasticity behaviour is specific. In
cloud computing, this also means reduction of cost since most of cloud providers
use the policy of pay-as-you-go, where consumers pay for the time they use
resources.

We can categorize CBS driving into two groups: (i) direct resource man-
agement, and (ii) generation of adequate workload. The first and simplest one
(i) interacts directly with the cloud infrastructure, asking for resource allocation
and deallocation. The second one (ii) consists in generating adequate workload
variations that drive CBS throughout elasticity states, as previously explained
in Sect. 1, which reproduces a realistic scenario. The second group is more com-
plex since requires a preliminary step for profiling the CBS resource usage, and
calculating the workload variations that trigger the elasticity states.

In a previous work [7], we propose a CBS driving approach that fits in the
second group. That approach is based in the assumption that elasticity state
transitions occur due to workload variations that eventually breach the thresh-
olds, as illustrated in Fig. 1. We provide further details about this approach in
the following paragraphs.

An input workload has three characteristics [8]: workload type, request mix,
and request intensity. The workload type is the type of requests sent to the CBS,
such as read and write operations. The mix of requests is the set of requests
associated to a workload type. Finally, the request intensity is the amount of
requests sent to the CBS in a period. Then, given a workload type, the CBS
driving approach calculates the requests intensity variation that should drive
the CBS throughout a pre-set list of elasticity states.

Figure 3 depicts the approach workflow, which has three execution phases:
workload profiling, workload calculation, and application leading.

Workload
Target CBS Profiling
Workload
®
Workload
Pattern
Profiling
Intensity

Resource Required Elasticity States Thr
esholds
Usage J[RES = {s,, s,, ..., S}][

Workload
Calculation

i ' Application
! O Execution Phase ; Leading

Fig. 3. CBS driving procedure workflow [7].

The workload profiling phase has four parameters: the target CBS, the work-
load generator, the workload type, and the Profiling Intensity (PI). The target
CBS is the CBS driven throughout elasticity. The workload generator is the
tool that generates the workload. The workload type describes the type or set
of requests sent to the CBS. Finally, the PI defines the number of requests per
second sent to the CBS during the workload profiling phase.

To profile the effect of the workload on the CBS, the approach generates
the workload according to the workload profiling parameters. Then, it calculates
the Average Resource Usage (ARU) for the period, which is the input of the
workload calculation phase.

In the workload calculation phase, the CBS driving approach calculates the
request intensity(ies) that drive the CBS throughout the Required Elasticity
States (RES), which we call workload intensity(ies).

Therefore, to drive a CBS throughout elasticity states we must know which
are the workload intensities that breach the scale-out, and the scale-in thresh-
olds, which we call multipliers. The scale-out multiplier, denoted by Mj,, is the
workload intensity that breaches the scale-out threshold. The scale-in multiplier,
denoted by My;, is the workload intensity that breaches the scale-in threshold.

After discovering the multipliers, the CBS driving approach calculates the
workload intensities for each elasticity state in the RES. For scaling states, i.e.,
scaling-out and scaling-in, the workload intensity must breach a threshold, while
for the ready state it must not breach any threshold. However, since scaling states
change the amount of resources over time, the amount of allocated resource
(AR) is a key parameter. The approach calculates the workload intensities by
multiplying it by M, and My;. We call the product of this multiplication as
current multiplier (CM), where C My, = My, - AR and CM; = M,; - AR. Such
multipliers correspond to the workload intensities that drive the CBS through the
scaling-out and the scaling-in states, denoted by WI*° and WI*'. The workload
intensity for ready states (WI1"¥-%) is calculated as ¢ percent of C M, (WI"¥-* =
165 - CMs,), where ¢ is a configurable parameter. Such intensity must lead the
resource usage to a level close to C'Mj,, a significant amount of work, but without
breaching any threshold.

In the application leading phase, we lead the CBS using the calculated work-
load intensities (W), which is presented in Algorithm 1. We expose the CBS
to each workload intensity until the related elasticity state ends. To identify
the elasticity state transitions, the approach monitors the cloud infrastructure
periodically.

Algorithm 1. Application Leading.
Data: workload intensities W T
monitorElasticity();
foreach p < s,i> € WI do

while s.isUp do
generateWorkload (7);
end

end

3 Elasticity Testing Approach

In this section, we first present the challenges in elasticity test reproduction, then
we present the overall architecture of our approach and aspects of the prototype
implementation.

3.1 Challenges in Elasticity Test Reproduction

Elasticity test reproduction consists in exposing the CBS to the same conditions
as previous executions, which should stimulate it to repeat the same behaviour.
Then, testers can find CBS bugs, correct them, and then check whether they
have been fixed, requiring several runs of failed tests. Another use is to check
if changes in the CBS, such as new features, affect its behaviour, or introduce
bugs.

To discover which are the conditions that CBSs face, we analyse elasticity-
related bugs reported in the bug tracking of two popular CBSs: MongoDB and
ZooKeeper. Bug reports have rich information since developers use them to
implement tests reproducing bugs. Therefore, these reports reveal the conditions
necessary to reproduce elasticity-related bugs, and as a consequence, elasticity
tests. The search for elasticity-related bugs has two steps:

1. Select bug reports that contain in their description words that may refer
to elasticity, such as: elasticity, scaling, adding, removing, node, sync (for
synchronization), and replic (for replication).

2. Gather the bug reports whose description refers to resource changes, excluding
bug reports where the resource changes do not reflect an elastic behaviour,
such as the ones that restart a Virtual Machine (VM) rather than remove or
add one.

The two CBS projects use JIRA? issue tracking to report their bugs. There-
fore, for the Step 1, we use the query in Listing 1 to select bug reports related
to elasticity. In the query, we change $PROJECT by the project name that cor-
responds to the CBS, where for MongoDB the project name is SERVER, while
for ZooKeeper, it is ZOOKEEPER. We exclude bug reports whose resolution is
Cannot Reproduce or Duplicate. The first resolution refers to bugs that devel-
opers could not reproduce due to either wrong or insufficient information, while
the second resolution refers to duplicate bug reports.

Listing 1. Query Used at Step 1.

project = "$PROJECT” AND issuetype = Bug AND resolution not

in (” Cannot Reproduce”,” Duplicate”) AND (description ~ ”elasticity”
OR description ~ ”scaling” OR description ~ ”adding”

OR description ~ ”"removing” OR description ~ ”node”

OR description ~ 7sync” OR description ~ "replic?”)

Table 1 lists the number of bugs selected at each searching step. MongoDB
has 25,780 bugs reported on its bug tracking system, where we find 316 in the
first step, and 43 in the second step. ZooKeeper has 2677 bugs reported, where
we find 188 bugs in the first step, and 9 in the second step.

The selected bugs reveal three main challenges in reproducing elasticity-
related bug, which we consider as elasticity tests reproduction challenges:
elasticity control, selective elasticity, and event scheduling. These challenges are
functional since the tests cannot be reproduced and the bugs corrected without

3 https://jira.atlassian.com.

Table 1. Selected bugs in the systematic search.

Total of bugs | Bugs at step 1| Bugs at step 2
MongoDB | 25.780 316 43
ZooKeeper | 2.677 188 9

solving them. As usual non-functional challenge of the speediness is a concern.
It is a requirement to be able to run the numerous tests of such systems. More-
over, since cloud computing’s billing model is pay-as-you-go, speediness is a cost
concern.

— Flasticity Control is the ability to reproduce a specific elastic behaviour. All
the selected Elasticity-related bugs occur after a specific sequence of resource
allocations and deallocations. Therefore, the challenge is to repeat the CBS
elastic behaviour by managing sequences of resource allocations and deallo-
cations.

— FEvent Scheduling is the ability to synchronize events to elasticity states. An
event is any interaction with or stimulus to CBS, such as forcing a data
increment or to simulate infrastructure failures. The challenge is to identify
elasticity states at CBS runtime, and to switch among events according to
the elasticity state they are associated.

— Selective Elasticity is the ability to remove a specific CBS component. The
challenge is to identify and to deallocate the resource that hosts the CBS
component that must be removed.

— Speediness is the ability of reproducing elasticity tests faster than relying on
native cloud computing elasticity controllers. The challenge is to repeat the
CBS elastic behaviour anticipating the resource changes.

Table 2 shows the quantity of challenges faced by each CBS bug reproduction.
As previously mentioned, all the selected bugs face the elasticity control, where
13 MongoDB (30%) and 3 ZooKeeper (33%) do not face the other challenges for
their reproductions. Out of MongoDB bugs, 30 bugs (70%) also face challenges
rather than elasticity control, within which 6 (14%) bugs face all the challenges.
Out of ZooKeeper bugs, 6 bugs (66%) face further challenges, and 5 (55%) of
them face all the challenges.

Table 2. Challenges in bug reproduction.

Bugs Elasticity | Selective | Event All | Only
considered | control elasticity | scheduling elasticity
control
MongoDB | 43 43 19 17 6 |13
ZooKeeper | 9 9 4 3 5 3

3.2 Architecture Overview

Figure 4 depicts the overall architecture of our approach. The architecture has
four main components, which aim at meeting the elasticity test reproduc-
tion challenges: Elasticity Controller Mock (ECM), Workload Generator (WG),
Event Scheduler (ES), and Cloud Monitor (CM).

E = {ec1=(s,,W,).ec,, ..., €c }
SER = {(ec, ser), ...}

Cloud
Monitor

Elasticity
Controller
Mock

Resource Variation ;

Workload
Generator

Workload

Current Elasticity State

Event
Scheduler

Event Execution
Legend:

C] Entry

[Events Schedule] O Tool Component

OCIoud infrastructure

Fig. 4. Overall architecture [6].

The ECM simulates the behaviour of the cloud provider elasticity controller,
allocating and deallocating determined resources, according to testing needs. It
also asks the W@ to generate the workload accordingly. The role of the ES is to
schedule and execute a sequence of events in parallel with the other components.
Finally, the CM monitors the cloud system, gathering information that helps
orchestrating the behaviour of the three other components, ensuring the sequence
of elasticity states, and their synchronization with the events.

Table 3 summarizes the challenges that each component meets, as we detail
in this section.

Elasticity Controller Mock. The ECM is designed to reproduce the elastic
behavior. By default, ECM requires as input a sequence of elasticity changes,
denoted by E = {ecy, eca, ..., ec, }, where each ec is a pair that corresponds to an
elasticity change. Elasticity change pairs are composed of a required elasticity
state (s;) and a workload (W;), ec; = (s;, W;) where 1 < i < n. A workload

Table 3. Challenges met by the architecture components.

Component | Elasticity control | Selective elasticity | Event scheduling | Speediness
ECM Yes Yes Yes Yes
WG Yes No No No
ES No No Yes No
CM Yes Yes No No

is characterized by an intensity (i.e., amount of operations per second), and a
workload type (i.e., set of transactions sent to the cloud system).

ECM reads elasticity change pairs sequentially. For each pair, ECM requests
resource changes to meet elasticity state s; and requests the Workload Generator
to apply the workload W;. Indeed, we have to send the corresponding workload
to prevent cloud infrastructure to provoke unexpected resource variations. In
particular, it could deallocate a resource that ECM just allocated, because the
workload has remained low and under the scale-in threshold.

Rather than waiting for the cloud computing infrastructures for elasticity
changes, the ECM directly requests to change the resource allocation (elasticity
control). Based on both, required elasticity state and workload (elasticity change
pair), ECM anticipates the resource changes. To be sure CBS enters the expected
elasticity state, ECM queries the CM, which periodically monitors the cloud
infrastructure.

The ECM may also lead to a precise resource deallocation (selective
elasticity). Typically, elasticity changes are transparent to the tester, managed
by the cloud provider. To set up the selective elasticity, ECM requires a sec-
ondary input, i.e., Selective Elasticity Requests (SER). SER is denoted by
SER = {(ecy, ser1), ..., (ecp, sery)}, where ec; € E, and ser; refers to a selec-
tive elasticity request. A selective elasticity request is a reference to an algorithm
(freely written by tester) that gets a resource’s ID. When ec; is performed by
ECM, the algorithm referred by ser; is executed, and the resource with the
returned ID is deallocated by ECM.

ECM helps in meeting all of elasticity testing challenges. As earlier explained
in this section, it deterministically requests resource variations (elasticity control
and selective elasticity), and helps in ensuring the event scheduling providing
information of the current elasticity state to the Event Scheduler. As earlier
explained in this section, the ECM deterministically requests resource variations
(elasticity control and selective elasticity). In addition, the ECM helps in ensur-
ing the event scheduling by providing information of the current elasticity state
to the Event Scheduler, and in meeting the speediness by anticipating resource
changes.

Workload Generator. The Workload Generator is responsible for generating
the workload (W). We base it on our previous work [7], which takes into account
a threshold-based elasticity (see Fig.1), where resource change demand occurs

when a threshold is breached for a while (reaction time). Therefore, a workload
should result in either threshold breached (for scaling states) or not breached (for
ready state), during the necessary time. To ensure this, the Workload Generator
keeps the workload constant, either breaching a threshold or not, until a new
request arrives.

Considering a scale-out threshold set at 60% of CPU usage, the workload
should result in a CPU usage higher than 60% to request a scale-out. In that
case, if 1 operation A hypothetically uses 1% of CPU, it would be necessary
at least 61 operations A to request the scale-out. On the other hand, less than
61 operations would not breach the scale-out threshold, keeping the resource
steady.

The Workload Generator contributes with the Elasticity Controller Mock to
meet the elasticity control challenge.

Event Scheduler. The ES input is a map associating sets of events to elasticity
changes (ec;), i.e., the set of events that should be sent to the cloud system when
a given elasticity change is managed by the ECM. Table4 abstracts an input
where four events are associated to two elasticity changes.

Table 4. Events schedule.

Elasticity change | Event ID | Execution order | Wait time
ecy el 1 0s

e2 2 10s

e3 2 Os
ecs e2 1 0Os

ed 2 0s

Periodically, the ES polls the ECM for the current elasticity change, executing
the events associated to it. For instance, when the ECM manages the elasticity
change ecy, it executes the events eq, es, and e3. Events have execution orders,
which define priorities among events associated to the same state: event e; is
executed before events e; and es. Events with the same execution order are
executed in parallel (e.g., eo and e3). Events are also associated to a wait time,
used to delay the beginning of an event. In Table4, event ey has a wait time
of 10s (starting 10s after es, but nonetheless executed in parallel). This delay
may be useful, for instance, to add a server to the server list a few seconds after
the ready state begins, waiting for data synchronization to be finished. The ES
meets the event scheduling challenge.

Cloud Monitor. The CM helps ECM to ensure elasticity control and selective
elasticity. It periodically requests current elasticity state and stores it in order
to respond to the ECM queries, necessary for elasticity control. It also executes

the selective elasticity algorithm of SER, responding to ECM with the ID of the
found resources.

3.3 Prototype Implementation

Each component of the testing approach architecture is implemented in Java and
communicate with each other through Java RMI. Currently, we only support
Amazon EC2 interactions, though one could adapt our prototype to interact
with other cloud providers.

Elasticity Controller Mock. The elasticity changes are described in a prop-
erty file. The entries are set as (key, value) pairs, as presented in Listing 2. The
key corresponds to the elasticity change name, while the value corresponds to
the elasticity change pair. The first part of the value is the elasticity state, and
the second part is the workload, divided into intensity and type.

Listing 2. Example of Elasticity Controller Mock Input File (Elasticity Changes).

ecl=ready, (1000,write)
ec2=scaling —out, (2000,read/write)

ecd=scaling—in, (1500,read)

As previously explained, for each entry, the ECM sends the workload parameters
to the Workload Generator and deterministically requests the specified resource
change. Resource changes are requested through the cloud provider API, which
enables resource allocation and deallocation, general infrastructure settings, and
monitoring tasks. Before performing an elasticity change, the ECM asks the CM
whether the previous elasticity state was reached. The CM uses the Selenium*
automated browser to gather pertinent information from cloud provider’s dash-
board Web page.

We use Java annotations to set up selective elasticity requests (SER), as illus-
trated in Listing 3. A Java method implements the code that identifies a specific
resource and returns its identifier as a String type. This method is annotated
with metadata that specifies its name and associated elasticity change.

Listing 3. Selective Elasticity Input File.

@Selection{name="serl”, elasticity_change="ec4”}
public String selectl () {

... /J/code to find a resource ID

return resourcelD; }

Workload Generator. The WG generates the workload according to the
parameters received from the ECM (i.e., workload type and intensity), whereas
the workload is cyclically generated until new parameters arrive. It uses existing
benchmark tools, setting the workload parameters in the command line.

* http://www.seleniumhq.org/.

For instance, YCSB benchmark tool allows three parameters related to the
workload: the preset workload profile, the number of operations, and the number
of threads. The preset workload profile refers to the workload type, while the
multiplication of the two last parameters results in the workload intensity.

Event Scheduler. Event schedules is set in a Java file, where each event is an
annotated method, such as the example illustrated in Listing 4. Java methods
are annotated with the event identifier, the related elasticity change, the order,
and the waiting time. EC periodically polls the ECM to obtain the current
elasticity change. Then, it uses Java Reflection to execute the Java methods
related to it.

Listing 4. Example of Event Scheduler Input File.

@Event{id="el” ,elasticity_change="ecl” ,order="1", wait="0"}
public void eventl () { ... }

3.4 Prototype Execution

Figure 5 illustrates the prototype execution sequence. This execution starts by
the CM component, which interacts with the cloud infrastructure (Cloud) to
get information that identifies the current elasticity state. Then, the prototype
executes the ec C EC in parallel to the elasticity states identification. For each
ec C EC, the ECM sends a message to WG, which generates the workload W;
until the ECM sends a message to stop this process. The ECM sends this message
when the CM identifies that the current elasticity state has ended. During the
workload generation, if es; is different from ready, the ECM changes the resource.
Otherwise, it only waits for a given time-frame before moving to the next ec.
When a new elasticity state begins, the ECM sends a message to the EVs, which
leads the execution of all the events related to this state. The prototype repeats
this process until the last ec ends.

4 Experiments

In this section, we present five experiments. The first two experiments aim at
demonstrating the test execution time reduction when using the Elasticity Con-
troller Mock (ECM). The other three experiments aim at controlling the test
reproduction of three existing elasticity-related bugs. We conduct all the exper-
iments in the environment described in the next section.

4.1 Experimental Environment

CBS Case Studies. In the experiments, we use two CBS case studies,
MongoDB?® and Apache ZooKeeper® (or simply ZooKeeper).

5 https://www.mongodb.org/.
5 https:/ /zookeeper.apache.org/.

E
E

es [com [[ccss [:clous

1
I
I
I
|
I
|
|
|
|
|
|
[

R S E

[esii <> ready] |

|
T
|
T
IoopJ l l i |
I | ‘ :
[ec:EC] | genWorkload(W_i | | I
:gen orkload(W_ :sendReques‘S(){ 1 :
I | !
1 | I
! : I
T
ar T ‘
Par Topt) | |
1
|
|

chang}eResource(esf‘

t execE\/,ents()
1
I
I
I

stateEnded

]
L
I
I
I
I
l
|_| stopGen()
o
I
I
|
i
1
I
I
I
}
I
X

|
[|
| i
| !
| |
| |
I ! L
: : | :
a a : |
| | ! |
| 1 ! |
| 1 ! |
I 1 ! I
| | | :
X X X |
Fig. 5. Prototype execution sequence.

MongoDB is a NoSQL document database. It has three different compo-
nents: configuration server, MongoS, and MongoD. The configuration server
stores meta-data and configuration settings. The MongoS instance is a query
router, which ensures load balance, while MongoD instances store and process
data.

ZooKeeper is a coordination service for distributed systems. ZooKeeper coor-
dination is intended to be replicated over a set of nodes, called as an ensemble.
Requests from ZooKeeper clients are forwarded to a single node, the leader
(which is elected using a distributed algorithm). The leader works as a proxy,
distributing the request among other nodes called as followers. The followers
keep a local copy of the configuration data to respond to requests.

To generate the workload in the experiments with MongoDB, we use the
Yahoo Cloud Serving Benchmark (YCSB) [9], while in the experiments with
ZooKeeper, we use an open-source benchmark tool [10].

Cloud Computing Infrastructure. All the experiments are conducted on the
commercial cloud provider Amazon Elastic Cloud Compute (EC2), where we set
scale-out and scale-in thresholds as 60% and 30% of CPU usage, respectively.
Since the threshold values are not critical for the experiment goals, we set them in
an arbitrary manner. We choose a scale-out threshold value as 60% of CPU since
it should not result in CBS stress. This threshold value also makes it possible
to reduce the execution cost since the workload generation can be executed on
a single medium machine (m3.medium”, with a 2.6 GHz vCPU, 3.75 MB of
memory, and 4 GB of disk). We set the scale-in threshold value as half of the
scale-out threshold value.

In the experiment with MongoDB, the MongoS instance is deployed on a
large machine (m3.large, with 2 vCPUs of 2.6 GHz, 7.5 MB of memory, and 32
GB of disk), while the other instances are deployed on medium machines. In the
experiments with ZooKeeper, every node is deployed on a medium machine.

4.2 Speediness Experiment

In this second set of experiments, we verify whether the Elasticity Controller
Mock (ECM) reduces test execution time. In the experiment we lead two CBS
case studies, MongoDB and ZooKeeper, through an elasticity states sequence
that covers all the possible elasticity state transitions. This is the elasticity states
sequence: ready, scaling-out, ready, scaling-in, and ready. This leading is done in
two ways, by using the Elasticity Controller Mock, and by using the Amazon EC2
elasticity controller. The workload pattern used in this experiment is only read
operations, which keeps the data size unchanged along the experiment execution.

Speediness Considering ZooKeeper. For the ZooKeeper, we consider the
following elasticity changes sequence:

E = (ry_sor, (5800,7)), {so, (5800, r}), (ry_sir, (5000, r)),
(si, (5000, 7)), (ry, (5000, r))

Aiming at accelerating the elasticity changes sequence execution, the first two
ready states correspond to ry_sor and ry_sir sub-states (see Fig.2), according
to the next scaling state in the sequence. Thus, as soon as the CBS enters a
ready state, there is a threshold breaching that triggers the next scaling state.
The last ready state corresponds to a rys sub-state, where none of thresholds
is breached. When executing the sequence by using the native Amazon EC2
elasticity controller, we set the scale-out and scale-in reaction times (see Fig. 1)
as the minimum allowed, i.e., 60s. In the ECM, we set this as 30s, half of the
minimum allowed by the Amazon EC2 elasticity controller. In both cases, the
last ready state lasts 30s.

Figures6(a) and (b) present ZooKeeper performance results when using
Amazon EC2 and the ECM.

" https://aws.amazon.com/fr/ec2 /itype/.

Workload == --
Performance (Throughput) - .- .-
Resource Variation

12000 [~ -2
2]
Q
< 10000 [~ _
|5 g
g 8000 [~ =
(] 7]
o 18
S 6000 Foc-mmrmmmms=o 5
®w T e - = = = == —] o
S 2000 B R 2
3 14
[
& 2000
ry_sor so ry_sir si ry_s
50 700 150 200 250 300
Time (s)
(a) Amazon EC2 Elasticity Controller
Workload === -
Performance (Throughput) «------
Resource Variation
12000 — -2
[
S
< 10000 — _
g z
$ 8000 — >
(2] 7]
= [0}
Q 6000 ——L _ o ___ —— —1¢g
o [FTaon T T h N a2
15 4000 LTS STTTOTT 2
3 4
[
& 2000 [~
ry_sor so ry_sir si ry_s
50 100 150 200 250 300
Time (s)

(b) Elasticity Controller Mock (ECM)

Fig. 6. ZooKeeper performance.

The execution by using the ECM lasts ~250s, while with Amazon EC2 the
execution lasts ~310s. This difference of (2 x 30) s is due to our shortest reaction
time after the threshold breaching. Both executions show a similar performance
variation (doted line), which corresponds to the applied workload (dashed line):
it starts by 5800 ops and keeps at this level until the end of the scaling-out
state, goes down to 5000 ops from the second ready state until the end of the
execution. When using the ECM, the average performance varies less than 1%
compared the execution by using the Amazon EC2 elasticity controller. This
value is insignificant, and can be associated to external factors, such as network
latencies.

Speediness Considering MongoDB. For the MongoDB, we consider the
following elasticity changes sequence:

E = (ry_sor, (1500,7)), {so, (1500, r}), (ry_sir, (1000, r)),
(si, (1000, 7)), (ry, (1000, r))

The test sequence execution time is ~330s when using Amazon EC2 and
~270s when using the ECM. The difference corresponds to the (2 x 30) s short-
est reaction time after the threshold breaching. We measured a performance
difference of less than 2% comparing the use of our approach with the default
Amazon EC2.

4.3 Test Reproduction Experiment

In this section, we describe the use of our approach to reproduce the three bugs,
and compare the results to reproduction attempts without our approach. We do
not explain in details the setup of reproductions without the proposed approach,
though in such executions the elasticity control is managed. Indeed, reproducing
elasticity is a native feature of cloud computing infrastructures, and we just drive
CBS through required elastic behavior using our approach [7].

Selected Bugs. Table5 summarizes the challenges in the reproduction of the
three selected bugs.

Table 5. Challenges in reproducing the three selected bugs.

Bug Feature

Elasticity control

Selective elasticity

Event scheduling

MongoDB — 7974

Yes

Yes

Yes

ZooKeeper — 2164

Yes

Yes

No

ZooKeeper — 2172

Yes

No

Yes

The selected bugs cover all the possible combinations of challenges, con-
strained by the mandatory presence of elasticity control, and the need of at least
one of the other challenges. We do not attempt to reproduce any bug that only
faces elasticity control challenge since one could reproduce the required elastic
behavior using our elastic control approach [7].

MongoDB Bug 7974. This bug affects the MongoDB versions 2.2.0 and 2.2.2,
when a secondary component of a MongoDB replica set® is deallocated. Indeed,
in a MongoDB replica set, one of the components is elected as primary member,
which works as a coordinator, while the others remain as secondary members.

8 https://docs.mongodb.com /replica-set.

To reproduce this bug, we must follow a specific elastic behavior: initializa-
tion of a replica set with three members, deallocation of a secondary member,
and allocation of a new secondary member. Therefore, the second step of the
elastic behavior requires the deallocation of a precise resource, one of the sec-
ondary members. The bug reproduction also requires two events synchronized
to elasticity changes. Right after the secondary member deallocation, we must
create a unique index, and after the last step of the elastic behavior, we must
add a document in the replica set.

In conclusion, the reproduction of this bug faces all the challenges that we
consider in this paper: elasticity control, selective elasticity, and event scheduling.

ZooKeeper Bug . This bug is related to ZooKeeper version 3.4.5 and concerns
the leader election. According to the bug report?, in an ensemble with three
nodes, when the node running the leader shuts down, a new leader election
starts and never ends.

The reproduction of this bug must follow a precise sequence: initialization
(allocation of the first node), followed by the allocation of two nodes and the
deallocation of the leader node. The main difficulty of reproducing this bug is
that when ZooKeeper is deployed on three nodes, the deallocated node is not nec-
essarily the leader. The problem is that during a scale-in, Amazon EC2 removes
either the newest or the oldest node and cannot reproduce the bug straightfor-
wardly. In conclusion, the reproduction of this bug faces two challenges: elasticity
control and selective elasticity.

ZooKeeper Bug 2172. This bug is related to ZooKeeper version 3.5.0. Accord-
ing to the bug report'?, when a third node is added to a ZooKeeper ensemble,
the system enters an unstable state and cannot recover.

After a thorough analysis of the available logs, we understand that the bug
occurs when a leader election starts right after the allocation of a third node.
More precisely, when a new node joins the ensemble, there is a data synchro-
nization with the leader. Then, if the data is not already synchronized at the
moment of the leader election, the bug occurs.

The reproduction of this bug requires a simple elastic behaviour: the alloca-
tion of one initial node, and then the allocation of two more nodes. However,
this sequence alone does not reproduce the bug: we need to be sure that the
leader election starts before the end of the data synchronization process. We can
force this by increasing the data amount through an event synchronized with
the completion of the third node allocation.

The reproduction of this bug faces two challenges: elasticity control and event
scheduling.

9 https://issues.apache.org/jira/ZK2164.
10 https://issues.apache.org/jira/ZK2172.

4.4 Bug Reproductions

MongoDB-7974 Bug Reproduction. This bug reproduction has been
already described in our previous paper [6]. To reproduce MongoDB bug 7974
using our approach, we first manually create the MongoDB replica set, composed
of three nodes. Then, we set up the following sequence of elasticity changes, which
should drive MongoDB through the required elastic behavior:

E = (ry1, (4500, 1)), {si1, (1500, 7)),
(rya, (3000, 7)), (so1, (4500, 7)), (rys, (4500, 7))

Since we must deallocate a secondary member of MongoDB replica set at
elasticity change ecs, it is associated to a selective elasticity request (SER). The
SER queries MongoDB replica set’s members, using MongoDB shell method
db.isMaster, until finding a member that is secondary.

In parallel to the elasticity changes, we set up two events, el and e2, which
respectively create a unique index, and insert a new document in the replica
set. The el is associated to elasticity change ecs, a ready state that follows the
scaling-in state where a secondary member is deallocated. The e2 is associated
to elasticity change ecs, the last ready state. Both events are scheduled without
waiting time (Table6).

Table 6. MongoDB-7974 event schedule [6].

Elasticity change | Event ID | Execution sequence | Wait time

ecs el 1 Os

ecs e2 1 Os

We repeat the bug reproduction for three times. After each execution, we look
for the expression “duplicate key error index” in the log files. If the expression
is found, we consider the bug is reproduced.

Table 7 shows the result of all the three executions, either using our approach
or not. All the attempts using our approach reproduce the bug, while none of
the attempts without our approach do it.

Table 7. MongoDB-7974 bug reproduction results [6].

Reproduction Reproduced | Not Reproduced
With our approach 3 0
Without our approach | 0 3

For the executions without our approach, we force MongoDB to elect the
intermediate node (in the order of allocation) as primary member!!, what can

1 https://docs.mongodb.com /force-primary.

occur in a real situation. In this scenario, independent of scale-in settings, cloud
computing elasticity controllers always deallocate a secondary member, since
Amazon EC2 only allows to deallocated the oldest or newest nodes. This is
because we want to see the effect of event synchronization. Therefore, we assure
the elastic behaviour is the required to reproduce the bug. Even though we force
the reproduction of the required elastic behaviour, this bug still needs the event
executions, which must be correctly synchronized. This is the reason the bug is
not reproduced without our approach.

ZooKeeper-2164 Bug Reproduction. To reproduce this bug, we translate
and complete the scenario (Sect.4.3) into the following sequence of elasticity
changes:

E = (ry1, (3000, 7)), (so1, (5000, r}), (ryz, (5000, 7)),
(802, (10 000, 7)), (rys, (10 000,7)), (si1, (5000,7))

The sequence of elasticity changes first initializes the cloud system with one
node, then it requests two scale-out. Once the three nodes are running, the
sequence requests a scale-in.

To discover the leader node, we write a SER that is associated to the last elas-
ticity change €6 ({si1, (5000, 7))). The SER method connects to every Zookeeper
node and executes ZooKeeper command named stat. This command describes,
among other information, the node execution mode: leader or follower.

The sequence of elasticity states, including a selective elasticity, is supposed
to reproduce the bug. To verify whether the failure occurs, we write a test oracle,
which is implemented in JUnit [11]. It is run after the last elasticity change
((si1, (5000, 7))), and repetitively searches for a leader until it is found or the
timeout is reached. In the first case, the verdict is pass, what means the bug is
reproduced and observed. Otherwise, the verdict is fail.

As well as in the first experiment, we use two different setups to execute
this experiment: with our approach, and without our approach. We repeat the
experiment three times for each setup.

Since the selective elasticity is one of the challenges for this bug reproduction,
when executing without our approach, we try to reproduce a real scenario, where
every node can be elected as a leader. Therefore, we force ZooKeeper to elect a
different node as the leader at each execution: the newest, the oldest, then the
intermediate node. Then, we use Amazon EC2 to deallocate a node. Its policy is
to deallocate either the newest or the oldest node, it is not possible to deallocate
the intermediate node. Hence, during two executions we can ask Amazon EC2
to deallocate the leader, but not during the third one.

Table 8 summarizes the results. When using our approach, all the three test
executions pass, demonstrating the ability of our testing approach to determinis-
tically reproduce the bug. In contrast, only two executions without our approach
pass, the ones where the leader is the newest or the oldest node. Therefore, with-
out our approach the bug was not reproduced deterministically.

Table 8. ZooKeeper-2164 bug reproduction results.

Reproduction Pass verdicts | Fail verdicts
With our approach 3 0
Without our approach | 2 1

ZooKeeper-2172 Bug Reproduction. We create the following sequence of
elasticity changes to reproduce this bug (Sect. 4.3):

E = (ry1, (3000, r)), (so1, (5000, r)),
(ryz, (5000, 7)), (s0g, (10 000, 7)), (rys, (10 000, 7))

According to the bug log files, the bug occurs when the leader election starts
before the end of the data synchronization between the third node and the pre-
vious leader. Thus, the test sequence must ensure that the data synchronization
process is longer than the delay needed to start a new election, which is about
10s according to the log files. Forcing the data synchronization to take long
enough, we create an event schedule to associate an event el to the state sos,
as described in Table9. The el requests a data increasing to an amount that
should take longer than 10s to synchronize. Since this experiment uses Ama-
zon m3.large machines, which have a bandwidth of 62.5 MB/s, the data amount
must be ~625MB of data.

Table 9. ZooKeeper-2172 event schedule.

Elasticity change | Event ID | Execution sequence | Wait time

ecy el 1 0s

We use the test oracle as for the bug 2164, which is associated to the last
ready elasticity state which is not supposed to be able to elect a leader before the
timeout. Table 10 summarizes the experiment execution. In all three executions,
the test verdict is pass, meaning that the testing approach reproduces the bug
successfully. Since Amazon EC2 cannot manage natively the scheduling of events
synchronized with elasticity states, it cannot reproduce the bug deterministically.

Table 10. ZooKeeper-2172 bug reproduction results.

Reproduction Pass verdicts | Fail verdicts

With our approach 3 0

Without our approach | 0 3

5 Related Work

Several research efforts are related to our approach in terms of elasticity con-
trol, selective elasticity, and events scheduling. The work of Gambi et al. [8,12]
addresses elasticity testing. The authors predict elasticity state transition based
on workload variations and test whether cloud infrastructures react accordingly.
However, they do not focus on controlling elasticity and cannot drive cloud
application throughout different elasticity states.

Banzai et al. [13] propose D-Cloud, a virtual machine environment specialized
in fault injection. Like our approach, D-Cloud is able to control the test envi-
ronment and allows testers to specify test scenarios. Test scenarios are specified
in terms of fault injection and not on elasticity and events, as in our approach.

Yin et al. [14] propose CTPV, a Cloud Testing Platform Based on Virtualiza-
tion. The core of CTPV is the private virtualization resource pool. The resource
pool mimics cloud infrastructures environments, which in part is similar to our
elasticity controller. CTPV differs from our approach in two points: (i) it does
not use real cloud infrastructures and (ii) it uses an elasticity controller that
does not anticipate resource demand reaction.

Vasar et al. [15] propose a framework to monitor and test cloud computing
web applications. Their framework replaces the cloud elasticity controller, pre-
dicting the resource demand based on past workload. Contrary to our approach,
they do not allow to control a specific sequence of elasticity states or events.

Li et al. [16] propose Reprolite, a tool that reproduces cloud system bugs
quickly. Similarly to our approach, Reprolite allows the execution of parallel
events on the cloud system and on the environment, but it does not focus on
elasticity, one of our main contributions.

6 Conclusion

In this paper, we proposed an approach to reproduce elasticity tests in a deter-
ministic manner. This approach meets four challenges: elasticity control, selective
elasticity, event scheduling, and execution time reduction.

We used this approach to reduce the execution time when driving two CBSs,
ZooKeeper and MongoDB, throughout an elasticity state sequence that covers
all the elasticity state transitions. We compare these executions to the ones
without the proposed approach by measuring the CBS performance throughout
the executions. The performance in both executions does not present a significant
variation, which indicates that the approach reduces the execution time without
compromising the CBS behaviour.

We also used the approach to control the reproduction of three bugs of those
two CBSs. Indeed, the bugs cannot be deterministically reproduced with state-
of-the-art approaches. This also indicates that execution time reduction does not
hamper such bug reproductions.

As testing is not only about reproducing existing bugs, but also diagnos-
ing them. An evolution for the proposed approach is to generate different test
scenarios combining elasticity state transitions, workload variations, selective
elasticity, and event scheduling. Another perspective could be to further inves-
tigate the impacts of speediness. In fact, in this paper, we proposed a way to
accelerate elasticity test executions, but it lacks a deeper investigation on how
fast we can reproduce elasticity tests without compromising them.

References

1. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in Cloud Computing: what it
is, and what it is not. In: ICAC (2013)

2. Bersani, M.M., Bianculli, D., Dustdar, S., Gambi, A., Ghezzi, C., Krsti¢, S.:
Towards the formalization of properties of Cloud-based elastic systems. In: Pro-
ceedings of PESOS 2014, New York, NY, USA. ACM (2014)

3. Engstrom, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Inf. Softw. Technol. 52, 14-30 (2010)

4. Mongodb bug 7974: Suppress stack trace on replication errors. (https://jira.
mongodb.org/browse/SERVER-7974). Accessed 29 May 2017

5. Zookeeper bug 2164: Fast leader election keeps failing. (https://issues.apache.org/
jira/browse/ZOOKEEPER-2164). Accessed 08 Feb 2017

6. Albonico, M., Mottu, J.M., Sunyé, G., Alvares, F.: Making Cloud-based systems
elasticity testing reproducible. In: Proceedings of the 7th International Conference
on Cloud Computing and Services Science, CLOSER 2017, pp. 495-502, Porto,
Portugal, 24-26 April 2017

7. Albonico, M., Mottu, J.M., Sunyé, G.: Controlling the elasticity of web applications
on Cloud Computing. In: Proceedings of the 31st SAC. ACM (2016)

8. Gambi, A., Hummer, W., Truong, H.L., Dustdar, S.: Testing elastic computing
systems. IEEE Internet Comput. 17, 76-82 (2013)

9. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
Cloud serving systems with YCSB. In: Proceedings of SoCC 2010, New York, NY,
USA. ACM (2010)

10. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination
for internet-scale systems. In: 2010 USENIX, Boston, MA, USA (2010)

11. Gamma, E., Beck, K.: Junit: a cook’s tour. Java report (1999)

12. Gambi, A., Hummer, W., Dustdar, S.: 2013 28th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). IEEE (2013)

13. Banzai, T., Koizumi, H., Kanbayashi, R., Imada, T., Hanawa, T., Sato, M.: D-
Cloud: design of a software testing environment for reliable distributed systems
using cloud computing technology. In: Proceedings of CCGRID 2010, Washington,
USA (2010)

14. Yin, L., Zeng, J., Liu, F., Li, B.: CTPV: a Cloud testing platform based on virtu-
alization. In: The Proceedings of SOSE 2013 (2013)

15. Vasar, M., Srirama, S.N., Dumas, M.: Framework for monitoring and testing web
application scalability on the Cloud. In: Proceedings of WICSA /ECSA Companion,
NY, USA (2012)

16. Li, K., Joshi, P., Gupta, A., Ganai, M.K.: ReproLite: a lightweight tool to quickly
reproduce hard system bugs. In: Proceedings of SOCC 2014, New York, NY, USA
(2014)

