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Abstract. The new applications of Clifford’s geometric algebra surveyed
in this paper include kinematics and robotics, computer graphics and
animation, neural networks and pattern recognition, signal and im-
age processing, applications of versors and orthogonal transformations,
spinors and matrices, applied geometric calculus, physics, geometric al-
gebra software and implementations, applications to discrete mathemat-
ics and topology, geometry and geographic information systems, encryp-
tion, and the representation of higher order curves and surfaces.
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1. Introduction

In the decade since the geometric algebra (GA) application survey [102], a
wealth of new applications1 has been developed. We take this as an occasion
to write a new survey based on the proceedings of the conference series Ap-
plied Geometric Algebra for Computer Science and Engineering of the years
2015 and 2018. Furthermore, we also survey applications annually presented

We dedicate this paper to the World Freedom Alliance (WFA), with the vision to . . . provide
a worldwide platform linking with various associations and organizations offering access
to justice, true dialogue for health science and politics, while holding worldwide officials to

account under the law. and to . . . offer transparent evidence-based solutions and encourage
robust debate with media, scientists and governments to ensure our fundamental freedoms
of the people of the world are restored and maintained, worldfreedomalliance.org, 14
July 2021.
1This also justifies the first title word New.
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in the international conference workshops Empowering Novel Geometric Al-
gebra for Graphics and Engineering in the years 2016 to 20202. Though the
above mentioned sources provide the core material for our survey, we freely
add further applications known to us. For lack of space this survey is necessar-
ily incomplete, but we hope to show a representative spectrum of geometric
algebra applications that emerged during the last decade.

Geometric algebra3 has become popularly used in applications dealing
with geometry. This framework allows to reformulate and redefine problems
involving geometry in a more intuitive and general way. Geometric algebra
was defined thanks to the work of W. K. Clifford [35] to unify and generalize
Grassmann algebra [73] and W.R. Hamilton’s quaternions [78] into a universal
algebraic framework by adding the inner product to H. G. Grassmann’s outer
product4.

One of the geometric algebras that is often applied is conformal geomet-
ric algebra (CGA). It became better known through [85], is well described and
illustrated in [51], and in a brief illustrated form in [98]. Here we only present
Fig. 1 illustrating the definition of some geometric objects from control points
in CGA.

This paper first surveys applications of GA in kinematics and robot-
ics in Section 2. Section 3 continues with applications of GA in computer
graphics and animation, while Section 4 surveys GA based neural networks
and pattern recognition. Next, Section 5 provides an overview of applications
of GA to signal and image processing. Then, Section 6 treats application
relevant versors, their factorization and related orthogonal transformations.
Section 7 surveys the topics Clifford algebra, spinors and matrices, followed
by Section 8 on applications of geometric calculus. This is followed by Section
9 on GA applied to physics, Section 10 on software implementations, Section
11 on discrete mathematics, topology and geographic information systems,
and finally Section 12 on the representation of and computation with higher
order curves and surfaces. The paper ends with conclusions and an extensive
list of references.

2. Applications in Kinematics and Robotics

The control function of autonomous vehicles relates to their environment by
including the motion of actuators, motors and servo motors. Vehicles moving

2This revised preprint version is expanded by a number of references that had to be

excluded in the original journal paper due to space considerations!
3For standard references on Clifford algebra and geometric algebra, we refer to the following
textbooks: [51,84,146]. Further in depth treatment can be found in the following textbooks:

[28,34,80,135,167]. A brief introduction for engineers can be found in [101], while a compact
definition is given in [66], see also [25].
4Further noteworthy references to the study of Clifford algebras are [9, 17, 38–40, 44, 47,
48, 127, 128, 153]. Finally, [10] provides a thorough study of the importance of Clifford

algebras, on the epistemological level. We thank an anonymous reviewer for providing
these important references.
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Figure 1. Definition of some geometric primitives from
control points in CGA.

in three-dimensional space need the solution of geometric equations of motion
between position, attitude, their velocities, angular velocities, and external
forces and torques. Geometric computation based on CGA has successfully
been proposed for snake robots, a trident snake robot [122], the Bennett link
[30], bipedal walking robots [32], robot arms [192], 3-RPR parallel manipu-
lators [204], and Delta robots [76].

An n-link structure (snake type robot) in the plane can be controlled
by CGA, see [122]. Applying the yaw torque of the joint, the link moves
in a plane. The implementation of high-speed geometric calculation using
GA specialized for the plane geometry of a snake type robot can be found
in [91, 191]. [192] efficiently implements the inverse kinematics calculation
for an industrial robot, a robot arm with three degrees of freedom at the
shoulder, one degree of freedom for the elbow, and two degrees of freedom
for the wrist. It runs twice as fast as matrix algebra and 45 times faster than
the robot maker’s own implementation. A bipedal walking robot with three
degrees of freedom in the hip joint, one degree of freedom in the knee, and
two degrees of freedom in the ankle is controlled in [32]. While balancing the
weight, the authors use CGA to describe and solve the equation of motion
during walking.

The posture of a Bennett link in [30] is described as the angle of a
line segment in a plane and the angle between planes. Efficient calculation is
performed in geometric algebra. It is possible to change the length of the links
that extend from three fixed ends, and change the position and orientation of
the triangular body that holds the other end. In [204] the resulting singularity
is analyzed using puller coordinates that describe plane geometry with GA.
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CGA is also used in [76] to geometrically calculate the kinematics of a delta
robot’s parts, which is a popular industrial type of robot.

3. Applications in Computer Graphics and Animation

In the field of computer graphics (CG)5 and animation, there are many op-
portunities where Conformal Geometric Algebra is used. In the past, it was
necessary to combine vectors, rotation matrices (sometimes using quaternions
instead), and one dimension higher translation matrices, and convert between
different formalisms, but with CGA, translational motion, rotational motion,
and dilation can all be expressed in a unified manner. Furthermore, high-
speed calculation is very important for creating CG with many vertices, see
[157].

In [158], execution and processing speed of software that realizes CGA,
is compared, executing animation blending with Gaigen, Libvsr, and Gaalop.
Papagiannakis [159] shows that (automatically generated) computer imple-
mentations of GA can perform at a faster level compared to standard (dual)
quaternion geometry implementations for real-time skinned character anima-
tion blending. Papagiannakis et al. [160] present glGA, as an OpenGL GA
framework for a modern, shader-based computer graphics curriculum. glGA
runs on all major desktop and mobile platforms and allows, e.g., the creation
of an augmented reality environment, in which life-size, virtual characters
exist in a marker-less real scene. Aristidou [12] applies a GA based inverse
kinematics solver to control the postures of a hand (based on minimal op-
tical motion capture) subject to physiological constraints that restrict the
allowed movements to a feasible and natural set. The result are smooth and
biomechanically correct movements, with low processing time, i.e. effective
real-time hand motion tracking and reconstruction. Belon et al. in [14] im-
plemented a GPU-based calculation that smoothly interpolates the normal
information of the CG model represented by vertices and faces, and showed
that even a model with millions of vertices can be calculated with CGA at a
practical speed. Yuan et al. in [206] proposed a CGA based method to extract
only geometric features by performing k-means clustering on a large amount
of point cloud data.

4. GA-Based Neural Network and Pattern Recognition

Complex numbers, quaternions and generally Clifford’s geometric algebras
can be used as mathematical framework for neural networks. Historically,
inner- and vector product in three dimensions originated from the scalar and
vector parts of the quaternion product. In aerospace engineering and color
image processing quaternions are already standard engineering tools. Thus

5Even though this section appears relatively short, we remind the reader that a host of
graphics relevant tools is described in other sections of this survey.
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naturally after complex numbers, they were the first hypercomplex numbers
applied in neural networks.

4.1. Quaternion Neural Networks

The 2020 survey [161], based on 94 references, provides a review of past and
recent research on quaternion neural networks, with state-of-the-art perfor-
mances while reducing the number of neural parameters, and with applica-
tions in different domains, like image, speech and signal processing. The paper
details methods, algorithms and applications for each quaternion-valued neu-
ral network proposed. Another 2020 survey [70] of quaternion applications
in neural networks, aims to provide a better understanding of the design
challenges of quaternion neural networks and identify important research di-
rections in this increasingly important area for artificial vision and artificial
intelligence. In [71] the authors explore the benefits of generalizing neural
networks to quaternions and provide the architecture components needed to
build deep quaternion networks. They review quaternion convolutions, devel-
oping a novel quaternion weight initialization scheme, and novel algorithms
for quaternion batch-normalization. A number of standard tests in classifica-
tion and segmentation are performed with improved performance and fewer
parameters.

Recurrent quaternionic neural networks are researched in [144] with
focus on constrained quaternion-variable convex quaternion gradient-based
optimization both theoretically and with numerical simulations. The recur-
rent network QuaterNet of [163] represents rotations with quaternions and its
loss function performs forward kinematics on a skeleton to penalize absolute
position errors instead of angle errors. Error accumulation along the kine-
matic chain, as well as discontinuities when using Euler angle or exponential
map parameterizations are avoided. On short-term predictions, QuaterNet
improves the state-of-the-art quantitatively. For long-term generation, the
approach is qualitatively realistic.

In [37] the problem of localizing and detecting sound events is addressed
in the spatial sound field by using quaternion-valued data processing. In
particular, the spherical harmonic components of the signals captured by a
first-order ambisonic microphone are processed by using a quaternion convo-
lutional neural network. Experiments show improved accuracy in 3D sound
event detection and localization, exploiting the correlated nature of ambisonic
signals. For natural language processing (NLP) tasks [190] proposes a series of
lightweight and memory efficient neural architectures (e.g. Quaternion Atten-
tion Model and Quaternion Transformer). The models exploit computation
using quaternion algebra and hypercomplex spaces, enabling not only expres-
sive inter-component interactions but also significantly (by 75%) reduced pa-
rameter size, verified by extensive experiments. Parameterizing hypercomplex
multiplications is proposed in [209], allowing models to learn multiplication
rules from data. As a result, the method subsumes the quaternion product,
and learns to operate on arbitrary nD hypercomplex spaces, providing ar-
chitectural flexibility using arbitrarily 1/n learnable parameters compared
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with the fully-connected layer counterpart. Experiments show flexibility and
effectiveness in applications to LSTM and transformer models on natural
language inference, machine translation, text style transfer, and subject verb
agreement.

To remove self-feedbacks, [129] proposes a quaternion projection rule
for rotor Hopfield neural networks. Using computer simulations, improved
noise tolerance is shown. In [130] dual connections (DCs) are introduced to
twin-multistate quaternion Hopfield neural networks (QHNNs). Computer
simulations investigate the noise tolerance. The QHNNs with DCs were weak
against an increase in the number of training patterns, but robust against
increased resolution factors. Hybrid quaternionic Hopfield neural networks
[131] have both orders of quaternion multiplication. Using computer simula-
tions, these networks outperform conventional quaternionic Hopfield neural
networks in noise tolerance.

An investigation into the global stability of quaternion-valued neural
networks (QVNNs) with time-varying delays is presented in [145]. The Lya-
punov function method, the Lyapunov-Krasovskii functional, and the linear
matrix inequality (LMI) ensure global µ-stability and power stability of the
delayed QVNN. Numerical examples show feasibility and effectiveness.

4.2. Geometric Algebra Neural Networks

Geometric algebra (or Clifford) neural networks extend hypercomplex neu-
ral networks from quaternions to arbitrarily high dimensions. Several works
look into existence, uniqueness and global stability questions of GA neural
networks, often including numerical examples and numerical simulations. For
example, [142] investigates Clifford-valued inertial Cohen–Grossberg neural
networks with delays, while [141] researches pseudo almost periodic solutions
for Clifford-valued neutral high-order Hopfield neural networks with leakage
delays, and [169] focuses on Clifford-valued neutral-type neural networks with
time delays.

Furthermore, [182] studies weighted pseudo almost periodic solutions
for Clifford-valued neutral-type neural networks with leakage delays on time
scales, and [143] studies µ-pseudo almost periodic solutions for Clifford-valued
neutral type neural networks with delays in the leakage term. Moreover,
[11] addresses the dynamics behavior for second-order neutral Clifford dif-
ferential equations using inertial neural networks with mixed delays. In [193]
hypercomplex-valued recurrent correlation neural networks are extended to
include quaternions and octonions, and applied as associative memories de-
signed for the storage and recall of gray-scale images.

A synthesis of complex- and hyperbolic-valued Hopfield neural networks
undertaken in [132], improves noise tolerance. Improved convergence, better
noise tolerance and faster recall is achieved with hyperbolic-valued Hopfield
neural networks in hybrid mode, that is, asynchronous mode after synchro-
nous mode [133]. The conventional projection rule is employed in synchronous
mode, and the noise robust projection rule is employed in asynchronous mode.
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5. Signal and Image Processing

Clifford’s geometric algebra provides a natural intuitive geometric frame-
work6 for holistic non-marginal signal and (color) image processing.

5.1. Quaternionic Signal Processing

In [107] the general two-sided quaternion Fourier transform (QFT)[97,99,106]
is applied, and the classical convolution of quaternion-valued signals over R2

with the Mustard convolution [154] are related. A Mustard convolution can be
expressed in the spectral domain as the point wise product of the QFTs of the
factor functions. In full generality is the classical convolution of quaternion
signals expressed in terms of finite linear combinations of Mustard convolu-
tions, and vice versa the Mustard convolution of quaternion signals in terms
of finite linear combinations of classical convolutions. This approach is gen-
eralized to Clifford algebra valued signals in [108]. In [109] the QFT serves
to obtain Wiener-Khinchine theorems for the cross-correlation and for the
auto-correlation of quaternion signals, and a new four term spectral repre-
sentation for their convolution. A generalization to Clifford algebra valued
signals can be found in [110].

Prolate spheroidal wave functions are associated with the quaternionic
Fourier transform in [210]. A fundamental problem in tele-communication
and signal processing is finding the energy distribution of signals in both
time and frequency domains. Therefore, the quaternionic signal whose time-
frequency energy distribution is most concentrated in a given time-frequency
domain needs to be found. A new kind of quaternionic signals whose energy
concentration is maximal in both time and frequency under the quaternionic
Fourier transform [97,99,106] is studied. The new signals are generalizations
of classical prolate spheroidal wave functions to a quaternionic space, and
are called quaternionic prolate spheroidal wave functions. Their definition
and fundamental properties are presented and it is shown that they can
reach extremal cases within the energy concentration problem both from
theoretical and experimental viewpoints. The qualities of the results derived
can be widely applied to four-dimensional valued problems. In particular,
these functions provide an effective method for band-limited quaternionic
signals relying on extrapolation.

Generalized sampling expansions associated with quaternion Fourier
transform are developed in [33]. A motivation is that quaternion-valued sig-
nals along with the quaternion Fourier transform [97, 99, 106] provide an
effective framework for vector-valued signal and image processing. However,
the sampling theory of quaternion-valued signals had so far not been well
developed. The authors therefore present generalized sampling expansions
associated with the QFT by using generalized translations and convolution.
They show that σ-band-limited quaternion-valued signals, in the QFT sense,

6For a new comprehensive textbook on quaternion and Clifford Fourier transforms, see

[121]. For a framework of computer implementation of discrete quaternion and Clifford
Fourier transforms, see [174].
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can be reconstructed from the samples of output signals of M -linear systems
based on the QFT. Furthermore, the quaternion linear canonical transform is
a generalization of the QFT with six parameters. Using the relationship with
the QFT, the sampling formula for σ-band-limited quaternion-valued signals
in the quaternion linear canonical transform sense, is derived. Examples are
given for illustration.

5.2. Image and Color Image Processing

In [123] a fisheye lense correction is developed based on non-linear trans-
formations expressed in conformal geometric algebra (CGA) Cl(4, 1). The
non-linear image transformation is achieved exclusively by means of CGA
elements and operations. The correspondence between classical and CGA
fisheye correction algorithms is shown, i.e. the proportionality of classical
model results with the new CGA algorithm and exact formulas are given in
terms of CGA. Consequently, the geometric construction in CGA allows to
universally determine the inverse model.

Geometric algebras for uniform color spaces are studied in [124]. The
advantages and disadvantages of specific geometric algebras and related prac-
tical implementations in colorimetry are addressed. The color space CIEL ∗
a ∗ b∗ is endowed with Euclidean metric, the neighborhood of a point is
therefore a sphere, and the choice of conformal geometric algebra Cl(4, 1)
becomes thus natural. For the color space CMC(l : c), the neighborhood is
an ellipsoid, therefore quadric geometric algebra [115, 116, 125] is chosen for
linearizing the metric by means of the scalar product. Distance problems in
color spaces with these particular geometric algebras applied are considered.

A hardware implementation for color edge detection using Prewitt-
inspired filters based on geometric algebra is considered in [156]. Motivation
comes from geometric algebra (GA) as a powerful mathematical tool that
offers intuitive solutions for image-processing problems, including color edge
detection. Rotor-based and Prewitt-inspired Sangwine (RBS and PIS) fil-
ters [65] are regarded to be amongst the most efficient algorithms based on
GA operators for solving color edge detection problems. Algorithms in the
GA framework can have enormous computational loads that limit general-
purpose processor ability to execute them in reasonable time. Recently, some
specialized hardware architectures, called full-hardware implementations, are
proposed. These architectures, such as the ConformalALU co-processor, are
able to execute GA algorithms in acceptable time with moderate use of com-
putational resources. So far, all color edge detection hardwares in any GA
framework exploited RBS filters. Nevertheless, [156] presents a full-hardware
architecture for efficient execution of PIS filters. Importantly, PIS filters con-
sume less computational resources and are faster to execute. For comparison,
the hardware obtained with the Gaalop pre-compiler [87] uses twice as much
resources with the same speed as the newly proposed hardware. As evidence
of faster operation, the proposed hardware is shown to be able to execute
an edge detection algorithm almost 315 times faster than a GA co-processor,
while using only 2.5 times of its resources.
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5.3. Signal Processing Theory in Quaternion- and Geometric Algebra

An overview of new application relevant developments in the field of Clif-
ford Fourier transforms (CFT) has been given in [103]. In [105] a natural
definition is chosen for a quaternion Fourier transform operating on quater-
nion valued signals over quaternion domains. This quaternion domain Fourier
transform (QDFT) transforms quaternion valued signals (for example electro-
magnetic scalar-vector potentials, color data, space-time data, etc.) defined
over a quaternion domain (space-time or other 4D domains) from a quater-
nion position space to a quaternion frequency space. It uses the full potential
provided by hypercomplex algebra in higher dimensions and may moreover
be useful for solving quaternion partial differential equations or functional
equations, and in crystallographic texture analysis. The QDFT is defined
and its main properties are analyzed, including quaternion dilation, modula-
tion and shift properties, Plancherel and Parseval identities, covariance under
orthogonal transformations, transformations of coordinate polynomials and
differential operator polynomials, transformations of derivative and Dirac de-
rivative operators, as well as signal width related to band width uncertainty
relationships. In [26] many application relevant Clifford Fourier transforms
are shown to be separable and decomposable into sums of real valued trans-
forms with constant multivector factors. This fact eases their interpretation,
their analysis, implementation and application.

Regarding signal processing theory, a basis-free solution to the Sylvester
equation in geometric algebra is derived in [185]. Note that the Sylvester
equation and its particular case, the Lyapunov equation, are widely used in
image processing, control theory, stability analysis, signal processing, model
reduction, and many more. [185] presents a basis-free solution to the Sylvester
equation in geometric algebras of arbitrary dimension. The basis-free solu-
tions involve only the elementary operations of geometric product, summa-
tion, and conjugation. The results can easily be implemented for numerical
and symbolic computation, e.g. in MATLAB with [2, 176,177].

In [186] are studied centrohermitian and skew-centrohermitian solutions
to the minimum residual and matrix nearness problems of a general quater-
nion matrix equation. The precise solutions of the minimum residual and ma-
trix nearness problems of the quaternion matrix equation (AXB,DXE) =
(C,F ) are established for centrohermitian and skew-centrohermitian matri-
ces, where X is an unknown quaternion matrix and A, B, C, D, E, and
F are known quaternion matrices of suitable matching sizes. Moreover, an
algorithm to get the solutions of the problem considered is provided, and a
numerical example is also given. The implementation of this algorithm for
numerical computations in MATLAB is, e.g., possible with [175].

Also on the theoretical side, quaternionic Laplace transforms are devel-
oped as a new approach in solving linear quaternion differential equations
in [31]. The theory of real quaternion differential equations has recently re-
ceived more attention, but significant challenges still remain due to their
non-commutativity structure. They have numerous applications throughout
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engineering and physics. Specifically, the solution problem of a quaternion
differential equation is transformed to a quaternion algebra problem. The
Laplace transform makes solving linear ODEs and the related initial value
problems much easier. It has two major advantages over previous methods
discussed in the literature: The corresponding initial value problems can be
solved without first determining a general solution, and more importantly, a
particularly powerful feature of this method is the use of Heaviside functions.
This helps solving problems, which are represented in terms of complicated
quaternionic periodic functions.

6. Versors, Their Factorization and Orthogonal
Transformations

Versors (or Lipschitzian elements) in a Clifford algebra and geometric algebra
are geometric products of vectors [146]. In geometric algebras, versors gen-
erally define geometric transformations [101], e.g., rotations, all symmetry
transformations of crystal cells [86, 100], and all conformal transformations
in conformal geometric algebra [85, 98]. Their treatment and in particular
their factorization is therefore of highest practical interest.

In [81] a Lipschitzian element a is given in a Clifford algebra Cl(V, q)
associated with vector space V over a field K that contains at least three
scalars. It is proven that, if a is not in the subalgebra generated by a totally
isotropic subspace of V , then it is a product of linearly independent vectors
of V . An effective algorithm is proposed to decompose a into such a product
of vectors, and can be implemented in software like [2, 176,177].

A Cayley factorization of four-dimensional rotations and its applications
is presented in [164]. Note that every four-dimensional rotation can be de-
composed into (commutative) left- and right-isoclinic rotations. This decom-
position, known as Cayley factorization of four-dimensional rotations, can be
performed using the Elfrinkhof–Rosen method. In this paper, a more straight-
forward alternative approach is presented using the corresponding orthogonal
subspaces, for which orthogonal bases can be defined. This yields easy formu-
lations, both in the space of 4× 4 real orthogonal matrices representing four-
dimensional rotations as well as in the Clifford algebra Cl(4, 0, 0) = Cl(4, 0).
Cayley factorization has many important applications. It can be used to eas-
ily transform rotations represented using matrix algebra to various Clifford
algebras. As a practical application of the proposed method, it is shown how
Cayley factorization can be used to efficiently compute the screw parameters
of three-dimensional rigid-body transformations. An implementation is, e.g.,
again possible using [2, 176,177].

Another application of Cayley factorization to the orthonormalization
of noisy rotation matrices is shown in [179]. Cayley factorization, directly pro-
vides the double quaternion representation of rotations in four dimensions.
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This factorization can be performed without divisions, thus avoiding the com-
mon numerical issues attributed to the computation of quaternions from ro-
tation matrices. In this paper, it is shown how Cayley factorization is par-
ticularly useful, when specialized to three dimensions, to re-orthonormalize a
noisy rotation matrix by converting it to quaternion form and then obtaining
back the corresponding proper rotation matrix. This re-orthonormalization
method is commonly implemented using the Shepperd–Markley method, but
the method derived here is shown to outperform it by returning results closer
to those obtained using the singular value decomposition which are known
to be optimal in terms of the Frobenius norm. Suitable for implementations
in MATLAB is, e.g., the package described in [175].

Versor transformations of conics are described in [116, 125], and versor
transformations of quadrics in [115].

In [171] it is observed, that the symmetries described by pin groups are
the result of combining a finite number of discrete reflections in (hyper)planes.
It is shown how geometric algebra provides a picture complementary to ma-
trix Lie algebra, while retaining information about the number of reflections
in a transformation. This imposes a (previously hidden) graded structure on
Lie groups. This graded structure enables to show an invariant decomposi-
tion theorem: any composition of k linearly independent reflections can be
decomposed into dk/2e commuting factors, each the product of at most two
reflections. Examples are given from Lorentz transformations, Wigner rota-
tions, and screw transformations. A further consequence are closed formulas
for exponential and logarithmic functions for all spin groups, and identifica-
tion of geometric entities, such as planes, lines, points, as the invariants of
k-reflections.

In [49] matrices of SL(4,R) are studied that are products of two skew-
symmetric matrices with the final aim of studying projective line transfor-
mations in three dimensions. Note that Jordan normal forms (Jordan forms)
of matrices that are products of two skew-symmetric matrices over a field
of characteristic 6= 2 have long been a research topic in linear algebra since
the early twentieth century. For such matrices, their Jordan form is not nec-
essarily real, nor does the matrix similarity transformation change the ma-
trix into the Jordan form. In three-dimensional oriented projective geometry,
orientation-preserving projective transformations are matrices of the special
linear group SL(4,R) that transform four-dimensional vector spaces over
the field of real numbers R and have unit determinant, and those matrices of
SL(4,R) that are the product of two skew-symmetric matrices are the genera-
tors of the group SL(4,R). The canonical forms of orientation-preserving pro-
jective transformations under the group action of SL(4,R)-similarity trans-
formations, called SL(4,R)-Jordan forms, are seen to be more useful in geo-
metric applications than conventional complex-valued Jordan forms. In [49],
the authors find all the SL(4,R)-Jordan forms of the matrices of SL(4,R)
that are the product of two skew-symmetric matrices, and divide them into
six classes, so that each class has an unambiguous geometric interpretation
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in three-dimensional oriented projective geometry. They then consider the
lifts of these transformations to SO(3, 3) (component subgroup of O(3, 3)
connected to the identity) by extending the action of SL(4,R) from points
to lines in space, so that in the vector space R3,3 spanned by the Plücker
coordinates of lines, these projective transformations become special orthog-
onal transformations, and the six classes are lifted to six different rotations
in two-dimensional planes of R3,3.

In the field of crystallographic space group symmetry, an interactive,
animated, explorative, three-dimensional visualization software has been de-
veloped based on conformal geometric algebra for all 230 space groups, with
a new documentation in the book [120].

The geometry of E8 from a Clifford (versor) point of view is considered
in three complementary ways in [43]. Note that E8 is the largest exceptional
root system, which is a set of vectors in an eight-dimensional real vector
space satisfying certain properties [8]. Firstly, in earlier work (see references
in [43]), the author had already shown how to construct four-dimensional
exceptional root systems from three-dimensional root systems using Clifford
algebra techniques, by constructing them in the four-dimensional even sub-
algebra of a three-dimensional Clifford algebra; for instance the icosahedral
root system H3 gives in this way rise to the largest (and therefore exceptional)
non-crystallographic root system H4. Arnold’s trinities and the McKay cor-
respondence then hint that there might be an indirect connection between
the icosahedron and E8. Secondly, in a related construction, the author has
made this connection explicit for the first time: in the eight-dimensional Clif-
ford algebra of three-dimensional spaces the 120 elements of the icosahedral
group H3 are doubly covered by 240 eight-component objects, which en-
dowed with a reduced inner product are exactly the E8 root system. It was
previously known that E8 splits into H4-invariant subspaces, and the au-
thor had discussed the folding construction relating the two pictures. This
folding is a partial version of the one used for the construction of the Cox-
eter plane, so thirdly in [43] the geometry of the Coxeter plane in a Clifford
algebra framework is discussed. The complete factorization of the Coxeter
versor in Clifford algebra into exponentials of bivectors describing rotations
in orthogonal planes with the rotation angle giving the correct exponents
is advocated for, which gives much more geometric insight than the usual
approach of complexification and search for complex eigenvalues. In partic-
ular, these factorizations for two-, three- and four-dimensional root systems,
and D6 as well as E8, are found explicitly, whose Coxeter versor factories
as W = exp( π30BC) exp( 11π

30 B2) exp( 7π
30B3) exp(13π

30 B4). This explicitly de-
scribes 30-fold rotations in four orthogonal planes with the correct exponents
{1, 7, 11, 13, 17, 19, 23, 29} arising completely algebraically from the factoriza-
tion.

[104] investigates the geometric meaning of the general orthogonal planes
split with respect to any two pure unit quaternions f, g ∈ H, f2 = g2 = −1,
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including the case f = g, that has proved extremely useful for the construc-
tion and geometric interpretation of general classes of double-kernel quater-
nion Fourier transformations (QFT) [106], and a.o. has applications that in-
clude color image processing, where the orthogonal planes split with f = g =
the gray-line, naturally splits a pure quaternionic three-dimensional color sig-
nal into luminance and chrominance components. It has further been found
independently in the quaternion geometry of rotations [152], that the pure
quaternion units f, g and the analysis planes, which they define, play a key
role in the spherical geometry of rotations, and the geometrical interpretation
of integrals related to the spherical Radon transform of probability density
functions of unit quaternions, as relevant for texture analysis in crystallogra-
phy. In [104] these connections have been further investigated.

An analogue of polar decomposition is studied in [178]. A new polar
representation of complexified quaternions (also known as biquaternions, iso-
morphic to Cl(3, 0)), also applicable to complexified octonions is presented.
The result is a product of two exponentials, one trigonometric or circular,
and one hyperbolic. The trigonometric exponential is a real quaternion, the
hyperbolic exponential has a real scalar part and imaginary vector part. This
factorization is shown to be isomorphic to the polar decomposition of linear
algebra. A first generalization to Clifford algebras can be found in [118].

7. Clifford Algebra, Spinors and Matrices

The relatively recent book An Introduction to Clifford Algebras and Spinors
[194] provides a comprehensive introduction to this vast subject that supplies
a key motivation to study and apply Clifford algebras wherever spinors and
their applications surface.

Many practical problems require the inverse of a multivector or of a
matrix of multivectors. In [111] it is shown how to compute the inverse of
multivectors in finite dimensional real Clifford algebras Cl(p, q). For algebras
over vector spaces of fewer than six dimensions, explicit formulae for discrim-
inating between divisors of zero and invertible multivectors are provided, and
for the computation of the inverse of a general invertible multivector. For al-
gebras over vector spaces of dimension six or higher, isomorphisms between
algebras are used, and between multivectors and matrix representations with
multivector elements in Clifford algebras of lower dimension. For this explicit
details of how to compute several forms of isomorphism that are essential
to invert multivectors in arbitrarily chosen algebras are provided. The com-
putation of the inverses of matrices of multivectors is briefly discussed by
adapting an existing textbook algorithm for matrices to multivectors. This
work is further extended in [117,183].

The immersion in Sn by complex spinors is pursued in [138]. Since the
first work of Thomas Friedrich showing that isometric immersions of Rie-
mann surfaces are related to spinors and the Dirac equation, various works
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appeared generalizing this approach to more general Spin-manifolds, in par-
ticular to the case of submanifolds of Spin-manifolds of constant curvature.
[138] further investigates the case of submanifolds of SpinC-manifolds of con-
stant curvature. Note that spinors are of primary importance in quantum
physics, and the Dirac equation, e.g., describes the behavior of relativistic
electron spinors. Furthermore Riemann surfaces are of great importance in
general relativity, describing gravity.

In [184] elements of spin groups (e.g. rotors) are calculated using an av-
eraging method in Clifford’s geometric algebra of arbitrary dimension. This
method generalizes Hestenes method for the case of dimension four. The
method of averaging in Clifford’s geometric algebra has previously been pro-
posed by the author D. Shirokov (see references in [184]). He presents explicit
formulas for elements of spin groups that correspond to the elements of or-
thogonal groups as two-sheeted covering. These formulas allow to compute
rotors (even versors), which connect two different frames related by a rotation
in geometric algebra of arbitrary dimension.

Hadamard matrices are orthogonal square matrices with entries re-
stricted to +1 and −1. In [139] Gastineau-Hills’ quasi-Clifford algebras (alge-
bras over a commutative field K with characteristic 6= 2, and m generators,
each squaring to an element of the field, and specification of the commutation
and anti-commutation relationships of the generators) and plug-in construc-
tions for Hadamard matrices are considered. The quasi-Clifford algebras as
described by Gastineau-Hills in 1980 and 1982 (see references in [139]) receive
new attention. These algebras and their representation theory provide effec-
tive tools to address the following problem arising from a plug-in construction
for Hadamard matrices: Given λ, a pattern of amicability/anti-amicability,
with λj,k = λk,j = ±1, find a set of n monomial {−1, 0, 1} matrices D of
minimal order such that DjD

T
k − λj,kDkD

T
j = 0 (j 6= k). This theoretical

work may find future applications in artificial intelligence and deep learning.

8. Applications of Geometric Calculus

Expositions of geometric calculus can be found in [74, 82–84, 94–96] and of
the related more theoretical Clifford analysis in [18]. Here we introduce some
interesting new developments in this field.

Coordinate free integrals in geometric calculus are studied in [4]. A
method is introduced for evaluating integrals in geometric calculus without
introducing coordinates, based on using the fundamental theorem of calculus
repeatedly and cutting the resulting manifolds so as to create a boundary
and allow for the existence of an antiderivative at each step. The method is a
direct generalization of the usual method of integration on R. It may lead to
both practical applications and help unveil new connections to various fields
of mathematics.
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The geometric calculus of the Gauss map is considered in [140]. In this
paper classical differential geometry is connected with concepts from geomet-
ric calculus. Moreover, it introduces and analyzes a more general Laplacian
for multivector-valued functions (e.g. versors, spinors, vectors, paravectors,
parabivectors, or blades, etc.) on manifolds. This allows, e.g., to formulate a
higher codimensional analog of Jacobi’s field equation.

The iterative closest point method for the adjustment of airborne laser
scanning data strips in the framework of conformal geometric algebra, using
rotors, translators, motors and differentiating with respect to bivector angles
and translation vectors is shown in [119].

9. Geometric Algebra Applied in Physics

W.K. Clifford himself was in Cambridge a student of James C. Maxwell,
the famous pioneer of modern electro-magnetism. Maxwell himself applied
quaternions to the formulation of electro-magnetic field equations. The in-
ventor of quaternions W.R. Hamilton worked evenly on problems from math-
ematics and physics, and P.A.M. Dirac independently discovered space-time
algebra represented in the form of matrices. The Pauli matrix algebra of the
Schrödinger equation in the presence of a magnetic field is a matrix represen-
tation of the geometric algebra of three-dimensional Euclidean space, and fi-
nally the well-known 20th century promoter of geometric algebra D. Hestenes
certainly made important contributions to many disciplines of physics. And as
may therefore be expected applications of geometric algebra in many fields of
physics continue to flourish. We present some of them, including approaches
to unified field theory.

In [136] geometric algebra (GA) is presented as a unifying language
for physics and engineering and its use in the study of gravity. Geometric
algebra is a mathematical language that aids a unified approach and un-
derstanding in topics across mathematics, physics and engineering. In [136],
space-time algebra (STA) is introduced, and some of its applications in elec-
tromagnetism, quantum mechanics and acoustic physics are discussed. Then
a gauge theory approach to gravity is examined that employs GA to provide a
coordinate free formulation of general relativity (field theory of gravity), and
what a suitable Lagrangian for gravity might look like in two dimensions is
discussed. Finally the extension of the gauge theory approach to include scale
invariance is briefly introduced, and attention drawn to interesting properties
with respect to the cosmological constant of the type of Lagrangians which
may be favored in this approach. A survey is provided largely accessible to
anyone, equipped only with an introductory knowledge of GA, whether in
mathematics, physics or engineering.

Geometric algebra (GA) for the physics of gravity and gravitational
waves is presented in [137]. An approach to gravitational waves based on GA
and gauge theory gravity (GTG) is discussed. After a brief introduction to
GA, GTG is considered, which uses symmetries expressed within the GA of
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flat space-time to derive gravitational forces as gauge forces corresponding
to making these symmetries local. Then solutions for black holes and plane
gravitational waves are considered in this approach, noting the simplicity
of GA in both writing the solutions, and checking some of their properties.
Next, a preferred gauge emerges for gravitational plane waves, in which a
memory effect corresponding to non-zero velocities left after the passage of
gravitational waves becomes clear, and the physical nature of this effect is
demonstrated. In a final section the mathematical details of the gravitational
wave treatment in GA is presented, and linked with other approaches to exact
waves in the literature. Even for approaches not based on GA, the general
relativity metric-based version of the preferred gauge is recommended, i.e. the
Brinkmann metric, to be more widely considered for use by astrophysicists
and others for the study of gravitational plane waves. These advantages are
shown to extend to a treatment of joint gravitational and electromagnetic
plane waves, and in a final subsection, exact solutions found for particle
motion in exact impulsive gravitational waves are used to discuss whether
backward in time motion can be induced by strongly non-linear waves.

In [150] the application of GA is considered to the electroweak sector
of the standard model of particle physics. GA offers an intriguing approach
to understanding the fields of the standard model (SM) of elementary parti-
cle physics. This paper examines a geometric view of electron and neutrino
fields in the electroweak sector of the SM. These fields are related by the
transformations of the SU(2) Lie group, with generators customarily repre-
sented by the 2 × 2 complex Pauli matrices. In G3 = Cl(3, 0), the GA of
three-dimensional Euclidean space R3, the three unit basis vectors may be
used to provide a more geometrically oriented representation of SU(2). In
fact, G3 is sometimes referred to as the Pauli algebra. However, a more gen-
eral representation of the special unitary group SU(n) in GA is in terms of
generators that are compound (non-blade) bivectors in G2n, the GA of 2n-
dimensional Euclidean space. Therefore, a natural approach to electroweak
theory mathematically is to work with SU(2) generators as compound bivec-
tors in G4 = Cl(4, 0). This approach leads one to consider electroweak fields as
multivector fields in G4 that are solutions of the Dirac equation in four spatial
dimensions and one time dimension. This paper examines such multivector
fields and offers a new point of view on chiral projection of G3 fields. It is
shown that SU(2) representation in G4 leads naturally to the singlet/doublet
structure of the chiral electroweak fields.

In [151] the use of raising and lowering operators from GA is considered
for electroweak theory in particle physics. There are two objectives. The first
is to explore the form and action of raising and lowering operators expressed
in GA. The second is to show how increasing the number of dimensions of
Euclidean space from three to four opens a new avenue for understanding the
chiral asymmetry of electroweak interactions. These explorations are guided
by isomorphisms among groups represented in complex Clifford algebra, ma-
trix algebra, and real GA. With these isomorphisms, expressions for raising
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and lowering operators for electron and neutrino states in complex Clifford
algebra are translated into real GA and elaborated to even include positrons
and antineutrinos. This paper addresses such operators in the context of the
electroweak sector of the standard model of particle physics (SM) utilizing
(1) the GA G3 = Cl(3, 0) for the Hestenes–Dirac equation in a Euclidean
lab frame, (2) G4 to introduce chiral asymmetry, and (3) G4,1 = Cl(4, 1) to
express the electroweak fermion states of the first generation of the SM and
demonstrate their SU(2) relationships.

In [170] equations of motion and energy-momentum 1-forms are consid-
ered for coupled gravitational, Maxwell and Dirac fields. A theory where the
gravitational, Maxwell and Dirac fields (mathematically represented as par-
ticular sections of a convenient Clifford bundle) are treated as fields in Fara-
day’s sense living in Minkowski space-time R3,1 is presented. In this theory a
genuine energy-momentum tensor is obtained for the gravitational field and
a genuine energy-momentum conservation law for the system of the interact-
ing gravitational, Maxwell and Dirac fields. Moreover, the energy-momentum
tensors of the Maxwell and Dirac fields are symmetric, and it is shown that
the equations of motion for the gravitational potentials are equivalent to the
Einstein equation of general relativity. Precisely, the Einstein equation in
which the second member is the sum of the energy-momentum tensors of
the Maxwell, Dirac and the interaction Maxwell–Dirac fields all defined in
an effective Lorentzian space-time whose use is eventually no more than a
question of mathematical convenience.

In [27] Maxwell’s equations are shown to be universal for locally con-
served quantities. A fundamental result of classical electromagnetism is that
Maxwell’s equations imply that electric charge is locally conserved. Here the
converse is shown: Local charge conservation implies the local existence of
fields satisfying Maxwell’s equations. This holds true for any conserved quan-
tity satisfying a continuity equation. It is obtained by means of a strong form
of the Poincare lemma presented here that states: Divergence-free multivector
fields locally possess curl-free anti-derivatives on flat manifolds. The above
converse is an application of this lemma in the case of divergence-free vector
fields in space-time. Conditions under which the result generalizes to curved
manifolds (relevant for general relativity) are also provided.

In [195] computational electromagnetism by the method of least action is
introduced. A new general method of computational electromagnetism based
on extremizing the electromagnetic action using the geometric algebra of
space-time is described. Special cases include a boundary element method
and a finite element method. These methods are derived and discussed, com-
putational examples given, and compared with some well known methods of
computational electromagnetism.
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Finally, in [207] a Hamiltonian constraint formulation of classical field
theories is studied. Classical field theory is considered as a theory of un-
parametrized surfaces embedded in a configuration space, which accommo-
dates, in a symmetric way, space-time positions and field values. Dynam-
ics is defined via the (Hamiltonian) constraint between multivector-valued
generalized momenta, and points in this configuration space. Starting from
a variational principle, local equations of motion are derived, that is, dif-
ferential equations that determine classical surfaces and momenta. A local
Hamilton–Jacobi equation applicable in field theory then follows readily. In
addition, the relation between symmetries and conservation laws is discussed,
and a Hamiltonian version of the Noether theorem is derived, where the
Noether currents are identified as the classical momentum contracted with
the symmetry-generating vector fields. This general formalism is illustrated
by means of two examples: (1) scalar field theory, and (2) string theory. The
mathematical formalism of geometric algebra and geometric calculus are em-
ployed throughout, which allows to perform completely coordinate-free ma-
nipulations.

An interesting relationship between Clifford Fourier transforms (CFT)
and quantum mechanics is shown in [60] using techniques coming from Clif-
ford analysis (the multivariate function theory for the Dirac operator). In
these CFTs on multivector signals, the complex unit i ∈ C is replaced by a
multivector square root of −1, which may be a pseudoscalar in the simplest
case. For these integral transforms an operator representation expressed as
the Hamilton operator of a harmonic oscillator is derived.

Regarding special relativity expressed in space-time algebra, [114] uses
the steerable special relativistic (space-time) Fourier transform (SFT), and
relates the classical convolution of the algebra for space-time Cl(3, 1)-valued
signals (electromagnetic fields, relativistic spinors, etc.) over the space-time
vector space R3,1, with the (equally steerable) Mustard convolution. The
latter can be expressed in the spectral domain as the point wise product of the
SFTs of the factor functions. In full generality is the classical convolution of
space-time signals expressed in terms of finite linear combinations of Mustard
convolutions, and vice versa the Mustard convolution of space-time signals
in terms of finite linear combinations of classical convolutions. Heisenberg’s
and Hardy’s uncertainty principles for the SFT are established in [63].

10. Geometric Algebra Implementations

The contributions in [1] first showed the state-of-the art implementations
before the 2000s. Some further implementations were created and are used
thereafter. These implementations take the forms of libraries, library gener-
ators, optimized code generators like Gaalop and GMAC [61, 62], and spe-
cialized program packages included in larger systems like e.g. the Clifford
algebra [168] package for the computer algebra system Maxima. Some imple-
mentations are specifically dedicated to an architecture for special types of
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a = • • • • • • • • • • • • • • •• • • • • • • • • •• • • • • • •
grade 0 1 2 3 4 5

vector: ◦ • • • ◦ point: • • • • •
plane: • • • • ◦ sphere: • • • • •

line: • • • • • • ◦ ◦ ◦◦ circle: • • • • • • • • ••
flat point: ◦ ◦ ◦ • ◦ ◦ ◦ • •• point pair: • • • • • • • • ••

Figure 2. Multivector structure in Conformal Geometric
Algebra. A circle in CGA is restricted to grade three (dark
blue dots) and may have up ten non-zero elements.

applications like the FPGA implementation for image processing developed
by Soria-Garcia et al. in [187]. In contrast, there are also works that specifi-
cally focus on architectures that are optimally adapted to geometric algebra
computations. For instance, the work of Franchini et. al. [69, 89] presents a
family of coprocessors that have hardware-oriented representations of geo-
metric algebra elements.

Most of these implementations and software mainly differ in their rep-
resentations of multivectors and their way to implement the main considered
products (geometric, outer, inner, etc.). For instance, Sangwine and Hitzer
created a MATLAB toolbox in [177]. It supports the use of multiple geomet-
ric algebras with signature (p, q, r). The geometric product is implemented
using precomputed multiplication tables of size 2d × 2d. The tested vector
space dimensions are up to 16, provided enough memory and disk space is
available to store the tables.

Multivectors in geometric algebra have a particular structure. For a d
dimensional vector space, the potential amount of information that could
be stored to represent fundamental elements of linear algebra (vectors and
matrices) strongly differs from the information represented for multivectors.
In practical applications such as Conformal Geometric Algebra [85], libraries
and code generators have to consider the fact that a multivector represent-
ing a geometric object may be restricted to a single grade as shown in the
examples of Fig. 2.

The exponential computational cost of geometric algebra operators can
be avoided thanks to the generation of optimized codes.

10.1. Gaalop Code Precompiler

In this context, the paper of Hildenbrand et al. presented Gaalop [88], a
precompiler that produces optimized code fragments from a description of
an algorithm in a domain specific language. Using this precompiler, the user
can decide to generate the code for different architectures including CPU,
GPU, FPGA, and DSP or for geometric algebra dedicated architectures [89].
Note that once the code has been generated, it can also be integrated into a
target program. The authors show some experiments by writing a raytracer
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in geometric algebra which they then converted into high performance code.
In addition, in [90], Hildenbrand et al. demonstrate how it is to possible to use
Gaalop for generating formulas and visualizations of Compass Ruler Algebra
(CGA of the Euclidean plane, Cl(3, 1)) algorithms.

One drawback of this precompiler was the need of installing a specific
software for the user. In order to address this issue, Hildenbrand et al. pro-
posed GAALOPWeb [93], a web based precompiler that allows the user to
generate optimized code and to visualize the result without any installa-
tion requirements. Some proofs-of-concept of this latter implementation are
shown in [7, 92, 93]. GAALOPWeb uses Ganja.js [45] for the visualization of
geometric algebra algorithms, which is a javascript-based package for the web
developed by Steven de Keninck. It provides a two- and three-dimensional
visualization tool of geometric algebra algorithms written in javascript lan-
guage. In [158], Papaefthymiou et al. showed some performance comparison of
Gaalop and Gaigen code generators for animation blending. Finally, the code
optimizer Gaalop was successfully used in Gajit [75] developed by Hadfield
et al. This Python implementation is specifically designed to bridge the gap
between usually slow symbolic computation implementations and (ideally)
fast application dedicated implementations.

10.2. Library Generators

Some other implementations focus on the generation of a library for a par-
ticular algebra. In this category, Fontijne implemented Gaigen [67, 68] that
stands for Geometric Algebra Implementation GENerator and that generates
C,C++ and Java optimized source code for a wide range of geometric alge-
bras with applications in geometry like conformal geometric algebra Cl(4, 1)
but also the compass ruler geometric algebra Cl(3, 1). However, the optimiza-
tions limit Gaigen, when the vector space dimension is higher than ten. For
these high dimensional vector spaces, an implementation may rather combine
generation of on-the-fly computations with generation of optimized products.

To achieve this, the paper of Breuils et al. [19] defined a recursive for-
malism to compute geometric algebra products. The data structure used is a
binary tree and the products are performed via binary tree traversal. Compu-
tational results are shown in terms of increased time complexity in the worst
cases, i.e. when each multivector has 2d non-zero elements. In [22], the bi-
nary tree structure is replaced with a prefix tree. This structure allows better
performance in practical cases since the prefix tree has a per-grade structure.
The authors produced a metaprogramming implementation, more precisely
geometric algebra library generators, called Garamon, suitable for multiple
platforms. Any generated library contains its own dedicated installation file,
as well as dedicated sample code.

The generated libraries can handle geometric algebras of arbitrary sig-
nature, such that the user does not have to care about basis changes. The
library combines on-the-fly recursive computations over a prefix tree for high
dimensional vector spaces with the generation of optimized products for lower
dimensions. The threshold between low and high dimensional vector spaces
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was chosen experimentally (at approximately d = 10). The user can change
this threshold. This latter hybrid approach was also implemented in Gaalop,
see [20]. However, the use of the generated libraries is a two-step process,
namely first the installation of the library generator and second the genera-
tion of the geometric algebra library.

10.3. Template Metaprogramming

In contrast, template metaprogramming approaches allow the generation of
optimized libraries or codes that are performed through a one step compi-
lation process. Benger [15] presented the requirements for an implementa-
tion that should support very high dimensional data (big data) and presents
some template metaprogramming concepts that should be used in template
metaprogramming implementations. In particular, the paper highlights the
fact that no code is generated when evaluating a multivector expression for
elements that are not used with template expressions and template metapro-
gramming.

Among the template metaprogramming implementations of geometric
algebra [36], the paper written by Sousa and Fernandes [188] presents Tb-
GAL, a tensor-based template metaprogramming library for geometric al-
gebra. This library uses C++ metaprogramming techniques like expression
templates to define types representing expressions to be computed at com-
pile time. It also permits multiplicative constructions and combinations of
elements thanks to a representation of blades as outer products of vectors
rather than a weighted sum of elements. This latter optimization allows com-
putations in up to 256-dimensional vector spaces. Some experimental results
have also been shown in [188]. Potential applications and implementations for
these high dimensional vector spaces include the work of Luo et. al. in [148],
where the authors present a hierarchical representation, namely a tree, of
geometric primitives based on conformal geometric algebra for applications
in geographical information science (GIS).

10.4. Specialized Libraries

In contrast to the libraries explained so far, there exist some libraries that
are specifically dedicated to one algebra. Among these, the C++ library
Klein [155], implements three-dimensional projective GA. It performs the
representation and the transformation of objects with very optimized and
vectorized instructions (SSE) for applications that require fast computations
and low memory like in animation and kinematics.

11. Discrete Mathematics and Topology with Application in
GIS

Among all the applications of geometric algebra, there exist several in discrete
mathematics and topology. These fields may benefit from the representation
of geometric objects in CGA. In [172] for example, Romero et al. define an
extension of the Delaunay triangulation. The approach uses hollow sphere



22 S. Breuils, K. Tachibana and E. Hitzer

objects instead of triangles. The operations are simplified with CGA since
Voronoi diagrams are dual to the proposed hollow spheres in the algorithm.
One of the other main advantages of the use of CGA raised by the authors
is that distances are well preserved and it also leaves angles invariant after
geometric transformations. Making geometric algebra an efficient tool to deal
with point graphs.

In this context, some papers focus on K-discretizable molecular distance
geometry with CGA. The molecular distance geometry consists in finding a
three-dimensional structure of a molecule given an incomplete set of inter-
atomic distances, as explained in [7]. Its discrete version is handled by Alves
et al. in [5]. Solutions to this problem are useful but in practice the data
treated are not exact and rather represent intervals, called interval distances
as presented in [6].

11.1. Zeon Algebras

Among the algebras that have applications in graph theory and for routing
in communication networks are the zeon algebras. They were first defined
by Staples in [189]. Zeon algebras are particular commutative subalgebras
of geometric algebras, namely the considered collection is ζi, i ∈ [1, n] with
the scalar ζ0 and a commutative product such tat ζiζj = ζjζi, i 6= j, and all
ζ2i = 0.

In [42], Davis and Staples discuss some applications of zeon algebras.
The authors formulate the Boolean satisfiability problem (SAT) and make it
a problem of computing products and sums of zeon algebra elements (zeons).
Then an equivalent problem in graph theory is shown and discussed by means
of zeons, namely the clique problem, where the method presented by the
authors allows to find all the possible solutions of SAT. This is achieved with
computationally low cost operations.

11.2. Geographical Information Science Data and Classification

The combinatorial properties of geometric algebra are also used to model
network systems with multi-agent interactions like in [205] by Z. Yu et al. It
gives a method to tackle dynamically constrained optimal path searching in
a network. The dynamic updating of the network topography, weights, and
constraints during the route searching is direct and flexible. The network
nodes are coded by geometric algebra basis vectors, and different network
elements are represented by blades. A case study that simulates multiple
evacuations in Changzhou city area demonstrates the method.

In [147], Lu et al. presented a new format and model for geographical
information science (GIS) to describe geographical data. This model allows to
efficiently extract geometry and topology of GIS data with geometric algebra.
The topological relations were defined in CGA based on the work of Wang
et al. [200], involving general intersections of CGA objects. Experiments and
detection of topological errors with these topological relations in CGA have
been discussed by Zhang et al. in [208].
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Another aspect of GIS lies in the visualization of the geographical data.
In this context, Benger et al. [16] presented an efficient algorithm to render big
data sets. The approach consists in an adaptive hierarchical representation
using data blocks. During rendering, the data blocks are sorted based on their
visibility according to their maximal bounding spheres, which are calculated
using CGA.

A last aspect in GIS concerns information preservation. This aspect
is treated by Luo et al. in [149] where a multilevel declassification method
is presented. Declassification aims at hiding confidential spatial information
from geographical data. This is achieved by constructing multidimensional
data expressions using geometric algebra.

11.3. GA Applied to Encryption

Geometric algebra can also be used for data representation and cryptography,
a very lively field with many competitive developments.

In [196] Y. Wang designs fully homomorphic symmetric key encryp-
tion (FHE) schemes without bootstrapping (noise-free). The proposed FHE
schemes are based on quaternions and octonions and on Jordan algebra over
finite rings Zn and are regarded secure in the weak ciphertext-only security
model assuming the hardness of solving multivariate quadratic equation sys-
tems and solving univariate high degree polynomial equation systems in Zn.
The author claims that this is the first noise-free FHE scheme that has ever
been designed with a security proof. It is argued that the weak ciphertext-
only security model would be sufficient for various applications such as pri-
vacy preserving computation in a cloud. An example is the construction of
obfuscated programs. See also the related work of Wang and Malluhi in [198].

In [201] M. Yagisawa proposes an improved fully homomorphic encryp-
tion scheme on a non-associative octonion ring over a finite field without
bootstrapping technique. It is based on the computational difficulty to solve
multivariate algebraic equations of high degree while most previous multi-
variate cryptosystems relied on quadratic equations avoiding coefficient ex-
plosion. Because the proposed new scheme is based on multivariate algebraic
equations with high degree or too many variables, it is claimed to be safe
against Gröbner basis attacks, differential attacks, rank attacks, etc. Key
size and complexity are small enough to be handled. Yet, Y. Wang tries to
show in [197] that M. Yagisawa’s scheme in [201] is actually insecure. As a
reaction Yagisawa proposes in [202] the following two improvements to the
scheme of [201]: an enciphering function difficult to express simply by using
matrices, and composition of the plaintext p with two sub-plaintexts u and
v, thus eliminating the p and −p attacks. He improves his scheme further
in [203] by adopting fully homomorphic encryption with non-zero isotropic
octonions.

Furthermore, in their remarks on Hecht and Kamlovsky’s [79] quater-
nions/octonion based Diffie-Hellman key exchange protocol submitted to
NIST PQC project [199], Wang and Malluhi show that it could be broken by
solving a homogeneous quadratic equation system of eight equations in four
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unknowns. Thus no matter how big p is (p is the modulo used in Hecht and
Kamlovsky’s scheme), it could be trivially broken using Kipnis and Shamir’s
relinearization techniques.

In [55] Dzwonkowski et al. propose a new quaternion-based lossless en-
cryption technique for digital image and communication on medicine (DI-
COM) images. They decompose a DICOM image into two 8-bit gray-tone
images in order to perform encryption. The algorithm uses special properties
of quaternions to perform rotations of data sequences in three-dimensional
space for each of the cipher rounds. In [180] Shao et al. describe a novel
algorithm to encrypt double color images into a single undistinguishable im-
age in a quaternion gyrator domain. Phase masks used for encryption are
obtained through iterative phase retrieval. The encrypted image is generated
via cascaded quaternion gyrator transforms with different rotation angles.
Parameters in quaternion gyrator transforms and phases serve as encryption
keys. Numerical simulations have demonstrated validity and noise robustness.
Furthermore, in [181] Shao et al construct a robust watermarking scheme for
color images based on quaternion-type moment invariants and visual cryptog-
raphy, dealing holistically with multichannel information. Experiments show
validity, feasibility and attack robustness.

Finally, in [41] David da Silva et al. introduce two methods for hid-
ing data represented as multivectors consisting in operations that compute a
concealed multivector with the support of secret key multivectors defined in
the geometric algebra Cl(3, 0) of R3. The authors point out that these con-
structions can be used in a wide variety of privacy preserving applications,
because data can be meaningfully computed while being concealed with geo-
metric algebra. The authors made available a Ruby library that implements
the constructions, provides numerical examples of each method, illustrates
their use in simulations of real-world applications and allows one to test cus-
tomized ideas.

11.4. Discrete Geometry

Geometric algebra is also applied in discrete geometry. Aveneau et al. [13] de-
fined discrete rounds and flats based on the definition of spheres and planes
in CGA. In contrast, discrete straight lines, discrete hyperplanes and dis-
crete hyperspheres were all defined by discrete points that verify a set of
inequalities in the framework of classical linear algebra. Furthermore, Breuils
et al. [24] defined digital reflections and rotations thanks to geometric alge-
bra. The framework allows to characterize all bijective digitized reflections
and rotations in a plane. Geometric algebra allows to unify and generalize
definitions that were introduced based on Gaussian integers in [173] or based
on the Lipschitz quaternions of [166].

12. Curves and Surfaces with Geometric Algebra

Geometric algebra represents and transforms geometric objects in an elegant
and intuitive way. CGA allows [51,85,98,101] to both represent and transform
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round and flat objects with CGA. However geometric transformations and
the representation of objects are not limited to rounds and flats. Curves and
surfaces can be represented either implicitly or with explicit parameters. For
example, an implicit way to define a sphere centered at the origin and whose
radius is r is through the outer product of four points in CGA. This way,
any conformal point x with Euclidean coordinates (x, y, z) on the sphere S
satisfies

x2 + y2 + z2 = r2 ⇐⇒ x ∧ S = 0. (12.1)

This representation of curves and surfaces can be achieved based on outer
products in geometric algebra. For a curve or a surface with N degrees of
freedom, it is possible to represent it thanks to the outer product of N points
in an N + 1-dimensional vector space. Additional dimensions are required to
support geometric transformations of these surfaces.

Extensions of CGA for the implicit representation of higher order curves
with geometric algebra started with C. Perwass [165]. Any conic curve is de-
fined there by the outer product of five points in an eight-dimensional vector
space. Consistent versor transformations for conics were defined by Hrdina et
al. [126] and simplified by Hitzer and Sangwine in [116]. Furthermore, [126]
treats conic fitting of points, based on algebraic distance as well as normal-
ization of the conic. Using the same vector space, Byrtus et al. [29] proposed
tube elbow detection taking advantage of the computational performance of
Gaalop [7].

Regarding the representation of quadric surfaces as far as the authors
know, there exist three approaches to implicitly represent quadric surfaces,
namely Double Conformal Geometric Algebra (DCGA) G8,2, in a ten-dimen-
sional vector space, Double Projective Geometric Algebra (DPGA), in an
eight-dimensional vector space and Quadric Conformal Geometric Algebra
(QCGA), in a 15-dimensional vector space.

DCGA was presented by Easter and Hitzer [57] and aims at having en-
tities representing quadric surfaces but also some quartic surfaces like torus
and cyclides (Dupin cyclides, ...). A point of DCGA, whose Euclidean coordi-
nates are (x, y, z), is defined as the outer product of two CGA point copies in
a pair of CGAs, each with the same coordinates. A general implicit quadric
surface simply consists in defining and combining operators T that extract
powers of components of the DCGA point. DCGA also supports the con-
struction of the intersection of quadrics and conventional CGA objects as
well as rigid transformations and isotropic scaling of quadric surfaces.

An extension relevant for relativistic physics from Euclidean geometry
to the geometry of space-time DCSTA appeared in [56]. [59] studies conic and
cyclidic sections in DCGA with computing and visualization using Gaalop.
[112] shows how to work in a hybrid model combining the advantages of
DCGA with that of QCGA (see below).

DPGA was originally defined by Parkin [162] in 2012 and firstly intro-
duced in 2015 by Goldman and Mann [72] and further developed by Du,
Goldman and Mann [54]. A point whose Euclidean coordinates are (x, y, z)
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has two definitions, namely a primal and dual. These two definitions serve to
construct quadrics by means of a sandwiching product. In a similar way as
CGA, DPGA supports the computation of tangent plans as well as quadric-
line intersections.

The third approach is QCGA which was defined by Breuils et al. in [21].
It generalizes the conic construction of C. Perwass [165] to higher dimensions.
It supports the construction of quadric surfaces from control points and also
dually from implicit equations. In contrast to the two previous approaches,
the intersection of two or more quadric surfaces is well defined with the
usual formula C∗ = a∗ ∧ b∗, known from CGA. Geometric transformations
of quadric surfaces were consistently defined in the work of Hitzer [115],
based on subtle modifications of CGA and QCGA basis vectors. Finally,
a computational comparison of these three approaches has been performed
in [23] by Breuils et al. For the extension of these approaches, Hitzer and
Hildenbrand defined cubic curves and cubic surfaces from contact points with
a major extension of QCGA in [113]. Easter and Hitzer also defined cubic
curves with an extension of DCGA in [58] to triple CGA.

However, numerical issues arise while defining cubic curves from con-
trol points, partly due to the high embedding dimensions and high order of
products. These issues were successfully addressed by De Keninck and Dorst
in [46] through a numerically stable Levenberg-Marquardt algorithm defined
for geometric algebra. This algorithm is compared to the usual way to wedge
points in different geometric algebras including CGA. These results show
better numerical stability as well as lower computational cost.

More complex surfaces can also be defined with rotors and it does
not necessarily require high dimensional vector spaces. For example, Druo-
ton et al. [53] presented the representation of Dupin cyclides (fourth order
surfaces or quartic surfaces) with CGA. In a six-dimensional vector space,
Krasauskas [134] represented parametric rational surfaces and Pythagorean-
normal surfaces. In [52], Dorst handles Villarceau circles defined as orbits of
point pairs in CGA. Also in CGA, Hadfield and Achawal et al. presented
a ray-tracer algorithm [3, 77] that allows the representation of interpolated
surfaces. In particular, the authors present a method to analytically compute
the normal to these interpolated surfaces.

13. Conclusion

In this paper we have mainly surveyed applications of Clifford’s geometric
algebra that appeared in the last decade, since a similar survey was done
about 10 years ago [102]. New ground is especially broken in the fields of
software implementation, encryption, discrete geometry, geographic informa-
tion systems, higher order curve and surface representations, and graphics.
An undertaking like this is necessarily incomplete, but we hope to have given
a somewhat representative overview of major developments.
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