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Abstract

In this article, we derive the existence and uniqueness of continuous viscosity solution of Bellman-Isaacs
system of equations, associated with a multiple mode switching game in finite horizon when the state process is
constrained to live in a connected bounded closed domain. We rely on systems of penalized reflected generalized
BSDEs with unilateral obstacles, that provide approximation of the system of PDEs. We obtain a comparison
result which gives the uniqueness and the continuity of the viscosity solution. This allows us to use Perron’s
method to obtain the existence.

Keywords: Bellman-Isaacs equation, Reflected Generalized Backward stochastic differential systems, Viscosity solution
of PDEs, Variational inequalities, Nonlinear Neumann Boundary conditions, Switching game.
MSC Classification: 49125 , 49N70 , 60H10 , 60H30 , 93C30.

1 Introduction

The aim of this work is to investigate existence and uniqueness of viscosity solution of the following system
of variational inequalities with interconnected obstacles and nonlinear Neumann Boundary conditions: (i, j) €
I'xI2,vrelo,7),

: ij kj i il 5 .
mln{v j(tax) _kEI}‘lle?l);ﬁi(v J(tvx) _gik(tvx)) max{v J(t )C) - lerlglgéj( (tvx) +g/l (t,x)),
=0 (t,x) = LV (t,x) = fU(t,x, (W (1,%)) epert v, 0T (1) Doy (1,x))} = 0, x € D
Vi
9l (
vi/(T,x) = h(x), x €D,

(1.1)
t,x) + y(t,x,v(t,x)) =0, x € ID;

where I'! x I'? is a finite set of modes such that card (I'' x I'?) = A, the generator .Z is defined by
1
L= ETI‘(GGT)D)ZCX. +b'D,.,

and at any point x € dD,

)

¢
W:W(I)(X%Dﬁ 7( )Tx,
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This type of inequalities turns out to be the Bellmann-Isaacs equation associated with switching game under
the requirement that the state process lives in a bounded domain. In this problem, two players intervene. The first
player tries to control the system in such a way to maximize its gain by switching between modes from I'!. The
switching between a mode i and a mode k is not free and generates a cost 8y The second player has the opposite

aim and switches between modes in I'? in order to minimize the lost. In this case, g ;1 stands for the switching cost
when the second player decides to move from mode j to mode /. In addition, 4"/ is the payoff at time T, and f/ is
the running payoff on D. It should be pointed out that the presence of constraints on the state process induces in
general additional costs which are represented by the function w'/ when the boundary 9D is reached.

Problems like these ones arise for example in energy production systems and investment of capital in many
economies, when randomness comes from the state process X’ which evolves according to the following reflected
dynamic:

dX;" = b(X;")ds+ o(X;")dBs + Vo (X, ) dAS, s € [t,T];

Xy" € Dand AY" = [ fyiveapy AT, s € [1,T]; (1.2)
X" =x, for s<t.

Here, the process A is an increasing process and a part of the solution. The gradient V¢ (x) coincides with the
unit normal pointing towards the interior of D := {¢ > 0}. Therefore, the quantity V¢ (X "x)dA?x represents the
actions made to keep the state process in D.

An example of interest is related to the return of investment during a pandemic. More precisely, let X;™* denote
the evolution of a disease in a particular bounded region D. Efforts should be made in order to contain the spread
of the disease and prevent from infecting the outside world. These efforts are described by V¢ (X;™)dAS*. Amid
the crisis which strikes vital activities, a social planner gathers and analyses the data so that he/she can make the
most effective decision to protect lives and the well being of the economy. More precisely, the social planner
puts the country under different regimes in accordance with the sanitary situation, he/she chooses from a set of
modes {lockdown, partial lockdown, reopening}. On the other side stands an economic agent who invests in
many assets and chooses the ones that maximize his/her profitability. In this context, the economic agent and the
social planner are in a game and usually exchange social services and payments. The interactions between the
two players induce an instantaneous payoff that depends obviously on the mode chosen by each player. In this
game, the economic agent (the first player) aims to maximize the profit which arises the question of existence of
(v )G, j)ert 12 that solves (1.1). On the contrary, the social planner (the second player) looks for a solution for the
associated Bellmann-Isaacs equation defined as follows: V(i, j) € I'! x I'2, vt € [0,T),

( max{v(t,x) — lerrr%%?#j(v’l(t,x) +2,(2,x));min{v"/ (z,x) — kel}lle}?#(ka (t,x) — g, (t,x));
— OV (t,x) — LV (t,x) — f1 (t,x, (W (%)) (k. 1yer <125 o' (x)Dy'(t,x))} =0, x € D;
ovi/ . iy
W(t,x) + v (t,x,V (t,x)) =0, x € ID;
(VI/(T,x) = h(x), x € D.

(1.3)

There are many works on Bellmann-Isaacs equations for switching games when the state process is constrained
to stay in a bounded domain. In [25] and [26] for example, the author has treated system of elliptic variational
inequalities associated with switching game with upper and lower obstacles. The author has established existence
and uniqueness of viscosity solution of the Dirichlet problem for this system on a bounded domain, when the costs
are constant. Later on, Ishii and Koike [18] generalized these results to the case where the costs are no longer
constant but deterministic. They proved existence and uniqueness of viscosity solutions of system of non linear
second order elliptic partial differential equation of Dirichlet type. In another context, when the state process



takes values in the whole R?, Djehich, Hamadéne and Morlais [7] have established existence and uniqueness of a
continuous viscosity solution for a similar system when the utility function f“ depends on the other parts of the
solution and the costs are not deterministic. The authors have used probabilistic tools relying on the connection
between PDEs and reflected BSDEs. Also, they have given an explicit probabilistic representation of the solution
of the PDEs system. The solutions are obtained using a penalization of systems of reflected BSDEs systems with
unilateral interconnected obstacles studied in several papers (see e.g. [14, 15, 16, 17] etc). Note that in [18], the
PDEs system that has been considered is of Dirichlet type. In our work we consider a more general case, which
is a fully non linear PDEs system with non linear boundary conditions. These conditions induce the additional
costs '/ that appear once the constraints on the state process are not satisfied. Furthermore, the utility function
f depends on the other parts of the solution and the costs are not deterministic. To the best of our knowledge, our
results have not been proved yet.

The main contribution of our work is to show existence and uniqueness of a continuous viscosity solution
of system (1.1). We rely on systems of generalized reflected BSDEs studied in [2], by penalizing a decreasing
scheme of reflected generalized BSDEs with unilateral interconnected obstacles. Then we show the comparison
between subsolutions and supersolutions which allows to use Perron’s method and to obtain a solution of (1.1).
By considering an increasing scheme of reflected generalized BSDEs with unilateral interconnected obstacles, and
thanks to the results obtained for system (1.1), we get a unique continuous viscosity solution of the system (1.3).
Note that we do not know whether the solution of (1.1) and the solution of (1.3) coincide, in which case we might
get a solution for the zero-sum switching game with conditions on the boundary. This question is beyond the scope
in this paper and left for future work.

The outline of this paper is as follows. In section 2, we introduce some notations and assumptions and we
give some definitions related to the viscosity solution. In Section 3, we prove a comparison result of solutions of
multidimentional generalized BSDEs that allows us to construct two approximation schemes of penalized reflected
generalized BSDEs systems. Then, we establish their links with two sequences of PDEs systems with non linear
boundary conditions. In section 4, we prove that the comparison between subsolutions and supersolutions holds.
Finally, we use Perron’s method in order to show the existence of a solution for system of PDEs (1.1) and as a
consequence we obtain the same result for (1.3).

2 Notation and assumptions

Let (Q,.7,P) be a fixed probability space on which is defined a standard Brownian motion B = (B;)o</<r for a
fixed finite horizon T > 0, and let .% = (.% )o<;<r be the completed filtration of (o (B;,0 < s <1));<r with all
P—null sets of .%y. Let us introduce the following spaces:

T
A% = { (W) o<i<1 Fi-progressively measurable process s.t. E[/ |y, |7 di] < oo};
0

% = {(W)o<i<r Fi-progressively measurable process s.t. E[ sup | y; |?] < oo};
0<t<T

/% = {(K; )o<s<T F:-adapted continuous increasing process s.t. Ko = 0 and E[K#] < oo}

Let D be an open bounded subset of RY, such that D = {¢ > 0} and dD = {¢ = 0}. The function ¢ is in C; (R%)
and V¢ (x) coincides with the unit normal pointing towards the interior of D. Then the interior sphere condition
holds (see [21] and the references therein) i.e. there exists » > 0 such that for any x € dD and y € D we have:

|y =x > +r(Vo(x),y —x) > 0. (2.1)



Let (t,x) be in [0,T] x D and (X;™,A5");<s<7 the solution of the reflected SDE below:
dX;™ = b(X;")ds + 0(X;")dB+ V(X )dAS", s € [t,T];

AY = [} XixereopydAT s € [, T]; 2.2)

Xt =ux,s<1;

where A’ is increasing, the functions b : RY — R? and ¢ : R? — R?*? are Lipschitz. The solution (X;™, Ay");<s<r
is valued in D x R and satisfies the following properties (see e.g. [21]):

Proposition 2.1 For eacht € [0,T], there exists a constant C such that for all x,x' € D,

E[sup | X" =X0" [ <Clx—d [,

t<s<T

E[ sup |Ay =AY []<Clx—x[".
t<s<T

Moreover, for all p > 1, there exists a constant Cy, such that for all (s,x) € [t,T] x D,

E(] Ay*

Py < Cp(1+1P),
and for each L > 0, s € [t,T), there exists C(U,s) such that for all x € D,
E(eM) < C(u,s).

The following assumptions are necessary for the study of the system of PDEs (1.1): V(i, j) € ' x I'?
(Hp) Let f7:[0,T] x D x RA x R4 — R and "/ : [0,T] x D x R — R be such that
(i) £ and ¥ are Lipschitz continuous w.r.t. (¥,z) and y respectively.
(ii) £V and W' are jointly continuous w.r.t. (¢,x) uniformly in (¥,z) and y respectively.

(iii) 3B < O such that (y — ') (y"/ (r,x,) =y (1,x,y)) < B |y =¥ >
(iv) The monotonicity condition: For (k,1) # (i, j), YY' — f(t,x,¥,z) is non-decreasing.

(Hy) Let h/ : D — R be a continuous function such that

VxeD, max (WW(x)—g, (T,x) <hV(x)< min (h'(x)+35;(T,x)).
(1900 g, (1.0) < W90 < min, (04 4.2, (7.)
(H3) For (k,1) € T'! x I'? the switching costs g, and g;; are non negative, jointly continuous in (7, x) and satisfy
the non free loop property:
For any loop in I'! x I'2, i.e. any sequence of pairs (if, ji), ..., (in, jn) of ' x T'? such that (i1, jx) = (i, jn) With
card{ (i1, jk),...,(in,jy)} = N—1 and for any g = 1,...,N — 1 for which either i, =i, or j,+1 = j, we have:

N—-1
V(I,X) € [07T] XD7 Z (piqjq(t7x) #Oa
gq=1

where for any g = 1,....,N — 1, ¢ ; (t,x) = —g () Xiy #igi1 + &, jyrs Xig#ians (1,X), this latter assumption im-

. . . iq7iq+1
plies in particular that,
N—1

N-1
k;lgik»ikﬂ(t’x) >0, and k;gjk’jk“(I’X) >0,
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by convention, we setg;; = g.. = 0.

Next, we define the notions of viscosity sub-solution and super-solution of the PDEs system (1.1), this will be
done in terms of subjet and superjet, that we recall in the following definition:

Definition 2.1 For a locally bounded function u : [0,T] x D — R, we define its lower semicontinuous envelope u.,
and its upper semicontinuous enveloppe u* as follows:

u,(t,x)= lim u(t,x)andu*(t,x)= Lim u(',x).
(' 3)— (1) (12— (1)
t'<Tx'eD t/<Tx' €D

Definition 2.2 (Subjets and Superjets)

(i) For a lower semi continuous (Isc) (resp. upper semi continuous (usc)) function u : [0,T] x D — R, we define
the parabolic subjet J*~u(t,x) (resp. superjet J*Tu(t,x)) of u at (t,x) € [0,T] x D, the set of triples (p,q,M) €
R xR x S§¢ s.t. for any (t',x') € (0,T) x D, we have:

u(t',x) >u(t,x) +pt' — 1)+ (g, ¥ —x) + = (¢ —x, M(xX —x)) +o(|t' —t |+ | ¥ —x|*)

N = N =

(resp. u(t',x') <u(t,x) + p(t' —t) + (g, ¥ —x) + = (X' —x, M(xX —=x)) +o(|t' =1 |+ | X' —x |*)).

(ii) For (t,x) € [0,T] x D, we define the parabolic limiting subjet 727u(t,x) (resp. the parabolic limiting superjet
J Jru( x)) as follows:
T u(t,x) = {(p.g,M) € R xR xS : It X, Ps g My) € [0,T] x D x R x RY x S¢

t. (Pus @, My) € T~ u(ty,x,) and (ty, Xp, Py G, My) — (t,%,p,q, M) as n — o},
(resp. 72+u(t,x) ={(p,g,M) € R xR xS : I(t,y, Xp, pu, @, My) € [0,T] x D x R x R? x §¢
s.t. (PnyGn,My) € T u(ty, x,) and (tn, X, Py Gn,My) — (t,%,p,q,M) as n — oo}),
where S¢ is the set of symmetric real matrices of dimension d.

We give now the definition of solution in viscosity sense for system (1.1):

Definition 2.3 (Viscosity solution)
(i) A function Vv = (vkl)(k,l)eru «r2 1 [0,T] x D — R" such that for any (i, j) € T' x T2, v/ is Isc (resp. usc), is
called a viscosity supersolution (resp. subsolution) to (1.1), if for any (i, j) € T'' x I'%, we have:

min{v¥(z,x) — max (V(r,x)—g. (t,x));max{v¥(t,x)— min (V! (t,x)+3g;(t,x));
09000) = max (W(e,3) — g, (1.0)max (v (6,2) — min, ((5,5) 4 2(1)

—p—b(x)"qg— %Tr[O'GT(x)M} — fU(t,x,9(t,x),06 " (x)q)}} >0, (¢t,x) €[0,T) x D, (p,q,M) € 727vij(t,x);

min{v"(t,x) ~ Jnax (v W (1,x) = g, (1,%));max{y/(1,x) — min 7é/_(vi’ (t,%) +85(1,%));

—p—b(x) q—3Trloc " (x)M] — fi(t,x,%(1,x),6 " (x)q)}} V{—(V(x),q) — v (1,x,V'](t,x))} > 0,
(t,x) €[0,T) x 9D, (p,q,M) € > vii(t,x);

vi/(T,x) > h(x), x€D.

(2.3)



(resp.

((min{V¥/ t,x)— max (VI(t,x)—g. (t,x));max{V7(¢,x) — min (V!(t,x)+g;(t,x));
900 = max (#(0.x) = g, (1.0))smax (5 (e,0) = min, (1, +8:(1,%))

—p—b(x)"g— %TF[GGT(X)M] — fU(t,x,%(t,x),0 " (x)q)}} <0, (¢,x) €[0,T) x D, (p,q,M) € 72+v"j(t,x);

min{v/(t,x) — max (V(t,x)—g. (t,x));max{v’(z,x)— min (V! (z,x)+g,(t,x));
D9(00) = ma ((0.0) = g, (0,0 max 9 e,) = min (70,0 +8(1.))

—p—b(x) q—3Trloc " (x)M] — fi(t,x,%(1,x),6 " (x)q)}} AN{—(V(x),q) — v (1,x,"(t,x))} <0,
(t,x) €[0,T) x 9D, (p,q,M) € T vii(t,x);

vi/(T,x) < h(x), x€D.)

\

(2.4)
(i) A locally bounded function v = (vkl)(k’l)eru «r2 ¢ [0,T] x D — R" is called a viscosity solution if V. (resp.
V¥) is a viscosity supersolution (resp. subsolution).

3 Approximation schemes of the solution

Lett <T,n,m>0,and (Y Z1mM) o pi e be the solution of the following system of GBSDESs, which exists
and is unique thanks to Theorem 1.6 [21]: V(i,j) e T! xI2, Vvt < s < T,

Yij,n,m c yZ Zij,n.,m c <%Z,d.
Y = W) [ X () per e, Z0dr 4 [Ty (R X0 aA

T ijn,m
— (Fz7""aB,,

where

FIm (s, X% F,2) = (s, X0 F,2) +n(y = max (M =g, (5,X07) T —m(Y — min (0" 48 (s, X)),
kel ki 1€T2 I+

which is lipschitz continuous w.r.t. (¥,z). Then, we have the following properties:
Proposition 3.1 For any (i,j) € T'! xI%, and n,m > 0, we have:

1. P-a.s Yij,n,m+1 < Yij7n,m < YijJH—l,m.

2. There exists a deterministic continuous function Vi sych that WVt < T,

Ysijﬂ,m - vij,n,m(S’Xstx), AS [t7 T]

3. Forany (t,x) € [0,T] x D, v (g x) < yiinm(z x) < pintbm(g ),

Before we proceed with the proof, we need to establish a comparison result for solutions of multidimensional
generalized BSDE in a limited context. More precisely, we have:

Proposition 3.2 Let I denote the finite set of modes {1,...,m} and assume that the data ((&;)icr, (fi)icr, (Wi)ier)

and ((&,)ic1(f,)ier, (W,)ic1) satisfy the Assumptions (Al) in [2]. Then, we define Y andY as the respective unique
solutions of the following systems of generalized BSDEs: Yi=1,....m, Vt < T,

. . T . T . T
Y,’:§’+/ ﬁ(s,n,zg)der/ q/i(s,YS’)dAS—/ Z.dBy, (3.2)
t t

t
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and , ; ;
Vi =&+ [ sV Zods+ [ wis VoA~ [ Zids. (33)
t 1 1
Also, we assume that foranyi=1,...m, f; < f, Wi <Y, and E' < El. Then for any i =1,...,m, we have:
Yyi< Yi, P-a.s.

Proof. The equations (3.2) and (3.3) can be seen as solutions of two reflected GBSDEs systems with data . In
fact, (Y,K = 0,Z) satisfies the following system of reflected GBSDEs with data ((§')ic;(f})ier, (Wi)icr, (8i1) (. jyer)
where (g; j)(i, j)er stand for the costs of switching which are continuous, non negative and satisfy the non free-loop
property, more precisely we have: Vi=1,....m,Vt < T

Yie 2 7Zie % K e o,
Yi=E+ [T fi(s,Y, Z)ds + [ wils, Y])dAs + Kf — Ki — [T ZidBy;

Y/ > max (Y — g;(1)); ©H
i

Jo ¥ = “mx( —8ij(1))}dKi =0

\

It has been shown in [2], that for i = 1,...,m, (Y!, K' = 0,Z') can be obtained as the limit of (Y, K" = 0,Z""),~¢
which is defined as follows:

. T . . T . T
O=g+ [ fs 0205+ [ yis.¥iOdA,~ [ Zi%aB, i <T: (35
t t t

where § = max | EN, f(s,y,2) = Max fi(s,y,...,3,2), Y(s,y) = max yi(s,y);

and forn >1:
’Yi,n c P2 Zin ¢ gprd gin ¢ 72
Y= E [T f(s, L Ly 2 ds + [T (s, Y dA + KR — K — [T ZE By, Ve < T

A m;x(n”” —gij(1), Y <T
JFi

Jo ¥ mQX(Y —gi;(1)}dK™ = 0.

' - (3.6)
with K" = 0 and Y'" converges increasingly to ¥ !, The same applies to Y, the increasing limit of Y"" which
satisfies (3.6) with data ((§;)ier(f))ier, (W))ier (8ij)(i,jer) and

—i0 = [T= <i0 =i0 T _io T_io
Y, :§+/ f(s,Y’ VA S)ds—{—/ l//(s,Y’ s)dAs—/ Z {dBsVt < T. 3.7
t t

The equations (3.5) and (3.7) are two standard GBSDEs, then Y* 0 < thanks to the comparison result for
solutions of GBSDEs in [21]. _

For n > 1, we assume that Y'* < V¥ for k < n.

From the assumptions, we have

1n—1 a—1 = x vln—1 a—1
ﬁ(S7X;7x7YS " ?"‘7y7"'7Ys’nn 7Z)<fl'(s7xtx7y " 7"'7y7"'?YSmn ?Z)?

. . . 1
then using the monotonicity condition (H;)(iv) and since Y~ <Y" 7" we get:

Fols, Xyl Ly v ) < Fs, XYy T ).

575 T s



Thanks to Proposition 2.1 in [2], we get Y < 7" and we conclude by taking the limit as n — co. [

Proof of Proposition 3.1. Let n,m > 0 and (Y, Z"™) be the solution of the GBSDEs system (3.1), then from
Proposition 3.2, we deduce that:

Yij7n,m+1 < Yij7n,m < Yij,n-i—l,m, V(l,]) c F] % 1—~27

since fi/mmtl < gijnm < gijntlm Moreover, it has been shown in [21], that there exists a family of deterministic
continuous functions (v ”’")(l j)ert xr2 satistying Y,/ = yiinm (s X*) since we are in a Markovian setting, then
we have:

vij7n,m+l < vijm,m < vijJH—l,m, V(l,]) c 1—~1 % 1—~2' 0

The system of generalized BSDEs (3.1) allows to approximate two different schemes of reflected generalized
BSDEs systems, the first scheme is a decreasing sequence of generalized reflected BSDEs with interconnected
lower obstacles, the other one is an increasing sequence of generalized reflected BSDEs with interconnected upper
obstacles.

First, consider the following system: Vm > 0, V(i, j) € T x I'%,;

yim e y27zij>m c #24 and B9 ¢ A2
YO = W) + T X (0 wpert e 20 dr 4 [T (n X0 VT dAY + KT R
— [TZ7"4B,, Vi<s<T;

rte koD ki ¥ — 8, (5. X)), VE<s<T
1

T (57ij,m wkj,m tx ZFiim
Y — max (Y s, Xy’ dK;" =0.
fO { K kel k i( K g ( ))}

(3.8)

where 7" (5, X", 5,2) = f(s.Xi",5.2) = m(y" = min (" +g;(s,X;™)))" then under assumptions (H,) —
1€l l#j
ij,m

(H3) and by Theorem 2 in [2], there is a unique solution (Yij "z
the following properties:

,Fij’m)(i,j)erl 12 to system (3.8) and we have

Proposition 3.3 For any (i, j) € T' x T2, m > 0 we have

(i) E[ sup. |y G 2] 5 0 as n— oo,
1<s<

(ii) Y/ > 7" P—a.s.
(iii) There exists a deterministic continuous function v/ such that
v =vim(s, X1, Vs € [r, T).
It follows that for any (i, j) € T'' x %, we have:
v (r,x) > 5 (1 x), Y(t,x) € [0,T] x D.

Finally, (Vkl’m)(k’l)erl <12 IS the unique viscosity solution of the following system of variational inequalities with



interconnected obstacles and Neumann boundaries: ¥(i, j) € T' xI'?, vVt € [0, T),

min{¥/(,) — max ((0.) g, (1. 2):

=0 (t,3) = LV (1,2) = T (1.0, (9 (1,0) per a2, 0 (D (1,2))} = 0, x € D

il (3.9)
57 (t,x) + W (t,x,v(t,x)) =0, x € ID;

Vi/(T,x) = h/(x), x € D.

Proof. (i) First, note that the function (¢,x,y) — —m(y"/ — n%m# (y' +g;:(s,x))" has the same properties as f*/
2,/

for any (i, j) € I'! x I'2, then it is enough to consider the case m = 0.

Let us show that for any (i, j) € I'' xI'?> and n > 0 we have Y0 <Y
sequence: _

For k=0 and (i, j) € [! x 2, Y0iin .= Yij’o and for k > 1, let (Y%, Z*") be the unique solution of the following
system of GBSDEs: V(i, j) € ' x I'?,

Y7 Fix n > 0, we define recursively the

Yk,ijm c yz’ Zk,ij,n c %Z’d;
Ysk,l'j ,n hl}( IJC) +f {f”(r X;l: x, [(f}}!{*l,ij,ﬂ)(p?q)#(i’j)7Yrkijﬂ]’fo’l‘jvn)

T T
(TR max (PRI g (5 X5 Y + / Wi (1, X1 TR gAY — / ZinaB, Vi <s<T.
kel kti Sik s s
. (3.10)
where [(7f 1 ) pa) £ 77" stands for the vector that has the same components as ¥*~1 except the i j-th
row which is replaced by Yk i
On the one hand, Note that the mapping defined by

01" (1,52 = S50 67 gy, + (0 = max (07 =g, ()}

satisfies the assumptions of Theorem 2.1 in [2] where it has been shown that the approximation (Y kiij ™) =0 con-
verges increasingly to Y/"0 ag k — oo,

On the other hand, we can use an induction argument on k to show that Y%i/" <y yo ,k>=0.
Indeed, fix (i, j) € I'! x I, then for k = 0, we have 7%/ = 7"/ now assume that for k — 1 we have 7%~ 1/ <
Y"7°. Then the monotonicity condition (Hj)(iv) implies that:

i X k—1,ij,n 7i/,0 ij x [/yP9.0 7J,0
f,(S?Xr[ 7[(Yrk L, )(p,q);é(i,j)ayr] ]7Z> Sf"(l’,Xr[’ 7[(qu )(p,q)#(t}j)ﬂyrl ]71)'

Besides (Y/),, ; 112 1S the solution of system (3.8), then
(i.j)er xI"

770> max (V) —g (rX!™))
el I4i

k—1,0j ,
216@9@1& g, (n X))

Thus,
i S —ij,0 i —ij,0
¢z],n(r’X;,x7 [(Yrk 17pq7n)(p,q)7é(i,j)’ylr] ]’Z) < fl](ant’xv (erj )(i,j)erlxrz7z)'
Then, using the comparison result for standard GBSDEs, we deduce that for any (i, j) € I'! x I'2, Y%iin <Y
P-a.s., Vn > 0. Finally, we take the limit w.r.t. k& and we obtain yimd <y 70 P-a.s. It follows that (Y yim 0)@0

1]0



converges increasingly to ¥/ and E[ sup | ¥/ [2] < eo.
t<s<T
In order to complete the proof, we are going to use Peng’s monotonic limit theorem with the following process:

1 0 ij
0 [y B A = v [ () o Z )

.. s ..
=[x ) 0 T i + [z,
0 0

.. S .. .. .. A
As W'/ is non increasing, the process < / (i (r, X125 Y 1Tm0) i (r, X1F P11 )}dAt;x> is increasing for any
0 t<s<T
n > 0. Then, thanks to Proposition 2.1 and assumptions (H;)(i), (i) we can apply Peng’s monotonic limit the-

.. § .. N . . .
orem [22] to the increasing sequence (YS” 04 / v (r, XYY )dA’,’x> . This provides the existence of two
0 n=0
processes K'/ and Z such that:

(a) K is an RCLL increasing process satisfying K, ' = () and for any stopping time 7,

T . T ..
| i max (v g (nXE) Y dr [ XE V) g (X0 A R
0 kel ki 0 n—yoo

Note that E [iF {w'l (r, X/, Y\7"0) — i (r, X1 1)V 2dAYY < ME [] [Y7"0 =97 2dA" — 0, which implies
n—o0

i 1 T ijn,0 kjn,0 £,X\\ 1 —
that K7 r}gilofo n{Y, kErlr_llz}]i;i(Yr 8, (nX;™))} dr.

(b) The process 2/ belongs to 2 and we have E[[7 | Zm0 21 1P ds) — 0,Vp € [1,2).
n—soo
(¢) Forany (i, j) € T x I'?, the triple (/. 2%/, K/ satisfies the following system: Vr < s < T

J = hij( tx) +f f”(l" Xi{ x7 (? )(k,l)el"‘ xl"zvzij)dr—i_ fyT ‘l’ij(”,Xrl’xa ?Vl/)dA?x +I€;"j - Ie;j - ./:vT Zf’dera

B> e (B - gy (X))
N e

(3.11)

The remaining of the proof is similar to what has been done in Theorem 2.1 [2].(ii) is obtained from Y#/mm+1 <

Y™ and by taking the limit as n — oo. (iii) (Y ’m)(i’ jerixr2 is the solution for system of Generalized BSDEs
with unilateral interconnected barriers, according to Theorem 3.2 in [2], there exists a family of deterministic con-

tinuous functions (¥/"")(; »cpi,r2 such that YU = yiim(s X1%), Vs € [t,T] and is a solution of (3.9). Tt follows
from (ii), that (v'/),,>1 is decreasing. [J

As mentioned previously, the system of GBSDEs (3.1) provides an approximation for a system of an increasing
scheme of reflected GBSDEs system, namely: Vn > 0, V(i, j) € T! x T2, Vt < s < T;

Yiin e 92 ziin ¢ 724 and K € o7
Y = WIXE) + [T I X () pertar2, Z8)dr + [T Wi (n X0 YT dAY + K — KT
—ffzi‘"dBr, Vi <s < T

ij.n i '
B >1611212£]( " g(s X)) Vi<s<T;

T (y/ijn . i, . ’ n
Jo AV = min, (V" 4815, X)) JKT" = 0,

(3.12)
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where £/ (s, Xi ¥,2) = (s, X", 5,2) +n(y" — ) rgg};; (Y — 8, (s, X!")))~. Therefore, by considering the equa-
A T ki &

tion satisfied by (—Y"/", —Z"", —K'7"); i cri 2, we get an analogous of the previous proposition:

Proposition 3.4 For any (i,j) € T'' xI'%, n > 0 we have:
(i) E[ sup |¥"™" —yP" 2] — 0.

1<s<T m—yoo
(ii) YUt >yiinP_qg.s.

(iii) There exists a deterministic continuous function v'/"* such that

Yl;'jVn :Eij’n(saxst’x)’ s€[t,T].

It follows that vV/"" " (t,x) > v (t,x), V(t,x) € [0,T] x D.

Finally, for any n > 0, (Xkl’n)(k,l)er*l «12 IS the unique viscosity solution of the following system of variational
inequalities with interconnected obstacles and Neumann boundaries: ¥(i, j) € ! x T2,

( . .
Y f, - i i L 8 f, 5
max{(1,0) — min (v/(0.5) +8 (1)
*atvij(tvx) —jvij(t7x) *fijm(t»xv (Ekl(tvx))(k.l)el"lxl"zv GT(X)DxVij(tvx))} =0, xe D;
N / (3.13)

Next, we suggest we recall that for any (i, j) € I'! xI'? and m > 0, we have ¥/ (¢,x) < v/0(¢,x), V(t,x) €

- i ij,0 . i . i

[0,7] x D, where v/0(s,X;™) =Y.", Vt <5 < T. Since (v/™),>¢ are continuous, we can define an w.s.c. v/
function as:

v (t,x) = ﬂlliggov"j’m(t,x).

Similarly, we can define a l.s.c. function v/ as
Vi (t,x) = I}iigoyij’"(t,x).
Then, we have the following:
Corollary 3.1 For any (i, j) € I'' x I, we have:
v <Y (3.14)
Moreover, the families (yk1>")(k7,)€1~1 <12 and (Vkl’”)(kJ)erl 12 are bounded on [0,T] x D.

Proof. The comparison follows from Proposition 3.1 since yibn Lytinm L giim for any m,n > 0. Therefore, the
boundedness is obtained thanks to the upper semicontinuity and the lower semicontinuity of v'/ and v/ respectively
and the compactness of [0, 7] x D. [

4 Uniqueness of the solution

In this part, we show uniqueness of the viscosity solution for system (1.1), by establishing the comparison between
the viscosity subsolution and the viscosity supersolution.

11



Theorem 4.1 Let (u;j); jeri «r2 and (V) ; jyeri <12 be respectively an .s.c. subsolution and a Ls.c. supersolution
to PDEs system (1.1). Then, for any (i, j) € T'' x I'> we have:

ui; < Vi 4.1)
Proof. The proof will be obtained in two steps.

Step 1: We first assume that there exists a constant A < —A.( )malx ZC;!, (C}j being the Lipschitz constant of %/
i,j)er xT"

for (i, j) € T' x I'?) such that: V(i, j) € T! x 2, Vt,x,5 7, y,%,2 € [0,T] x D x RA! x R,
if y >y then - - 3 -
flj(taxa b_;_l]’y]az) _flj(t7x> [y_l]ayLZ) S 2’(y_y) (42)

Let (uif) (i jjert x> and (v )(i,j)er x> be respectively a subsolution and a supersolution of system (1.1). Thanks to
Lemma 7.6 [6], there exists a positive function ¢ € C?(D), that satisfies

(=V¢(x),Do(x)) > 1,Vx € dD. (4.3)
Then fix (i, j) € ' x I'? and put: V(t,x) € [0,T] x D
uy(3) = i (1,x) — £9() = = ~Cand v (1,0) = V(1,3 + £9(x) +C,

where, C is a positive constant that will be chosen later on.
Let us show that ufj is a subsolution to a specific PDEs system. we shall point out that Vx € D, we have:

uf;(T,x) < uij(T,x) < R (x).
Now, fix (z,x) in [0,T) x D and (p%,q%,M?) € 72+ufj(t,x). If we set p = p® — 5, g =q° +€Dop(x) and M =
ME 4 eD?(x), we can show easily that (p,q,M) € 72+u,~j(t,x) and we have:

min{ufj(t,x) — ker?F?¢i(uij(t’x) — gik(t,x));max{ufj (t,x) — lerg%i?#(ufl (t,x) +8;(t,%));

= b(0) "~ 300 (M) — U0, (1,2)) e, 6 (94}

=min{u;;(¢,x) — kef;lﬁlf#i(ukj(tax) — 8, (¢,x));max{u;;(,x) — lergigéj(uﬂ(t,x) +3,(1,x));
~p—b(x)q— %TY[GGT(X)M] = £, (uij(1,%) )i, 0 (x)q) — t% +b(x) " (eDg(x))
+ %TI‘[GGT (x) (SDZ(P(X))] +fij(tﬂxﬂ (uij(tvx))(i,j)el“l xI'2» o (X)Q) _fij(t7x7 (ufj(tﬂx»(i,j)el"lxl"za O-T(x)qg)}}'

The boundedness of b, o, @ and D@(x) on D implies that there exists k; > 0 satisfying:
1
b(x)" (eDe(x)) + 5Tr[o-cﬁ(x)(eD%p(x))] < kK. (4.4)
Then thanks to (4.2) and (H;)(i), we get:

fij(ta-xa (uij(t7x))(i,j)efl xT25 GT(x)q) _fij(t7x7 (“fj(fax))(i,j)erlxﬂa GT(x)qs)

< (A= 1)maxC} (e9(x) + 5 +C)+A(e9(1)+ = +C)+maxC] | o () (D% () |.

< (A-maxC? 4+ 1) (ep(x) + — +C) —maxC¥ (ep(x) + —) — C.maxC? + ekymaxC?
i t i t ij I ij
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where 1 > 0.
Since A. maxCJ +A <0and ¢ >0, we get:

b(x) T (eDP() + 3 Tr00 T (W)€ P00 + 170, (1, 3)) e sr- 0 (2)g)

— fii(t,x, (ufj(t,x))(l-J)Epusz,GT(X)qe) <ek —C. maij +£K2maxC/
ij

Thus, by choosing C =

we can see that the left hand side of (4.5) is negative. It follows that:

lj

min a1, x) = max (o (1.5) = g 1))y o,0) — i (a1, 2) 4 (1, 2);

P b) g S Trlo6T (M)~ £ (e, (1,2)) 5,0 (D))}

< min{u;;(t,x) — . rlr}a;{(;‘é (g (2,x) — g, (¢,x)); max{u;; (2, x) —lerrr%i?#(uil(t,x) +2;(t,x));

() g 3 T06" (M)~ 05 a1y (1,2)) s, 0 ()a) — 3}

As for the condition on the boundary, we have:

(Vo (x),4°) — v (t,2,uf;(1,x)) = (VY (x),q) — v (1. x, 1351, x) — £p(x )*?*C)*SFW(X)’D(P(X)%

As W/ is non-increasing and using (4.3), we get for x € dD:

—(Vo(x),q%) =y (1,2,uf(1,2)) + € < —(VO(x),q) — ¥ (1,,u35(1,x)).

Therefore, if (u;;); jer <2 satisfies (2.4), we obtain from (4.6): Vx € D,

i.J)

min{uf;(z,x) — kenrlla]i(#i(u,fj(t,x) — 8 (t,x)); max{uf;(z,x) — lerlgigé/(ufl (t,x)+8;(t,x));

4.5)

(4.6)

(4.7)

1 .
=P =b(x) ¢* = JTrloo " (M — f7(t,x, (u(t,%)) g jerxr2, 0 (¥)g°)}} <0,

If x € 9D, it follows from (4.6) and (4.7) that:

min{uf;(t,x)— max (ug;(t,x)—g. (t,x));max{u;;(t,x)— min (uf(t,x)+3;(t,x));
{ ) ke F',k;éi<ukj( ) Elk( )) { l./( ) lEFl,l#j( z/( ) gjl( ))

1= b(0) "~ 300 (M) — (0, (1 0)) e, 0 (94°) + 51}
AM=(V0(x),47) = W 1., 1,) + €} <0.

We conclude that (uf satisfies the following system: V(i, j) € T'! x 2, V¢ € [0,T):

U)(i,j)erl xI2’

'min{ufj(t,x)—n]rclitx(ulfj(t,x)—&k(t,x)) max{uf;(t,x) — l#( 7(t,x) +8;(t,x));

—p* —b(x) "¢ — 3 Tr[o 0 T (x)ME] — 9 (1., (uf;(£,)) i jyerixre, 6 T (¥)g°) + 53} <0,
Vx €D, (p¥,q° ME)GJ us;(t,x);

min{uf/-(t,x) — Iili.?((ulfj(t,x) —gik(t,x));max{ufj(t,x) — rln;?(ufl(t,x) +8(t,x));

=P =b(x)"¢° = 3Te[o 0 (X)M®] — f(t,x, (uf;(£,%)) i jyertr2, 0T ()4°) + 51}

M—(VO(),q°) — Wit x,uf(1,x) + €} SO, V€ D, (p,q,M®) € T ul(1,);

uf;(T,x) < h'(x),Vx € D.

13
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Similarly, using the supersolution property of (v/ )( crixr2 together with assumption (4.2), and assumptions

.. i7j)
(H1)(i), (iii), we show that (v{/); ;ycri 2 satisfies the following system of inequalities: V(i, j) € I x I'?, Vt €
[0,T):

(min{o(1.6) = max (v (1.2) = g, (r.3))smax {0 (1.6) = min(vl (1.2) + (1)
i - J

—pe —b(x) T ge — ITr[o 0T (x)Me] — f1(t,x, (V¢ (1,%)) (i jyert 2, 0 | (¥)ge) }} > 0,
Vx € D, (pe,qe, M) € 72_véj(t,x);
.

min{v¥ (¢,x) — r?ilx(v’;j(t,x) - gik(t,x));max{véj(t,x) - Ill;éi;l(vfsl(t,x) +81(t,x)); —pe —b(x) ' ge

—ITr[00 T (OMe] — £ (e, 3, 0 (1,5)) e s 0T (8)0e) FV (= (VO (), 06) — i (1,5, (1,3)) — €} > 0,

Vx € dD, (pe,qe,Me) € 727v2j(t,x);

Vi (T, x) > hi(x),Vx € D.
- 4.9)
In the next part, we show that uf; < v, V(i,j) € T' x 2. We proceed by contradiction assuming that

€

max  max (u;; — vlgj) > 0. Taking into consideration the values of u}; — Vv at T, and by definition of u;;,

[0,7]xD (i,j)er xr2" "
we know that there exists (7,x) € (0,T) x D such that

max (45 (7,%) — v (7,%)) > 0.
(i,j)GFIXFZ( Lj(? ) 8(7 ))

According to Lemma 4.1 [14], we can always find (i, j) € I'(7,%) such that

uf(7,%) > r?%(u,g,-(f,x) —8,(7,%) and v/ (7, %) < rlr;i?(vg (7,%) +8(7.%)), (4.10)
where D7, %) = {(i, /) € T' x T2/ uf,(7,%) —v([,3%) =  max _(uf,({,%)—v¥ (i, %))}.
(k,1)eT! xT?

Let us fix (i, j) € ['(7,%) that satisfies (4.10) and suppose first that X € dD. Let ® be the u.s.c. mapping defined
on [0,7] x D by:

@i x,) = 1,3) v (0.) ~ Wil

where Wi (1,x,y) = & | x—y [2 —y (7,%,u,(7,%) (VO (%), x —y)+ | s =% [* + | 1 =7 |2

. . i =2 . . D
Let (fg,%a,Ye) be the maximum point of @ over [0,7] x D, which exists due to the upper semicontinuity of

ufj —v¢ and the compactness of D, and let M, be defined as follows:

My = max q:‘('){ (t,x,y),
(t,x,5)€[0,T]xDxD

and note this supremum is achieved only if 4 is in (0,7).
On the one hand, M, satisfies:

My > max _ uf(t,x) — v (1)~ [x =X — |1 =7 P = uf;(1,%) —v{ (1.%).
(t,x,y)€[0,T]xD/x=y ‘

Note that My, is non-increasing w.r.t. ¢ then it is finite and & | x4 — yo |* — 0. Thus, (xq —ye) — O thanks to
a—o0 a—o0

the boundedness of D, which implies that (74, X¢,ve) — (7,£,£).
o—yoo

14



Next, recall that

Ui (£,%) v (£,%) < Mo < ufi(tas%a) = vE (to ya) + W (% u55(5,%) (VO (X), xa — V).

By taking the superior limit in the right hand side of the previous inequality, and taking into account the upper
semi-continuity of the function in the right term, we obtain:
ufy(1,%) —v{ (£,%) < Tim (uf(taxe) — V¥ (ta ) + W (2.5, uf5(7,5)) (VO (X), 50— yar))

50.8) = v (7.9).

lim
o
<u

On the other hand, (7,%) is the maximum point of u — v‘,3 , which gives the other inequality:
ul(7,%) —vg (1,%) = uf;(,%) — v (7, %).
Thanks to the semi-continuity of the functions u - and v8 , we have

Ml?j(f’j) _Vi:j(fyf) < lim (”z‘gj(taax(x) _Véj(toc,)&x))
of—ro0

m}o("‘fj(taaxa) - Vfé/(toc»ya))

7,%) — v (7,%).
Then hm u; (ta,xa) j(ta,ya) = uf;(7,%) — véj(f, X), and we have:

(ta X ya) — (1,%,%). (4.11)
It follows that:

lim uf; (to, X0 ) > u;(,X) — v (1,%) + lim v (t, ya) > uf F(0,%) > Tim uf(tg,xq).-
o—roo o—so0 Oo—ro0

Thus, - '
(”f/(fayxa>v"y([av)’a)> e (u u(t X),v J(fﬁ))- (4.12)

Using this, the inequalities (4.10) and the continuity of (g, ) xeri«xrt and (g;;)(j)er2«r2> and since the other

components of (u;) ; jjert x> and (v‘g )(i,j)er x12 are respectlvely u.s.c and l.s.c. too, we get:
Ui (t, Xo) > r?i?c(u,‘ij(ta,xa) — 8, (ta Xq)) and Vi (tg,x4) < g?(vg(ta,xa) +8i(tas Xar))- (4.13)

Back to ‘I‘ixj, let us note that:
DXIPth(t’x?y) = a('x_y) - WU(I X, Ltl](l‘,f))VQb(X) +4 ‘X—.Y ‘2 (X—f),
Dy (1,x,y) = —at(x—y) + YU (I, %,uf, (7,5)) Vo (%) and 0,4 (1,x,y) =2(1—1).

Relying on the definition of ‘I‘ﬁxj and the interior sphere condition (2.1), we show that we can avoid the conditions
on the boundary dD so we can be reduced to deal only with the equations that hold in the interior D.
In fact, we distinguish two cases. If x, € dD, we have:
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—(Vo(xa) 7qulixj(faaxa7)’a)> - l[/ij(ta,xa,u;?j(ta,xa)) = —0o(VP(xa), Xa — Ya)
—4 | xoq =X ‘2 (Vo(xa),xq —X) — Wij([aaxa;ufj(tmxa)) + YU (T3, u%(f,f))(V(I)(X),ng(xa»
> _% ’ Xa —Ya ‘2 _% ’ Xo —X |4 +wif(i,x,ufj(i,x))<v¢(x),Vq)(xa)} - Wij(taﬂxavufj(tthxa))?

where we have used the interior sphere condition (2.1). In view of the convergences (4.11) and (4.12), we know
that the right hand side tends to 0 as o@ — 0. Then for & large enough we deduce that

_<V¢(xa)7qu’g(ta7xa7)’a)> - Wij(tavxwufj(ta;xa)) > —¢&. (4.14)

Similarly, if y,, € dD, we get:

(Vo (o), ~Dy¥l (ta Xa,Ya)) — W (e, Vo Ve (tar Vo)) = @V (Va), Yo — Xar)
Y (7,3, u5,(7,%) (VO X), VO (va)) — Y (e %, v (tasYa),
< o |xg = ya |* +WV(EFu(7,5) (VO (), VO (va)) — W7 (1,%,u5(7,%))(VO(X), VO (X))
U (EEVE (F,5) — WY (e Xa, Ve (tas o)) + WY (7,5, 16 (7,5)) — U (%, (7,%))
< alxq—yo [P Y (E5uf(1,5)(VOX), Vo (va)) — v (7,%,ufi(7,%)) (VO (%), VO (X))
Y (E,% (1,%)) — Y (o %0 v (tar Vo),

since Y (%%, u;(1,x)) — wii (7, %,V (1,%)) < 0. Again, with the use of (4.11) and (4.12) and assumptions (H)(i),

we can see that:
o | xa = o [* FWH (%, U (1,%) (VO (%), VO (va)) — W (7%, 15, (7,%)) (VO (%), VO (%)) + ' (7, %, v¢ (7,%))
—Wij(ta,xa,Vféj(fa,ya)) O:;O;
then it can be strictly dominated by € for « large. Finally,for o large enough, we get:
—(Vo(ya), —Dylyixj(taaxm)’a» - ‘l’ij(tm)’oc,visj(toca)’a)) <& (4.15)

Next, as (u;); jjert < is @ subsolution of system (4.8) and (véj )(i,j)er x12 1s @ supersolution for (4.9), we deduce

i.j)
from (4.14) and (4.15) that the conditions on the boundary of D are reduced to the following inequalities: V(7,X) €
(0,T) x dD, Vo large enough,

. y 1
-0 W (tasXa,Ya) — b(xa>TDleg(taaxaaya) - ETr[GO'T(xa)Mg]

—fY (tocax(xa(ufj(taaxa))(i,j)erl 12,0 (xoc)Dleécj(ttx’xaaYa )

)) <0,
fOI' (azlpg(taaxad’a)anlI’ixj(ta7xa7ya)7M£) S ‘72+
)

Ui (ta, Xar);
~ 0¥ (ta ke va) — blra) (~Dy Wit 5arva)) — 36T (va)Me]
—fij(tocayaa(Véj(faO’a))(i,j)erlxr27GT()’&)(—Dyng(fa,Xa,)’a)» >0,
for (3¥ (1o X Va), Dy Wi (tas X, Vo) Me) € T VY (1)

The latter inequalities meet the ones that hold in the interior D. More precisely, if x € D, the subsequence (x¢, V)
is in D x D for o large enough, then the inequalities above hold true. Therefore, we can apply Crandall-Ishii-
Lions’s Lemma (Theorem 3.2 [6]) with uf; and v{/ on (0,T) x D and € = £ to find (ply, g, My) € 72+ufj(ta,xa)
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and (py,qq,My) € 7 (f,xq) such that

p(x pa*al (tOh-xOhyOC) 2<ta_i)7

Qa - q(x = _(Dxlpéc(tocaxmya) _Dylplojc(toc»xaa)’a))
and

I 0 MY 0 142 2 \pii
—(at Ay ;)< (TgF ap ) SA+EA% where A=D}, Wi (10, %0 Va)-
a

By replacing in the above inequalities, we obtain:

1 .

—ply —b(xa) gy — ETT[GGT(Xa)Mgc] — [ (ta, Xa, (“fj(taaxa))(i,j)erlxr% o' (xa)q) <0,
1 ’ . ,

—Pa—b0a) a5 Tr00 " (va)Ma] =/ (teYa, (v (ta:ya)) i jyer xr2: 0 (V) ) > 0.

Combining the two inequalities, gives

1
—(Pl = Po) — (b(xa) " g —b(va) "a) — ETY[GGT(Xa)MZ’z — 00 (ya)My)
—{f"(ta, xa, (ufj(tavxd))(i7j)erl 12,0 (Xa)qly) = £ (e, Yot (Véj(tavya))(i,j)el"l 12,0 (ya)qy)} <0.

Thanks to assumption (H)(i), the Lipschitz assumption on b and ¢ and the above convergences (4.11) and (4.12),

we can find some X, such that lim X, < 0 and
o—>o0

—{fY(ta, X, (”igj(toc»xa))(gj)erl <25 GT(xa)ql&) - fij(foc,xom (Vg(tmya))(i,j)el"l xI'25 o' (¥a)qa)} < Za-

From (4.2) and (H))(i), we obtain

— A (uf (tOCaxOC) j(foc;yoc)) ®kl (ugy (ter, X)) — l(tocaya)) < X,
(k1) (i)

where ©X stands for the increment rate of f i/ with respect to yy; for (k,1) # (i, j). Observe that @ is nonnegative
and bounded by m_axC}j the Lipschitz constant, thanks to the monotonicity condition (H;)(iv). It follows that
ij

At xa) Ve (taya)) < Y O (uf (tasxa) —VE (tar, ) T+ Zar,

(kD) #(i.J)
< m_axc}j Z (”lil(tavxa)*Vlél(fa’Ya>)++Za'
YT (D) A))

Taking the superior limit in both sides as & — oo, and since uf, — V& is u.s.c., we obtain: V(i, j) € I'" x 2

—A(u5;(2,%) —(7,%) < rr&aXC] Z ut, (1,%) — i (1,%)T,
J k#ij

< (m —l)m?xC( (f,f)—vfsj(fvf));

which is contradictory since uf;(f,%) — Vi (5,%) > 0 and —A > m. maxCJ Thus V(i,j) € T x T2, uf; < v on
ij

[0,7) x D. To conclude, it suffices to take the limit as € — 0.

Step 2 : General case.

For A arbitrary in R, assume that (u;;); jyert xr2 and (v )(i,j)er xr2 are respectively subsolution and supersolu-

tion of the PDEs system (1.1). Then the functions defined by (i;;(t,x) = e*u;j(t, X)) (i, jjer' xr2 and (¥ b (t,x) =
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My (t,x)) (i jjer xr2 are respectively subsolution and supersolution of the following PDEs system: V(i, ) €
I'xI2,vrelo,7),

min {1, ) — max(# (1) — g, (1.3)):max (@ 1,x) = min(@(1.5) 4 (1.): =9 (1.0) = L (1)
i — J

AT (t,x) — M £t x, (e (1)) g pyert cr2r e 0 T (1) Dyl (1,6))} = 0, (1,x) € [0,T) x D
ol Areii CAp i
5 ey e Mad(1,x)) =0, (1,x) €[0,T) x ID;

@ (T,x) = e* h;j(x), x€D,

\

4.16)
where the function F'/ defined by:

FU(t,x,5,2) = =27 + f(t,x,e 5,6 Hz), W(i, j) € T' x T
satisfies (4.2) for A small enough. Then, according to the first case i;; < v, then u; i < Vi, Y(i,j) € xr2 g

Corollary 4.1 [f the solution of the system of PDEs (1.1) exists, it is unique and continuous.

5 Existence of the solution

In this section, we show that the family (v/ )(i,j)ert xr2 constructed in section 2 provides the unique viscosity
solution for (1.1), this will be done in three steps. At first, relying on the properties of the decreasing sequence of
solutions to the PDEs systems obtained in Proposition 3.3, we show that the limit (v"/ )(i,j)er! x12 is @ subsolution of
the (1.1). Next, with the use of the connection between the latter sequence and the decreasing scheme of reflected
GBSDEs system (3.8), we show that for each myg, (v//"0), jerixr2 1s a supersolution of the system (1.1). Finally,
in order to conclude that (v" )(i, jlerixre 1s the unique viscosity solution of (1.1), we use Perron’s method which
provides a supersolution of system (1.1). This consists of showing that the supremum of subsolutions of an l.s.c.
PDE problem is also a solution.

Proposition 5.1 The family (Vij )( eI x12 I8 a viscosity subsolution of the PDEs system (1.1).

i.j)
Proof. Recall that for any (i, j) € ' x T2, ¥ is usc, then v'/* = 7. Moreover, as v/ satisfies (3.9), we have:

v (T,x) = lim ¥/"(T,x) = h'/ (x), Vx € D. (5.1

m—yoo

We need to prove that

(min{v"j(t,x) —max (VM (t,x) — g (¢,x));max{v" (¢,x) —min(¥" (t,x) + g ;;(£,%));
k#i 2ik 1] J

—p—b(x) g —3Ti[oo T (x)M] = f9(t,x, (v (t,%)) i jyeri xr2: 0 ' (¥)g)}} <0,
(1,x) € [0,7) x D, (p,q.M) € 7" ¥/(1x):
min{v"/ (¢, x) — max(W/ (t,x) — g. (¢,x));max{v" (¢,x) — min(¥" (¢,x) + g ;(¢,%)); 62
’ Kt ’ gik ’ ’ ’ 1] ) g]l ’ ’
—p—b(x)"q—3Tr[(coT) ()M f7(t,x, (v (t,%)) ; jyerixr2, 0 T (x)q) }}

M=V (x),q) — y(t,x,v/(t,x))} <0, (t,x) €[0,T)xaD, (p,q,M) € 72+Vij(t,x).
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1¥case : Let (1,x) € [0,T] x dD and (i, j) € T'' x I'? and fix (p,q,M) € J° ¥/(t,x), we suppose there exists £ > 0
such that

v (t,x) > r?gx(vkj(t,x) -8, (t,x)) +&, (5.3)

otherwise the subsolution property is satisfied. Then, there exists my > 1 such that

V(1 x) > ril;l?((?kj’m(t,x) —g,(t,x)) + &, Ym = my;
l g
which holds on a neighborhood ©,, of (,x) thanks to the continuity of (/") ; ycri, 2 and (g, ) ket «r-
Besides, according to Lemma 6.1 in [6] there exist nmy — oo and x; € D such that

(tkv-xkuvijﬂnk(tkyxk))pk7qk7Mk) — (t)x7vij(t7x)7p7Q)M)) (54)

k—yoo

and (f;,x;)x>1 can be chosen from ©,,. Note that the subsequence (x;);>1 takes values in D. Then, by extracting
two subsequences that are valued in D or dD respectively and for which we have kept the same notation and using
the subsolution property of vi/"™_ we distinguish two cases:

If x; € dD, we get from the PDEs system (3.9):

1 iim .
{—pk — b(xk>TQk - ETr[(GO-T)<xk)Mk] —f . (ths Xpe, (V1) (tkyxk))(@j)erl <T25 o' (xx)qx)}
A=V (x1), qr) — W (b, x, 9™ (1, x)) } < 0, (5.5)

where 7U’mk (S7X£7xa)_;az) = fij(SaX§7x>y7 Z) - mk(yij N lellglgé '(yil +gﬂ (S’X‘{’x))—i_'
k) j

Observe that if {—(V (xz),qx) — W (tx, xx, V" (1, %)) } < 0, we use the continuity of all data, then by taking the
limit as k tends to oo, we obtain: - -
—(Vo(x),q) =y (t,x,v(1,x)) <0 (5.6)

Therefore, from (5.5), we get:

1 N N
—pi—b(x) g — ETr[(GGT)(Xk)Mk] — F(t 0, (P (1,30) ) 1 jyert xr20 O (%) g

— mye (V" (1, xi) — min ) (™ (e, x0) + 81 (5, X)) T <0, (5.7)
bl ]

On the one hand, thanks to the boundedness of (#,x;)x>1 which takes values in [0,7] x D, the continuity of
(vi/"™)i>1, b, 6 and f, together with (5.4), the inequality (5.7) implies that:

g 1= (V" (1, x1) — lelglzigé ™ (e, x0) + 8y (to) 20
7] °

Then there exists mg > myg such that Vmy, > mg, we have:

Vij’m"(tk,xk) < min (Vﬂ’mg(tk,xk) +§il(tk,xk) + &, (5.8)
112,14 ] :

since (V'/™ (t,x));>1 is non increasing.
By taking the limit as k — oo and in view of the convergence (5.4) as well as the continuity of (V"J"mg)(h j)er! <2
and (gjl)(jJ)erzxrz, we get:

Vi(t,x) < min (VR (1,x) 435, (t,%)).

1€T2 14 ]
Taking the limit as mg — oo, implies that
W (t,x)— min (V' (t,x)+g;(,x)) <O. 5.9
(1) =, min, (7(1.5) + Z(0.)) 59
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On the other hand, there exists a subsequence (k;),-, such that for any (i, j) € T U T2, (vt x0,) )10 s
convergent, which exists thanks to the boundedness of D and the continuity of (v ’k’)(h jieri xr2- Then by taking
the limit w.r.t. /, we get:

1
—P—b(x)Tq—ETT[GGT(X)M] hmfj’ (th Xk (75 (11,20 1.y ert 25 O (X )k, )

ﬁ)oo

< llggfmkl (tkzvxkn (V ' l(tknxkz))(i,j)el"l xI25 o' (xk/)qkz)'
Then, as f% satisfies the assumption (H;)(i), we get:
p (X) q D) r[GG (X) ] <f (t)x? ([1_>I2v (tklaxkl))(i,j)erleraG (X)Q)

Moreover, for any (p,q) € T'! x I'2, (vP9% (¢, x));> is non increasing and continuous, thus:

V(p,q) # (i, ])

VIR (e, x) =9P(t,x) = Tim  im¥P? (¢ }) > Tmv? (1, %, ) and 7 (¢, x) = Tmv"? (1, , 5z, ).
(' x')—(t x)[— [—o0 [—o0
t'<Tx'eD

Then under (H;)(iv), we have:

1 . .
=p=b(x) g = JTr[oo " (OM] < f7(t,x, (v (1,0)) i jyerixre, 0 (¥)q). (5.10)

From this, (5.3), (5.6) and (5.9), we conclude that:

min{Vij(t,X)—I}g;llx(f"j(faX)—gik(faX));max{V”(t,X) min(v "(1,0) +8(1,2));—p —b(x) g

- %Tr[(GGT)(X)M] — f(t,x, (0 (1,%)) g jert <12, 0T ()} A{— (VO (x),q) — W (2,5, (1,x))} < 0.
(5.11)

The same calculus are used if x; € D, by considering the subsolution property satisfied by v¥/*"* on [0, T] x D. Then
we conclude that (v/) ; e «re is a viscosity subsolution of system (1.1).
2%case : If (¢,x) € [0,T] x D, we can find (t;,x;) € [0,T] x D and the inequality (5.7) holds and (5.9) and (5.10).

As (i, j) is arbitrary in T'! x T2, the function (v/ )(i,j)er xr2 is a subsolution of the PDEs system (1.1). [J

Proposition 5.2 Let my be fixed in N. Then, the family (vV/"0), jer! <12 1S a supersolution of the system (1.1).

Proof. Fix mg > 0 and recall that (¥, Z"" &""") (
SDEs: V(i, j) € T! x T2,

i,j)er! x12 18 the solution of the following system of GRB-

(Ytjmoeyz Umoejde l]mOEJZfz
—ii ; ki, i X i, ,
Y;J'mo h]( tx)+f f” mO( ,Ex,(Yr m())(k Z)EFIXFZ7 r )d +f V/]( X;/xvyij mo)dAi’x

FRIm _gim _ (TZIm g < ST,
: Tz , (5.12)

Lj,m <k j,m
Y™ > max (Y™

* keDok4i _gik(s’xst7x)>v Vi<s<T,

Jo AT = max (7" = gl X }ARS™ =0,
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where 77" (s, X!, 5,2) = £ (s, X!™,5,2) — mo(y) — ‘F‘%if;.<y"’+§ﬂ(s7xs’“>>+.

Thanks to Proposition 3.3, there exists a family of deterministic continuous functions (v"/> ’”0)( e 12 such that:

i,))

yidmo :vijmo(S’X;,x)’ Vs € [t,T), V(i j) € I <12, (5.13)

N
Fix (i, j) € I x I'2, we can see that if (¥"/""°,Z""™ &™) solves (5.12) then it satisfies: V¢ < s < T,
Y = W) 4 [P () e Z)" V4 Ty (X0 YA A K R
~(K7" K™~ [ 7] a,
e — s .. .
where K. = mo/0 (Y™ — min (79" +32,,( X))} "ds which is an increasing process.

[eX2 14]
Moreover,

N

kJj.mo t,x yiimo - yrij,m - tx
max (Y, —g.(5,X;7")) <Y <Y/™Vv min Y " +g.(s, X)),
kEFl,ksﬁi( s §,k( s )) = X4 ler?. 1751( gjl( s ))

then, we have:

T .. ..
/ [P0 I i (P04 g (5, XE)) AR
0 12 1]

T . .
= Y™ min (7™ " +g,(s, X))} x max Y]’ — min (Y"™ 43 5, X")),0 ) ds = 0.
S min (P 4805, X0)) Jmin, (P00 48;(5, X))

Besides, thanks to (5.12) the process ym belongs to .72, then since (X;),<s<r is bounded and the costs

(81)(j1yer2 <2 are continuous we have E[K7 o | < oo, which shows also that:

E( sup [{ max (7" —g (s, X))} P+ sup {F™ v min (7)™ +8,(s,X)} ) <
t<s<T kel k#i t<s<T [eT I#]

All this combined together show that the so-called Mokobodzki’s condition holds. Therefore, according to [9]
there exists a unique solution (Y,K™,K~,Z) for the standard reflected GBSDE with two barriers:

Y€ 7 e KK €2
Y, =)+ [ I X (V™) et e Zo)dr+ [T i (X0 Y,)dAY + K — K — (Kp —K;)
—[12,dB,, ¥t <s<T,

max (VY™ g (s, X)) <Y, VU™V min (V™ +5;(5,X7)), Vi <s<T,

N

kel k#i - €T I#]
Y= (P27 = g, (X0 =0

Y~V min (V)" +g;,(s,. X)) }dK; = 0.
fO { ler? 175]( s gjl( S ))} s

\

(5.14)
It has been shown in [9] that the deterministic continuous function u defined [0, 7] x D by Y =u(s,X:™"), Vs € [t, T
is a solution of a ralated semilinear PDE with Neumann boundary condition. More precisely, using the Feymann-
Kac formula (5.13), it holds that u is a solution of the following semilinear PDE with Neumann boundary condition:
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_ KMo _ _ =ijmg il mo — .
min{v(f,x max (v t,x (2, x));maxqv(t,x) —V t,x)V min t,x)+gt,x));
{vle,) = max (7970 (1.3) =g, (1.2)): max{ (e, x) () min (77 (1,) + 21 (1,))

—0(t,x) = b(x) "D (t,x) = 3Tr[(00 ) ()DLv(t,x)] = £ (.2, (V770 (2,2)) . jyert w2, 0 () Dyv(t,%)) 1} =0,

V(t,x) €[0,T] x D;

‘;?(t,x) + i (t,x,v(t,x)) =0, V(t,x) € [0,T] x ID;

v(T,x) = h'/(x), Vx € D.

N (5.15)
As previously mentioned, Y™ satisfies the equation (5.14) then once more thanks to (5.13) and by [9], we deduce
that ¥/ is a viscosity solution of the PDE (5.15), which is in particular a supersolution of PDE (5.15) and we
have:

(min{v/"(1,x) — (nax (v VIO (1,x) — g, (£,x))smax {7/ (1, x) — 5 (1,x) V Join, (v v (1,x) + 8 (t,%));
—p—b(x)"q—3TrloaT ()M] — £ (t,x,(v/(1,)) i jyert x>, 0 | (¥)g)}} = 0
V(t,x) € [0,T] x D,V (p,q,M) € J v/ (¢ x);

min{v/"(¢,x) — max (V¥"0(¢t,x) — 8, (t,%)); max{v/m0 (¢, x) — v/ (¢t x) V. min (v ”’mo(t,x)+§ﬂ(t,x));
kel keti 1€T2 1]

—p—b(x)"q—3Tr[ca T (x)M) — f4(t,x, (¥ (t,x)) ; jyerixr2, O (¥)q)}}
V{—=(Vd(x),q) — Wi (t,x, v/ (¢, x))} >0, V(t,x) € [0,T] x dD, V(p,q,M) € J v (¢t,x);

vimo (T, x) > h(x), x € D.
\

(5.16)
Let (7,x) € [0,T] x dD, then from (5.16) and using inequality a — (a V b) < a — b, we get:

min{¥/" (¢, x) — max (V"™ (r,x)—g. (t,x));max{7/"(t,x) — min (¥ (r,x)4+5;(t,x));—p—b(x)"
(57 (0,0) = max (F979(0.5) = g, (1.0 max (770 0.5) = min, (5 (1.0)+ 8310 ~p = () g

- %Tr[GGT(X)M] = (2, 5 (1,0)) ¢ jrert e, 0T (@) 1V A{=(VO(x),q) — v (1,097 (1,2))} > 0.

If (¢,x) € [0,T] x D, the same argument is used to show that the inequality on D holds.
Since (i, j) is arbitrary in T'! x I'2, we conclude that (¥'/: mO)(l j)er x2 18 a viscosity supersolution of (1.1). UJ
It has been shown in the previous parts that (v'/)

is a viscosity supersolution of (1.1).
We introduce the following set

i.j)er x12 is a viscosity subsolution of (1.1) and (¥/"°) ; e e
={i=( ) (i.j)er x> subsolution of (1.1) and V(i, j) € I x 2,97 <l < 7Pmoy

which is not empty since it contains (v/) ;

i.jjeri <2 and we set for (7,x) € [0,T] x D, and (i, j) € T" x I'*:

"oy (1,3) = sup (i (1) i € U ).
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Proposition 5.3 The family (") (i,j)er! x2 does not depend on mg and is the unique continuous viscosity solution
of the system (1.1).

Proof. The function "%/ will be denoted v/ in the sequel.
Step 1: We first show that (v/); ; is a subsolution of the PDEs system (1.1).
Note that for given (u"); jerixre2 € %,
i < utd < Vij,mo’
then V(¢,x) € [0,7] x D,

VU < vlJ < Vljymo‘

For any (i, j) € T'' x I'2, v/ has an upper bound since ¥/ is u.s.c. and ¥"/"™ is continuous on [0, 7] x D then we can
define the upper semicontinuous enveloppe v//* and we have: v/ (¢,x) < vi/*(¢,x) < v"/"™. Moreover, from (5.1)
we deduce that vi/* (T, x) = h/(x).

Next, fix (i, j) € I'! x I'? and let (W )(k.p)er <12 be an arbitrary element of %,,, then we have:

min{#/(t,x) — max (W/(¢,x)— g, (1, x));max{v"(r,x) — min (¥ (t,x)+g;(t,x));

kel ki 1eX2 4]
—p—b( ) TI‘[GG (X)M] flj(t’x’ (ﬁkl(lﬂx))(k,l)el"]><F27GT(X)Q)}} < 0
V(t,x) € [0,T] x D,¥(p,q,M) € T 9% (t,x);

min{#/(r,x) — max (#/(z,x)—g. (t,x));max{5"(t,x) = min (#(t,x)+3;(t,x)):—p—b(x)"q
kel ki Sik 112 1%

—3Tiloo " ()M — £ (t,x, (7 (£,2)) pyer e, 0T (0)9) 1} A{=(VO(x),q) — v (1,77 (t,x)) } <O,
V(t,x) € [0,T] x aD, ¥(p,q, M) € T % (1,x).

\

(5.17)
By definition, "/ < ¥ and #** < W* for any (k1) € T'' x I'2, which implies:

pii* t,x)— max Yhix t,x)—g. (t,x)) < Fii* t,x) — max ki 1.x)—g (1,x)),
(t,x) = max (V9"(5,3) = g, (1.x)) (6.2) = max (47 (1,) = g, (1.9))
P, x) = min (VI (r,0) g5 (nx)) < 9 (e,x) = min (7(1,x) +8;(1,%)).
(1,x) = min, (v(,0) +8(1,)) (1) = min, (7(1.2) +2(1,%)

Also, in view of assumption (H2)(iv) we have:

_fij(tu-xv [(Vkl*(tax))(k,l);é(i,j)vﬁij(tux)]’ GT(X)Q) < _fij(t7x7 (ﬁkl (tax))(k,l)erl xI2s GT(X)Q)'

Therefore, the inequalities below hold for any (i, j) € I'! x I'%:

mm{v”*(t x)— max (W*(t,x) —g_ (t,x));max{#/*(t,x) — min (v”*(t,x)+§j,(t,x));
kel! ki =ik 112,14 ]

—P— b(x) QTI‘[GGT(X)M] _fij(t7x7 [(Vkl* (t7x))(k,l)7é(i,j)7ﬁij*(tﬂx)L GT (X)Q)}} < 0
V(t,x) € [0,T] xD,¥(p,q,M) € j+17ij*(t,x);

min{¥/*(¢,x) — max (V*(t,x)—g. (t,x));max{¥#*(r,x) — min (V**(¢,x)+35;(t,x)); (5.18)
{ ( ) kerll k#l( ( ) glk( )) { ( ) lGFz,l;aéj( ( ) g]l( ))

—p—b(x)Tq—3Tr[ac " (x)M] — f19(t,x, [V (£,)) (1) 21,5y, 77 (1,5)], 6 T (0)q) } }
A= (Vo (x),q) — Wi (t,x,77*(1,x))} <0, V(t,x) € [0,T] x ID,¥(p,q,M) € T #7*(t,x).
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For any (i, j) € I'! x "% let 4/ be a mapping defined on [0,T] x D x R x R¢*+1+4 x S py:

( min{w— kj - . R il _ )
minyw max (v r,x S7,x) ), maxq{w min (v t.x)+ gt X))
{ kerl,k#i( ( ’ ) glk( ? )) { 161—‘2,[7&]'( ( ) ) g]l( ))

—p=b(x)"q—3Trloo " ()M] = fY(t,x, [ (1,0)) (1215, W], 0 T (1)q) }}, x € D

- : k j* . ; il* - .
Gii(t,x,w,p,q,M) = min{w —ker?%])(;i(v 7(t,x) — g, (t,x));max{w — lerlz%{}l#(v (t,x)+g;(t,x));

—p—b(x)"q—3Tr[oa T ()M] — £ (2,2, [(F*(2,%)) ey 2.0 w], 0 T (0)q) } }
M= (Vo (x),q) — v (t,x,w)}, x € ID.

Recall that (vkl*)(k7,)7é(i7 j) is a family of upper semicontinuous functions, then the function ¢ is lower semicontin-
uous and 7/ satisfies the PDE ¢/ < 0, then relying on Lemma 4.2 [6], we deduce that the supremum is a solution
too. Finally, v/ is a solution of the following PDE:

min{w(r.x) — max (A (1,2) g (t.0):max{w(r.x) — min (V1 (1.2) + 2 (t.2)): Al )
€l k#i 1€l 14
—b(x) 'Dyw(t,x) = 3Tr[o0 " (x) Daw (t,2)] — £ (t,2, [(V*(1,2)) (1)1, w(t,%)], & T () Daw(2,%))}} = 0,
V(t,x) € [0,T] x D,

—(V(x),Daw(t,x)) — W' (t,x,w(t,x))} =0, V(t,x) € [0,T] x ID,

w(T,x) = h'(x), Vx € D.
(5.19)
Since (i, j) is arbitrary in I'' X T, (v//); i, p2 is a subsolution of the PDEs system (1.1).

Step 2: Recall that for (i, j) in 'y x I'z, v <V <P and by corollary 4.1 v/ = v/, This implies that

Xl] g Vi] g vlhmo’

since v/ and ?ij’mo are l.s.c. and continuous respectively. Then, as v'/"" is a solution of (3.13) and from (5.1) it
follows that v/ (T,x) = h'(x).

Assume that (v'/); ycri2 is not a supersolution to (1.1), which means that there exists (i, j) € I'' x I'* such

that v/ does not satisfy the supersolution property, then there exists (f,xo) € [0,7) x D such that:

F(t9,x0,vY (t0,%0), p,q,M) := min{v¥ (10, x0) — kef;lf‘f#_(vlij(fo’xo) -8, (t0,%0));
NED

y o B 1
max{V (o, x0) — min, (v (t0,%0) + 81 (10,%0)); —=p — b(x0) T — ETI[GGT(XO)M]
9 j

— [ (0, %0, (Vi (10,%0)) pyeri xr2: 0 (x0)g)}} <0, if xo € D;
and

F(t9,x0,vY (t0,%0), p,q, M) ABY (10, %0, v (10, %0),¢) := min{v/ (t9,x0) - kel}lﬁg#.("ij(to,xo) —8,(t0,x0));
JKkFL

3 o - 1
max{v{ (o, x0) — min, (! (t0,x0) +81(t0,%0)): —p — b(x0) g — ETY[GGT(XO)M]
b7

_fij(t0>x07 (v];l(tmxo))(k,l)el"lszagT(XO)Q)}} A {_<V¢(x0)7Q> - ‘l/ij(to’xmvij(thxO))} <0, ifxo € 9D,

for some (p,q,M) that can be chosen in J v (19, xo) thanks to the continuity of all data. Next, note that the func-
tion defined on R x S by:
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Fii(ty,xo,w,p,q,X), if xo €D
(w,X) Fii(ty,xo,w, p,q,X) ABY (9, x0,w,q), if xo € ID,
is continuous, then there exist &,y > 0 such that
Fij(to,xo,vij(to,xo) +98,p,q,.M—2y) <0, if xo € D;
Fi (19, %0, v (0,%0) + 8, p,q, M — 2) V B (19, %0,V (10, %0) + 8,4)

< Fii(19,x0,v (t0,%0) + 8, p, g, M — 2) ABU (19, x0,v" (9, x0) + 8,q) < 0, if xo € D.

(5.20)
Now, let us define:
ug 5 (1,x) = v (to,x0) + 8 + (g,x — x0) + p(t —1o) + %((M— 27)(x — xo),x — Xo),
and
( min{us,(t,x) — kerlr_lﬁzﬁ(ka* (t,x) — g, (t,x));max{us (1, x) — lerg;ijl#(v”* (t,x)+8;(t,x));
—p—b(x)"q—3Trloc " (x)(M —27)] — £ (t,x, [ (,%)) w1y 26.j)- 5,1, %)], 0 T (x)q) }}, if x € D;
G(1,x) = min{us ,(t,x) _kenrlﬁi;i(vkj* (t,x) — g, (¢,x));max{us ,(t,x) _lerlgi,géj(v”*(t’x) +3;(t.%));

—p—b(x)"qg—3Te[oo T (x)(M —=27)] = £ (t,2,[(M" (1,%)) (k)2 5.4 (1,)], 0 T ()g) } }
AN—=(Vo(x),q) — v (t,x, us,(t,x))}, if x € dD.

\

Note that us ,(t0,X0) = Vv (t9,x0) + 8, it follows from (5.20) that % (19, xo) < 0. Besides, us y is continuous and
(WM )(k.)(i,j) 1s @ family of lower semicontinuous functions, then the function ¢ is upper semicontinuous. Then
there exists 17 > 0 such that ¢(¢,x) < 0 on a neighborhood

VX VR ={re0,T)/|t—to] <u/2} x {x € D/|x—x0| < pu/2}.

Thus us , satisfies the following inequalities:

(i _ kj _ . _ : il . .
min{Q(t,x) ker?sl)((#(v* (t,x) — g, (t,x));max{Q(t,x) lerlpzf?#j(v*(t,x)+gjl(t,x)), 2,0(t,x)

—b(x) "D, Q(t,x) = 3 Te[00 " () D Q(t,x)] — 4 (1,2, [V (£,2)) 1y 21,1y, Q1 %)], 6 T (x)DxQ(1.x))}} <0,
(t,x) € Vi x V{2,

min{Q(r,x) — max #i(vlij (7,%) — g, (1,x)); max{Q(r,x) — lerrrgi?p#(V’Z (t,%) +8(t,x)): =9 Q4 (t,x)

_b(x)TDXQ(t7x) - %TI[GGT(X)DXXQ(Z,X)] _fij(tvxa [(Vl;l (t’x))(k,l);é(i,j)7DX1XQ(t7x)]’ GT(X)DXQ(tvx))}}

A= (Vo (x), De0(1,x)) — yi (1,x,0(1,x))} <0, (1,x) €V x IV

(5.21)
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Again, as V&' <K (k1) € T x I'?, we use the same arguments as in step 1 we deduce that ugs y satisfies:

rmin{Q(t,x) — max (vkj*(t,x) —g.(t,x));max{Q(¢t,x) — min (vil*(t,x) +g,(t,x)); =3, 0(t,x)
kel kti Sik I€T2,14] /
—b(x) 'DQ(t,x) — 3Tr[00 " (x) D Q(1,%)] — £ (1,2, [(V* (1,%)) 1) 21,5y Q(1,%)], 6 T () D2 Q(1,%)) } } <0,
(t,x) € V’ﬁ X Vi,

min{Q(s,x) — max ﬁ(vk"* (1,2) = g (1,2)):max{Q(r,x) — min 7éj_(vﬂ*(wc) +,,(t,%)):—9,0(t,x)

_b(x)TDXQ(lﬂx) - %Tr[GGT(X)Dxe(tvx)] _fij(t7x7 [(vkl* (tvx))(k,l)yé(i,j)7 Q(t,x)], GT(X)DXQ<Z7X))}}

M~ (V(x), D, 0(t,2)) — YT (1,,0(1,x))} <0, (£,3) € Vi x VY.

. (5.22)
Therefore, as (p,q,M) € J~v{ (t9,x0), we have:

N N y 1
v (t,x) 2 vy (t,x) 2 Vi (t0,%0) +(g,x = x0) + p(t — o) + 5 (M (x = x0),.x —2x0) +o(|r — 0] + x—x0/%)

> ug (t,X)
2
for 6 < “TY . Consider the function

max{u&y(t,x)m"j(t,x)}, (t,x) € Vﬂ X Vﬁ)

i =1 _ .
@i, x) vii(t,x), (1,%) € [0,T) x D\V x V.

It should be mentioned that (5.19) is a lower semicontinuous problem, it follows from Lemma 4.2 [6] that us ,
is a subsolution of the PDEs system (5.19). Then, as #/ > v" and using the monotonicity condition (H;)(iv), it
holds that [(V!!(2,x)) (x.1)(:j)» 7 (1,x)] is a subsolution of the PDEs system (1.1). Next, from Theorem 4.1 we have
(M) )20,y T7) € Uy )
Finally, in view of the definition of v//* there exists a sequence (t,,,X,, V" (t,,X,))n>1 that converges to (to,xo, V¥ (t,%0))s
this implies that

lim(i —v") (tn x0) = (5, —v¥) (10, %0) > 0, (5.23)

which contradicts the fact that v'/ is the supremum. Therefore, (v'/ )
(1.1) and we conclude using Corollary 4.1 that (")

i.j)er 12 1s a supersolution of the PDEs system

i.jert <2 does not depend on my. [J
Theorem 5.1 The family of functions (v'/ )(i7 j)er x12 IS the unique continuous viscosity solution of the PDEs system

(1.1).

Proof. Recall that v/ = lim /" and v/ < v/ < v then taking the limit as mg — oo we get v/ =i/ The result
m—soo
follows from Proposition 5.3. [J

Analogously, thanks to Proposition 3.4 and Theorem 5.1, we have:

Theorem 5.2 The family of functions (v )(,-7 j)eri <2 IS the unique continuous viscosity solution of the PDEs sys-
tem(1.3).
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