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A GENERAL FRAMEWORK FOR PELLET REACTOR
MODELLING: APPLICATION TO P-RECOVERY

L. MONTASTRUC, C. AZZARO-PANTEL, B. BISCANS, M. CABASSUD,
S. DOMENECH and L. DIBOULEAU

Laboratoire de Génie Chimique, UMR 5503, Toulouse, France

enhanced phosphate recovery. This paper studies the precipitation features of calcium

phosphate in a fluidized bed reactor in a concentration range between 4 and 50 mg 17!
and establishes the conditions for optimum phosphate removal efficiency. For this purpose, two
models are coupled for predicting the pellet reactor efficiency. First, a thermodynamical model
is used for predicting calcium phosphate precipitation vs. initial conditions (pH, [P], [Ca],
temperature). The second one is a reactor network model. Its parameters are identified by an
optimization procedure based on simulated annealing and quadratic programming. The
efficiency is computed by coupling a simple agglomeration model with a combination of
elementary systems representing basic ideal flow patterns (perfect mixed flow, plug flow, etc.).
More precisely, the superstructure represents the hydrodynamical conditions in the fluidized
bed. The observed results show that a simple combination of ideal flow patterns is involved in
pellet reactor modelling, which seems interesting for a future control. The experimental
prototype used for validation purpose is first described. Then, the thermochemical model is
presented for calcium phosphate precipitation. The third part is devoted to the reactor network-

E mphasis in recent years has been focused on improving processes which lead to

oriented model. The approach presented is finally validated with experimental runs.

Keywords: pellet reactor; calcium phosphate precipitation; wastewater.

INTRODUCTION

The need to limit phosphate emission in the environment
has diverted attention in recent years to processes which
lead to the recovery of phosphate. Phosphorus can be found
under various chemical forms in urban wastewater, which
represents about 30-50% of the total waste of P: insoluble or
dissolved organic phosphorus, orthophosphates (up to 70%
sometimes) and condensed inorganic phosphates. In France,
the average concentration of phosphorus in domestic
wastewater is within the range 15-25mg 17", which may
vary from day to day, even during the day. The P-discharge
in the aqueous natural environment leads to excessive
development of algae and to a pH increase, thus contributing
to eutrophication. Consequently, phosphorus reduction in
rivers is considered as a key factor in the fight against
pollution. The principal legislative tool in Europe for
fighting eutrophication is the EC Urban Waste Water
Treatment Directive (271/91/EEC). This action came into
force in 1991 and enabled waterbodies to be classified as
Sensitive Areas if they displayed symptoms of eutrophica-
tion. The precipitation of phosphate salts is a means of
P recovery in effluents with a low concentration of inorganic
phosphorus. In recent years, several works have studied
calcium phosphate precipitation in the so-called pellet
reactor (Seckler et al., 1996; Hirasawa and Toya, 1990).

The purpose of the study presented in this paper is to
develop a methodology based on modelling for optimization
of the pellet reactor efficiency. The experimental prototype
used for validation purposes is first described. Then,
the thermochemical model is presented for calcium
phosphate precipitation. The third part is devoted to the
reactor network-oriented model. The approach presented is
finally validated with experimental runs.

PROCESS DESCRIPTION

The process is based on calcium phosphate precipitation
obtained by mixing a phosphate solution with calcium ions
and a base. More precisely, it involves a fluidized bed of
sand continuously fed with aqueous solutions (see Figure 1).
Calcium phosphate precipitates on the surface of sand
grains. At the same time, small particles, ‘fines’, leave the
bed with the remaining phosphate not recovered in the
reactor. A layer of fines which has agglomerated is observed
at the upper zone of the fluidized bed. Both total and
dissolved concentrations of phosphorus, pH and temperature
were measured at the outlet stream. The temperature was
kept constant during the experimental runs. In order to
measure the dissolved P concentrations, the upper outlet
stream was filtered immediately over a 0.45pm filter and
analysed. Another sample was pre-treated with HCI in order
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Figure 1. Schematic representation of the pellet reactor.

to dissolve any suspended solid and the total phosphorus
amount was measured. The phosphate removal efficiency (1)
of the reactor and the conversion of phosphate from the
liquid to the solid phase (X ) are defined respectively as:
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where wp;, represents the flowrate of the phosphorus
component at reactor inlet, wy, o gives the total flowrate of
phosphorus both as dissolved and as fines at reactor outlet
and wy, . is the flowrate of dissolved P at the reactor top
outlet. If 7,4, is the agglomeration rate, that is, the ratio

between fines in the bed and in the outlet stream, the
following relation can be deduced:

0= NygeX 3)

The phosphate-covered grains are removed from the
bottom of the bed and replaced intermittently by fresh sand
grains. In most studies reported in the literature (Morse et al.,
1998), the phosphate removal efficiency of a single pass
reactor, even at industrial scale, has an order of magnitude of
only 50%. Recall that the pellet reactor efficiency depends
not only on pH but also on the hydrodynamic conditions
(Montastruc et al., 2002a). Moreover, the conversion rate
depends on calcium and phosphate ion concentrations, as
well as on supersaturation, ionic strength, temperature, ion
types, pH but also on time (solid—solid transformation), as
noted in the literature (Baronne and Nancollas, 1977; Van
Kemenade and de Bruyn, 1987; Boskey and Posner, 1973).

MODELLING PRINCIPLES

Two models are successively used to compute the reactor
efficiency. At the first level (see Figure 2), a thermochemical
model determines the quantity of phosphate both in the
liquid and solid phases vs. pH value, temperature and
calcium concentration. A second modelling step could
involve an agglomeration model which requires, as classical
parameters (Mullin, 2001), the density value of the precipi-
tated calcium phosphates and fine diameter. Moreover, the
agglomeration rate depends on the hydrodynamical condi-
tions, particularly the eddy sizes. These values are difficult
to obtain and require a lot of assumptions which are difficult
to verify practically. Consequently, another alternative is
proposed in this paper to tackle the problem. The two-
stage methodology is detailed in what follows.

Thermodynamical Model

Assumptions

Calcium phosphate precipitation is a very complex
subject involving various parameters. The different forms
of crystallized calcium phosphate are presented in Table 1.
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Figure 2. Principles of pellet reactor modelling.



Table 1. Different forms of calcium phosphate.

Name Formula pKs
Dicalcium phosphate dihydrate (DCPD) CaHPO42H,0 6.69 at 25°C (Freche, 1989)

6.6 at 25°C (Stumm and Morgan, 1981)
Dicalcium phosphate anhydrate (DCPA) CaHPO4 6.90 at 25°C (Freche, 1989)
Octocalcium phosphate (OCP) CayH(POy)5-2.5H,0 49.60 at 25°C (Freche, 1989)
Tricalcium phosphate (TCP) Caz(POy)> 26.00 at 25°C (Ringbom, 1967)
Amorphous calcium phosphate (ACP) Caz(POy)» 26.52 at 25°C (Seckler et al., 1996)

Hydroxyapatite (HAP)

Ca g(PO4)s(OH)2

25.20 at 20°C (Meyer and Eanes, 1978)
58.33 at 25°C (Freche, 1989)

It is mentioned in the literature (Van Kemenade and
de Bruyn, 1987) that phosphate precipitation by calcium
salts leads to the formation of both dicalcium phosphate
dihydrate (DCPD) and amorphous calcium phosphate
(ACP) for a pH value of 7 and only to amorphous calcium
phosphate (ACP) within a pH range of 9-10.5. Some
experiments carried out in a previous work at a temperature
of 26°C (Van Kemenade and de Bruyn, 1987) for a pH
range of 6-7.4 followed by the evolution of the different
calcium phosphate forms. The observed sequences as a
function of pH are described in Table 2.

In each case, Ostwald’s rule, which foresees that the least
thermodynamically stable phase formed is the first one, is
respected. The evolution is not straightforward and a study
about the transformation of ACP to HAP (hydroxyapatite;
Boskey and Posner, 1973) for a pH range of 6.8-10.0
showed that the required time for total conversion may
vary from 1h for a pH equal to 6.8 to more than 11h for
a pH value equal to 10 (Table 3).

These studies showed that the nature of calcium phosphate
precipitate depends on the supersaturation of the various
species. However, it can be noted, on the one hand, that the
DCPD phase was far less observed due to its relatively weak
pKs and, on the other hand, that after the initial formation of an
amorphous phase, a crystalline HAP phase was observed.
Only a single precipitated species, i.e. ACP, was observed
(Seckleret al., 1996) for experiments carried out at a pH value
higherthan 7, a phosphate concentrationof 1.6 X 10 >mol1™"
and a Ca/P molar ratio equal to 3. However, the DCPD and
ACP forms were observed in additional experiments using the
following conditions, i.e. a pH range within 67, an initial
phosphate concentration of 3.2 x 10 >moll™" and a Ca/P
molar ratio varying from 1 to 7 (Seckler et al., 1996).

Therefore, the hypothesis of the precipitation of both ACP
and DCPD seems important to examine within the frame-
work of this work. Since the precipitation was assumed to take
place in a pellet reactor, the transformation from ACP to HAP
is not possible due to a low residence time (see Table 3).

The phenomena observed during precipitation in a pellet
reactor are not the same as in a stirred vessel. In a pellet
reactor, the fines produced by nucleation are not maintained
in the mother solution for a long time, since the fines are

Table 2. Transformation of the cal-
cium phosphate crystalline forms.

pH Transformation

6.0 OCP = DCPD(=) HAP
6.7 DCPD = OCP = HAP
7.4 ACP= OCP = HAP

agglomerated in the sand and the liquid (mother solution)
flows across the bed. On the other hand, in a stirred vessel
after a long time, the produced calcium phosphate is the
most stable, i.e. HAP.

Equations of the model

The objective is to propose a mathematical model for the
computation of the conversion for the system Ca—PO,~H>O.

To model the evolution of phosphate conversion rate
as a function of pH with respect to the different calcium
phosphate species precipitation, the mass and electroneu-
trality conservation balances as well as the supersaturation
were taken into account. During this precipitation, the
aqueous species considered are, on the one hand, for
the phosphoric acid HsPO,, H,PO;, HPO; , PO; ", and
on the other hand the Ca®" ion and the corresponding
calcium salts. The KHPO, species is not taken into account
in the electroneutrality balance due to the small quantity
involved resulting the low values of the dissociation
constants.

An investigation was first carried out to identify the
species which may contribute to precipitation. This study
takes into account HAP, OCP, DCPD and ACP. Figure 3
shows that ACP precipitation represents the experimental
points for high pH values (pH > 7.3) and this result agrees
with ACP presence during precipitation. But, for pH values
lower than 7.4, only ACP precipitation does not represent
the experimental points, so the co-precipitation with DCPD
and ACP is proposed.

Only the final stage of the calcium phosphate precipita-
tion is considered. Note also that solid—solid transformations
are not taken into account. The situations assumed here are
based on non-dissolution of the less stable phase.

The precipitation of ACP can be written as follows:

3Ca*" +2PO; — Ca;(PO,), )

Table 3. Required time for total
transformation of calcium phos-
phate in HAP as function of pH
(Boskey and Posner, 1973).

pH Time (min)
6.8 60
7.0 130
7.5 255
8.0 400
9.0 410

10.0 700
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Figure 3. Identification of the species for calcium phosphate precipitation
The ACP surpersaturation is defined by the f§ parameter, involved in the numerical resolution of the above-mentioned
set at equilibrium (i.e. taken equal to zero) which is: set of equations, the number of equations was reduced to the
ot 3 4 ) four balance equations. The final unknowns of the system
([Ca™ 1A ) ([POy” 1ipgy-) (5)  Were thus only the concentrations [Ca®"], [PO3 "], [H"] and
the phosphate conversion. The system of equations was
solved for various initial KOH concentrations in order to
analyse the influence of pH on conversion. Since calcium is
fed in the form of calcium chlorigf_:, the chloride concentra-
].

1
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The model inputs are the concentrations of calcium,

tion was taken as equal to 2 [Ca
The Debye-Huckel model giving the activity coefficient

of each species was used in this study:
m
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phosphate and KOH.
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DCPD is possible in these new conditions according to the
(6)

following reaction:
Ca’" + HPO3 — CaHPO,
For this purpose, the phosphate mass balances and the
electroneutrality equation for DCPD precipitation are solved where
2e2N,p,
Bon =\ =
ekgT

and Cpy is a constant equal to 0.055 moll ™.
A preliminary study was performed to determine the

The model is then used to determine if precipitation of

and the DCPD supersaturation is computed according to
([Ca* TAgpr )([Hpoif];vaoi,)
= )
SDCPD
influence of equilibrium constants and activity model on
equilibrium (Montastruc et al., 2002b). The main result was
that the activity model had no influence but the sensitivity of

1

Equation (7):
—ln(

Pocep = )

It means that if DCPD supersaturation is greater than

zero, precipitation of DCPD is likely to occur. The model
Reactor Network Model

outputs are the conversions of both ACP and DCPD, the
concentrations of the different ions and pH. A flowchart
(Figure 4) illustrates the principle of the proposed method
The second step of the proposed methodology involves
the computation of the pellet reactor efficiency. This phase
has been achieved by the identification of the pellet reactor
as a reactor network involving a combination of elementary
systems representing basic ideal flow patterns (perfect

the equilibrium constant was very important.

for calcium phosphate precipitation.

The concentrations of ions and complexes are deter-
mined from chemical equilibrium relations (see Table 4;
Montastruc et al., 2002b). A sensitivity analysis has further
shown that the complexes involving potassium and chloride

ions do not affect substantially the chemical equilibrium
mixed flows, plug flows, etc.; see Figure 5).
The combination of elementary systems representing

and are thus neglected.

tion contains 12 non-linear equations with 12 variables,

i.e. concentrations of the aqueous species (11) and conver- basic ideal flow patterns is described by a superstructure

sion. This set of equations was solved by a Newton— (Floquet et al., 1989). It contains four perfect mixed flows
arranged in series, two plug flows, one by-pass, two dead

Consequently, the system to be solved for ACP precipita-
Raphson method. Since a difficult initialization phase is
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Figure 4. Principle of the method proposed for modeling calcium phosphate precipitation.

volumes (i.e. without reaction) and one recycling flow and
represents the different flow arrangement (integer variables)
that is likely to take place in the fluidized bed. Let us recall
that more than four series of perfect mixed flows produce
the same effect as a plug flow.

The precipitation phenomenon is described as an agglo-
meration of fines particles on large grains, which is repre-
sented by Smoluchowski’s equation (Mullin, 2001).

dN.

d_tl = —kN,N; (i = fines, j = grains) Q)

which can easily be written in an equivalent form as follows:
a,
dr

where N is the particle concentration (m ) and C is the
concentration (mg m ). K and k represent kinetic constants
(m 3sh.
1—¢
N, =—
7 @/3)mr

= —KC,N; (10)

(11)

Table 4. Equilibrium constants for the
Ki=[(A)(B)]/(AB).

system Ca-PO,-H-0,

K; A; B; AB; K; value

K, H" H,PO; H;PO, 7.1285%x 1073
K> H' HPO; H,PO; 6.2373%x 1078
K3 H" PO, HPO; 453.942x 10 "°
K, Ca>t H,PO; CaH, PO} 3.908 x 1072
Ks Ca>" HPO; CaHPO, 1.8239% 1073
Ke Ca*" PO, CaPO; 347.536x 10°
K5 Ca>" OH™ CaOH ™" 5.8884 % 1072
Ky, H* OH™ H-0 1.004 x 1074

The bed porosity ¢ is calculated using a modified
Kozeny—Carman equation (van Dijk and Wilms, 1991):

) ()
I—e g2rp"® ) \ps — py

where r; is the grain radius, v, the superficial velocity
(ms ™Y, v the kinematic viscosity (m?s~ ') and p the density
(kgm ).

The continuous variables are the ‘kinetic’ constant (K), the
flowrate, equation (5), and the reactor volumes, equation (8).
In fact, the superstructure represents the hydrodynamical
conditions in the fluidized bed. The kinetic constant is
obtained for each combination generated by the simulated
annealing algorithm. This kinetic constants depends only on
the precipitation temperature and not on flowrate and sand
amount. A summary of the global methodology for compu-
tating the efficiency is presented in Figure 2.

At the upper level of the procedure, the scheduling of the
basic structures is first optimized by a simulated anneal
(SA). The simulated annealing procedure mimics the physi-
cal annealing of solids, that is, the slow cooling of a molten
substance, that redistributes the arrangement of the crystals
(Kirkpatrick et al., 1983). The SA algorithm implemented in
this study involves these classical procedures. The dynamic
management of the different constraints generated by
the structures induced by the stochastic simulated annea-
ling algorithm is then solved by a quadratic programming
algorithm (QP) (QP package from the IMSL library). At the
lower level, the set of parameters is identified for a given
structure by QP. The J objective function for QP is to

(12)



|

PLUG FLOW

[Plsolid

I I [p]Fines
o

-

PLUG FLOW

Figure 5. Superstructure detail.

minimize the square distance between the experimental and
the computed points.

J =min[(ygy =~ Magg,,,, ’l (13)

For SA, the criterion § is based on minimization of the QP
function with a penalty term proportional to the complexity
of the tested structure. The SA parameters are the length of
the cooling stage (Nsa), the initial structure and the reducing
temperature factor («). The usual values for Nsa are between
eight and two times the chromosome length whereas the
values for o are between 0.7 and 95. The Nsa and o values
used in this study are, respectively, 6 and 0.7.

S = min[(naggw ~age ) 0D yz} (14)

J

—

S
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EXPERIMENTAL POINTS AND VALIDATION
Phosphate Conversion

Experimental points have been used to validate the
approach (Figure 6). They correspond to an initial phos-
phorus concentration of 50mg1~', a Ca/P molar ratio equal
to 3 and a temperature equal to 20°C. The simulation fitting
was carried out by adjusting the solubility constant values of
both mineral species (ACP and DCPD).

The pK value for ACP which corresponds to the best
fitting of the experimental results is equal to 25.297 for pH
values higher than 7.4. This pK value has the same order of
magnitude than the average one reported in the literature
(see Table 1; Montastruc et al., 2002). The pK value for
DCPD is fixed to 6.346 when considering the zone for pH
lower than 7.4, thus implying precipitation of ACP and also
DCPD, in order to adjust the model with the experimental
points (Figure 6). For pH values lower than 7.4, only ACP
is assumed to precipitate. This case is probably due to
the fact that the CaP particles were not agglomerated
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Figure 6. Phosphate conversion vs. effluent pH.
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Table 5. Comparison between experimental and
modeling results.

Case 1 Case 2
Penalty term 1076 0
Experimental 7,00
for 501h~" 0.742 0.742
901h™! 0.523 0.523
Total Reactor volume
for 501h~" 1.91 1.91
901h™! 1.31 1.31
Modeling V[u%g
for 501h™ 0.7396 0.7423
901h™! 0.5242 0.5231
Error 0.2% 0.01%
Kinetic constant 4.830 4.451

around the sand grains (clean sand) and no DCPD precipita-

tion was observed. In this case, the pK was taken equal
to 25.476.

Phosphate Efficiency

The agglomeration rate represented by a first order
equation has also been identified with experimental runs
(see Figure 7). The experimental rate has been determined
for each flow rate by minimization of the square distance for

CHE ﬂﬂ:@fﬂ

Case 1

Case 2

Figure 8. Best combination obtained for two values of the penalty term.

each point between the experimental efficiency and the
computed efficiency [see relation (3)].

In this study, two cases have been studied to show the
influence of different penalty terms for two values of total
flowrate of the solution to be treated (50 and 901h_1).

The results obtained show that the resulting combination
depends strongly on the penalty term. On the one hand, it is
interesting to notice that if the penalty term is very low or
equal to zero, the resulting error is also low but the combina-
tion is more complicated than the one obtained with a higher
penalty term (Table 5; see Figure 8). On the other hand, this
combination induced a more important error between the
computed and experimental results, thus suggesting that the
method is sensitive to the required precision. For 100 runs of
SA, the CPU time is the same for the two cases, that is 7 min
(4.2 s for each SA) on a PC architecture.

DISCUSSION AND CONCLUSIONS

A two-stage methodology was proposed in this paper
pellet reactor modeling used for P recovery by calcium
phosphate precipitation. The first model is a thermodynami-
cal one while the second represents the hydrodynamic case in
the fluidized bed. Note that the initial parameters of second
model are the outlet values of the thermochemical one.

This study improves the understanding of the precipitation
of two calcium phosphates in either neutral or basic environ-
ment from a thermodynamical viewpoint. It gives for high pH
values a domain in which only ACP precipitation is likely to
occur and for neutral pH values a zone in which conditions of
precipitation of ACP and DCPD are likely to take place. The
model only takes into account thermodynamic concepts. The
model developed in this study is now used for validation and
determination of process operating conditions for phosphate
precipitation in a fluidized-bed reactor. The major interest of
this model is to evaluate both quantitatively and qualitatively
the precipitated calcium phosphates.



Moreover, a hybrid optimization technique combining an
SA and a QP method has been developed for identification of a
reactor network which represents the pellet reactor for P
recovery, viewed as a mixed integer programming problem.
Two levels are involved: at the upper level, the SA generates
different combinations and at the lower level, the set of
parameters is identified by a QP method. The results show
that, for the two values of the total flowrate of the solution to be
treated, a simple combination of ideal flow patterns is found,
which is interesting for the future control of the process.

NOMENCLATURE
e electronic charge (=1.602177 x 1071°C)
kg Boltzmann constant (=1.380658 x 107> JK™ ")
Na Avogrado number (=6.022136x 102 mol™")
T temperature, K
Zi charge number of ion
Greek symbols
& solvent dielectric constant (¢ = &, % &)
o vacuum permitivity (=8.854187 x 10""2Fm™")
& relative solvent dielectric constant
A ion activity coefficient
Po solvent density, kgm™>
n solution ionic strength, mol !
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