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Motion estimation by deep learning in 2D
echocardiography: synthetic dataset and

validation
Ewan Evain, Yunyun Sun, Khuram Faraz, Damien Garcia, Eric Saloux, Bernhard L. Gerber, Mathieu De

Craene, and Olivier Bernard

Abstract— Motion estimation in echocardiography plays
an important role in the characterization of cardiac func-
tion, allowing the computation of myocardial deformation
indices. However, there exist limitations in clinical practice,
particularly with regard to the accuracy and robustness of
measurements extracted from images. We therefore pro-
pose a novel deep learning solution for motion estima-
tion in echocardiography. Our network corresponds to a
modified version of PWC-Net which achieves high perfor-
mance on ultrasound sequences. In parallel, we designed a
novel simulation pipeline allowing the generation of a large
amount of realistic B-mode sequences. These synthetic
data, together with strategies during training and inference,
were used to improve the performance of our deep learning
solution, which achieved an average endpoint error of 0.07±
0.06 mm per frame and 1.20±0.67 mm between ED and ES on
our simulated dataset. The performance of our method was
further investigated on 30 patients from a publicly available
clinical dataset acquired from a GE system. The method
showed promise by achieving a mean absolute error of the
global longitudinal strain of 2.5 ± 2.1% and a correlation of
0.77 compared to GLS derived from manual segmentation,
much better than one of the most efficient methods in
the state-of-the-art (namely the FFT-Xcorr block-matching
method). We finally evaluated our method on an auxiliary
dataset including 30 patients from another center and ac-
quired with a different system. Comparable results were
achieved, illustrating the ability of our method to maintain
high performance regardless of the echocardiographic data
processed.

Index Terms— Deep learning, Echocardiography, Motion
Estimation, Ultrasound Imaging

I. INTRODUCTION

ULTRASOUND imaging is a widely used imaging modal-
ity in cardiology because it is inexpensive, fast and non-

invasive. Echocardiography enables the extraction of clinical
indices relevant to study the cardiac function and anatomy such
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as volumes and myocardial deformation [1]. Deformation in-
dices are usually estimated by conventional motion estimation
techniques that suffer from difficulties inherent in ultrasound
images, such as artifacts (shadow, reverberation), lack of
information or speckle decorrelation. The latter corresponds to
the fact that the speckle pattern which is tracked from B-mode
sequences can change over time. This phenomenon depends
on the type of movement of the tissues (rotation being one
of the worst) and is all the more true as the movements are
fast [2]. This results in a lack of accuracy and reproducibility
in current embedded solutions. Therefore, improvements in
motion estimation are crucial in ultrasound imaging to obtain
reproducible indices. One index that has attracted considerable
attention is the global longitudinal strain (GLS). GLS is de-
fined as the percentage of myocardial longitudinal shortening
between the end-diastolic and end-systolic instants [3]. It is a
global value that proved to be robust enough to be part of the
recommendations during clinical exams [4]. GLS is computed
from B-mode images acquired in any standard apical view and
by tracking a myocardial contour using the conventional block-
matching [5] or optical flow techniques [6]. Tissue Doppler
techniques can also be used to estimate GLS without the use
of speckle tracking.

Deep learning (DL) approaches have recently outperformed
standard tracking methods on natural images. In particular, the
benchmark on the Sintel dataset 1 shows that the top-ranked
algorithms are all based on DL approaches and that the first
non-DL method (FlowFields [7]) is currently ranked above
100. We thus hypothesized that DL can significantly improve
tracking accuracy and robustness over traditional methods in
ultrasound imaging. Instead of relying only on the intensity
or the phase information in the image to evaluate the motion,
DL networks can learn to estimate complex tissue motion with
the associated speckle decorrelation. Moreover, the addition
of typical ultrasound artifacts during training should provide
greater robustness of motion estimation and better adaptation
to ultrasound images.

FlowNet [8] was the first neural network trained end-to-end
to predict the optical flow from a pair of images. FlowNet
consisted of two separate networks: FlowNet-S based only on
U-Net [9] and FlowNet-C, which introduced the notion of a
cost volume block merging layers from the contraction part

1http://sintel.is.tue.mpg.de/results



of the network. In FlowNet2 [10], a new network, FlowNet-
SD, close to the FlowNet-S structure was introduced to better
manage small displacements. By stacking these different net-
works with intermediate warpings, FlowNet2 outperformed the
state-of-the-art methods but used 160M parameters. SpyNet
[11] reduced the number of parameters to 1.2M by using
a coarse to fine pyramidal network with image warping.
Performances were on par with those of FlowNet but under
those of FlowNet2. Finally, PWC-Net [12] obtained better
results by combining the pyramid structure of SpyNet, the
cost volume as in FlowNet-C and a warping step realized on
the feature maps.

The networks mentioned above have been applied to cardiac
imaging, with a main focus on MRI [13]–[16]. In parallel, a pi-
lot study has recently shown the adaptability of FlowNet-based
networks to the characteristics of ultrasound images for motion
estimation [2]. Most methods in ultrasound have been applied
to elastography [17], [18], among which some are based on
extensions of key architectures such as PWC-Net [19], [20].
Some studies have also been conducted to estimate myocardial
motion in echocardiographic imaging. In [21], an unsupervised
approach based on the U-Net architecture was used to esti-
mate the canine myocardial motion from a short-axis view.
Evaluated on the same data, another network with an archi-
tecture derived from FlowNet-C was developed and trained
in a semi-supervised way [22]. Short axis view essentially
provided information on radial and circumferential strain.
To track longitudinal motion, a pipeline was implemented
to automate the GLS computation using view classification,
segmentation, motion estimation and Kalman filters on apical
four chambers views [23]. The motion estimation part was
based on FlowNet2 with the original network weights learned
from natural synthetic images. Recently, another pipeline with
a modified version of PWC-Net named EchoPWC-Net was
introduced [24]. To adapt this network to ultrasound images,
the authors removed the feature maps warping, propagated the
first feature maps and added finer resolutions to the loss. This
network was trained on a realistic simulated ultrasound dataset
[25] in a supervised way and evaluated on the same in-silico
dataset and on 30 in-vivo patients. Despite all the architectural
modifications, the clinical measurements obtained on the real
data were only slightly better than those obtained by a state-of-
the-art method. Based on these results, the authors highlighted
the importance of simulated data and pointed out the lack in
quantity and diversity of training data currently available.

A. Main contributions
This paper makes contributions regarding the PWC-Net

architecture, synthetic training data for capturing motion in
ultrasound, a thorough investigation of different temporal
strategies for improving results, and the first study on the
generalization of this type of network in echocardiography:

• To overcome the problem of limited synthetic data in
number and diversity, we created a new pipeline to
generate large-scale synthetic ultrasound sequences with
a wide range of cardiac deformations. Two types of
synthetic data were thus generated, with and without
reverberation artifacts.

• In contrast to [24], we showed that the PWC-Net archi-
tecture has the potential to produce relevant results on
ultrasound images thanks to an adapted transfer learning
procedure. This allows a better generalization of the
network and a significant improvement of the results on
clinical data.

• We further improve the performance of this network on
ultrasound data by modifying its architecture to enhance
its multi-scale analysis capability.

• We performed a thorough study of several temporal
strategies that can be used to improve results during both
the training and inference phases.

• We conducted the first study on the generalization of deep
learning algorithms for motion estimation in echocar-
diography using a multi-center, multi-vendor and multi-
disease dataset of real patients.

The interest of all contributions was carefully assessed both
in-silico and in-vivo through standard geometric metrics and
clinical indices.

II. METHODS

A. Synthetic dataset for relevant transfer learning
Two recent studies have shown that supervised DL tech-

niques can learn from synthetic ultrasound sequences to im-
prove motion estimation on in-vitro [2] and in-vivo data [24].
In this context, the realism of synthetic image sequences is
key for improving the performance of DL models. In both
studies, a physical simulator was used to generate synthetic
data and special care was taken to define a realistic medium
from acoustic scatterers. Besides the realism of the ultrasound
image, the motion must also be realistic. In [25], [26], the
motion field was generated through a bio-mechanical per-
sonalized simulation. The personalization operation remains
tedious, and currently limits the deployment of such scheme
to small dataset (i.e. number of patients lower than 10 with
the same kind of heart motion) with synthetic myocardial de-
formations that remain low as compared to reported normality
ranges (e.g. simulated peak systolic longitudinal strain lower
than 10% instead of 20% in real cases). In this paper, we
proposed a dedicated simulation strategy to tackle this issue,
and augment the database with diverse ranges on motions,
cardiac geometries and image quality.

1) Overall strategy: Our overall strategy builds upon the
same core concepts as in our previous papers [25], [26].
A schematic figure showing the workflow of the simulated
pipeline is given in the supplementary materials. Clinical
apical four-chamber B-mode recordings (called as template
in the sequel) were used to simulate sequences with realistic
tissue texture. For each frame of the template sequence, a
scatter map was computed and fed to a physical simulator
to produce the corresponding synthetic B-mode image. The
scatterer maps were composed of two types of elements: the
background and the myocardial scatterers. The full scatterers
were distributed within the sector of the first frame according
to a uniform random distribution. A density of 10 per square
wavelength was chosen to ensure realistic speckle statistics. To
avoid flickering effects, the background scatterers were kept



motionless. To mimic the local echogenicity of the recorded
model, the local intensities Im of the actual B-mode images
were used to calculate the reflection coefficients RCm of the
scatterers, i.e. RCm = (Im/255)(1/γ) · N (0, 1), where N (·)
is the normal distribution, and γ is a constant for gamma
compression. The myocardial scatterers were selected on the
first simulated frame using manual annotations. The positions
of these scatterers were then computed for each B-mode frame
of the simulated sequence using the strategy described at
the end of this section. The reflection coefficients of these
scatterers were kept constant to maintain the speckle texture
throughout the cardiac cycle. The final scatterers were obtained
by combining the background and myocardial scatterers using
the same scheme as in [25]. This strategy allows a smooth
transition at the myocardial borders. Finally, a homemade
open-source software called SIMUS from the MUST Matlab
ultrasound toolbox2 [27] was used to generate the synthetic
ultrasound data. Each B-mode frame was generated by trans-
mitting 128 focused beams, regardless of the acquired sector
width (ranging from 60 to 90 degrees). In addition, the focal
point was automatically chosen for each patient to be equal to
half of the total acquired depth (ranging from 11 to 20 cm).
The synthetic signals generated by SIMUS were demodulated
to obtain IQ signals. The I/Q signals were beamformed using
a delay-and-sum technique to obtain B-mode images [28].

2) Template image sequences: The template cine loops
used in our simulation pipeline come from the CAMUS open
access dataset which consists of exams from 500 patients
acquired in clinical routine from the University Hospital of
St-Etienne (France) and using a GE system [29]. This dataset
was built without any specific image quality or patient selec-
tion criteria to match the heterogeneity of texture, shape and
cardiac motions seen in clinical routine. We selected a subset
of 100 apical four-chamber sequences, where the ultrasound
machine settings were adjusted to scan the myocardium. The
same probe settings used to acquire the CAMUS dataset were
simulated: a 2.5 MHz 64-elements cardiac phased array.

3) Synthetic myocardial motion field: Endocardial and epi-
cardial borders were delineated manually on the template
sequences to obtain myocardial ROIs over the entire cardiac
cycle. Time-varying surface meshes were generated for each
of these ROIs following the resampling scheme given in Fig.
1. Specifically, the base of the left ventricle was defined by
the segment linking the two extreme endocardial points. The
apex was defined as the furthest point from the base in the
epicardial contour. 36 points were then evenly distributed
over the epicardial contour: 18 on the septum, and 18 on
the lateral wall. Intramyocardial perpendicular segments were
then drawn from these epicardial points to join the epicar-
dial and endocardial contours. Each intramyocardial segment
contained 5 evenly distributed points. This resampling scheme
meshed the myocardium with 180 points (36 longitudinal ×
5 radial) and 280 triangle cells. For each simulation, a set
of points was randomly distributed over the myocardial mesh
at end-diastole. Each of these points was then propagated

2www.biomecardio.com/MUST

Fig. 1: Illustration of the resampling scheme used to generate
a myocardial mesh (yellow nodes) from the corresponding
segmentation mask (green lines).

over the full sequence by interpolating the displacements of
the corresponding cell. This simple procedure allowed us to
compute the temporal trajectory of any point belonging to the
myocardium. The resulting synthetic myocardial motion field
does not correspond to the actual motion field, which is not
the purpose here. The interest of this procedure is to efficiently
generate a wide variety of cardiac motions/deformations that
are realistic enough to serve as a relevant data augmentation
for DL methods.

4) Reverberation artifacts: We incorporated reverberation
artifacts into our synthetic dataset to challenge the network
during training. Specifically, we placed scatterers near the mid-
anterolateral wall with high reflection coefficients relative to
their neighbors. The position and amplitude of these scatterers
remained constant throughout the cardiac cycle. This simple
strategy leads to stationary saturated areas in the simulated
B-mode images to emulate reverberation artifacts that may
come from the ribs, as shown in Fig 2. Real reverberation
artifacts may have other characteristics such as multiple rever-
beration structures and clutter noise, but these are not taken
into account in this simulation.

B. Optimization of PWC-Net for echocardiography
1) Overall architecture: PWC-Net is one of the most effi-

cient DL networks for dense motion estimation between two
frames [12]. This network borrows the concept of a multi-
resolution pyramidal structure to standard image tracking
algorithms. Motion is estimated from the coarsest to the most
detailed spatial resolution. A pyramid of seven levels with
shared weights downsamples successively the features maps
by half. Input images are processed separately. A normalized
cross-correlation between the feature map of the first image
and the second image warped by the previous estimated flow
is then computed. This operation named cost volume performs
patch comparisons between two feature maps for a range of
displacements. The cost volume, the feature map from the
first image, the upsampled estimated flow obtained at the
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(a) (b) (c) (d)

Fig. 2: Synthetic ultrasound images simulated from the proposed pipeline with (b, d) and without (a, c) reverberation artifacts
for two different patients. The reverberation artifacts are identified by arrows.

Fig. 3: Schematic view of our customized PWC-Net illustrated with a 4-level pyramid. The two input images are initially
processed separately to extract the features, then the displacement fields are estimated in a coarse-to-fine manner (see Section
II-B.1 for more details). The sub-networks modified as described in Sec. II-B.2 are displayed in green.

previous level and the upsampled feature map are used as input
in a Convolutional Neural Sub-Network (CNSN), referred to
as estimator. This CNSN is in charge of predicting a dense
displacement map. The steps previously described are iterated
until obtaining a displacement field with a quarter of the size
of the initial input image. This information is then provided
as input to another CNSN, referred to as context, to improve
the accuracy of the estimated flow. This is done by adding the
previously estimated flow with the output of a branch involving
dilated convolutions to reinforce the receptive field. Finally,
a bilinear interpolation upsamples the final flow to output a
displacement map of the same size as the input image. The
parameters of this network are optimized through a multi-scale
loss function. This function computes the distance between
the intermediate estimated flows and the corresponding scaled
ground truths.

2) Proposed architecture: The overall architecture of our
customized PWC-Net is given in Fig. 3 and 4. The modifica-
tions we made from the original architecture are all displayed
in green. Based on the observation that multi-scale analysis has
proven to be efficient for motion estimation in ultrasound [30],
we first added a contextual sub-network at each resolution
level of the network (context blocks in Fig. 3). In addition,
the tracking of speckle patterns whose shapes can evolve
between two consecutive frames make the motion estimation
task particularly difficult in ultrasound. For this reason, we
decided to reinforce the capacity of the network to extract
relevant information by modifying each estimator sub-network

Fig. 4: Illustration of the estimator sub-network used in our
customized PWC-Net with the added skip connections in
green.

as illustrated in Fig. 4. These modifications correspond to skip
connections concatenated to the output of each convolutional
layer. The interest of these connections is twofold: i) since
the PWC-Net architecture is deep, they limit the phenomenon
of vanishing gradient; ii) the inputs of each convolutional
layer are composed by the concatenation of the input and the
outputs of the previous layer, leading to richer information
sources. Similar to our intuition, Densenet connections were
evaluated in [12], which improved the results by 5% but also
increased the execution time up to 40%. Therefore, the authors
leave the choice of using these connections according to the
targeted objectives. The unlabeled blocks in Fig. 3 represent
the pyramidal feature extractors described in Sec. II-B.1 and
whose implementation details are described in Sec. III-C.1.



These feature extractors correspond to the ones proposed in
the original PWC-Net implementation and do not involve any
skip or residual connections.

3) Transfer learning strategy: In contrast to [24], we propose
to keep the transfer learning strategy in order to strengthen
the generalization capacity of the derived method, which
should improve the results on clinical data. The specialization
of the network from natural images to ultrasound was per-
formed through different key steps. For adapting the proposed
customized PWC-Net to gray level images, we first trained
our network on a set of natural image pairs taken from the
synthetic FlyingChairs2D and FlyingThings3D datasets [12].
Details on these datasets are given in Sec. III-A.1. Once the
network has been learned on this first dataset, two different
transfer learning procedures were performed on simulated
ultrasound images with the same weight regularization as
the initial training and without freezing any layer. The first
transfer used an open access dataset [25] for the purpose
of comparison with [24]. A second transfer was made using
the same open access dataset extended with a new simulated
ultrasound dataset based on the pipeline described in Sec. II-
A. The properties of each synthetic dataset are provided in
Sec. III-A.2. Both transfers used the same learning rate value
(λ = 1e−4) and the same progressive decay strategy as in the
training on natural images, to ensure an efficient transfer to
images of a different nature.

4) Temporal augmentation strategy: Different motion ampli-
tudes between simulated and real data can worsen the perfor-
mance of DL networks during inference. In addition, simulated
data may be biased by certain types of motions and may not
represent the variety of real movements, whether healthy or
pathological. For addressing these issues, two temporal data
augmentation strategies were combined during the training
phase. First, to double the dataset with realistic movements
of the ultrasound speckle, the pairs of forward frames with
reference field (t→ t+ 1) were also presented to the network
in the backward direction (t + 1 → t). In addition, rather
than using only consecutive frames, we also provided image
pairs separated by several frames to increase the amplitude
of motion and the levels of speckle decorrelation seen by the
network during training.

5) Composition inference strategy: The speckle motion pat-
tern was assumed to be consistent for an image pair I1I2 in
the forward (I1 → I2) and backward (I2 → I1) directions.
This forward-backward composition consistency was exploited
during inference to still improve the performance of the
network. In particular, each motion estimation between two
consecutive B-mode frames was performed as follows. The
forward motion between I1 and I2 (Ff ) was first computed and
used to propagate the myocardial points. The backward motion
field (Fb) was then computed at these coordinates. In an ideal
case, the composition of these two displacement fields should
return the identity transformation. To respect that constraint,
we averaged the forward Ff and backward −Fb displacement
fields to compute the final motion estimation.

Fig. 5: Evolution of GLS as a function of time for all simu-
lations. The mean and the limits of agreement are represented
in black.

III. EXPERIMENTS

A. Datasets

1) Synthetic natural datasets used for training: As described
in Sec. II-B.3, our network was first trained to model motion
estimation from natural synthetic images. To this aim, we
used two public datasets consisting of image pairs with the
corresponding dense displacement field on the entire image.
The FlyingChairs dataset is composed of scenery images over
which chairs with random orientations are over-imposed [8].
Random affine transformations were applied to the background
and the chairs in the foreground. The FlyingThings3D dataset
consists of images created from a mix of randomly textured
3D flying objects on a textured background [31]. The objects
were randomly positioned in the image and then modified
by geometrical transformations. Their motions correspond to
randomized displacements along 3D linear trajectories. We
removed image pairs with displacement amplitudes that were
too large for what can be expected in echocardiography. Each
image was expressed in grayscale format. This resulted to a
synthetic dataset composed of 42,512 image pairs with the
corresponding displacement fields.

2) Synthetic ultrasound datasets used for training and test-
ing: We used an open access dataset of realistic 2D ultrasound
sequences during the different transfer learning procedures
[25]. This dataset is based on an electromechanical model
of the heart which was combined with template cine loop
recordings to simulate realistic ultrasound sequences. This
approach relies on a personalization procedure which currently
limits the heterogeneity of the dataset. This open access
dataset is composed of 2D apical two-three-four chamber view
sequences for seven vendors and five different motion patterns,
including one healthy and four pathologies. This resulted in a
dataset composed of 6,060 pairs of synthetic ultrasound images
with the corresponding myocardial displacement fields.

To enrich this dataset, we developed a new simulation
pipeline as described in Sec. II-A.1. Based on this new ap-
proach, we simulated 2D apical four chamber view sequences
for 100 virtual patients from the CAMUS dataset. From Fig.



5, one can appreciate the rich variety and the realistic nature of
the cardiac deformations present in the simulated dataset. The
same template cine loops were used to simulate new sequences
with reverberation artifacts. This increased the diversity of
speckle patterns and can make the network less sensitive to
this type of artifact. The resulting synthetic dataset is com-
posed of 8,866 image pairs with the corresponding myocardial
displacement fields. The full dataset is made available to the
research community at http://humanheart-project.
creatis.insa-lyon.fr/medicaid.html.

3) Clinical datasets used for testing: The open access CA-
MUS dataset described in Sec. II-A.2 was first used to create
a 30-patient clinical dataset consisting of apical four chamber
view sequences acquired from a GE system. These sequences
were selected according to their quality (only good and
medium image quality were included), also ensuring the whole
left ventricular myocardium was included in the field of view.
The original CAMUS dataset is provided with annotations
only at end-diastole and end-systole. We therefore asked an
expert cardiologist to extend these annotations to the entire
cardiac cycle. This work was done through an in-house web
annotation platform based on the Desk library3 [32]. This
resulted to clinical dataset composed of 1,443 image pairs
with reference contours for both endocardial and epicardial
borders.

In order to assess the generalization capacity of our ap-
proach, an auxiliary dataset composed of 2D apical four
chamber view sequences from 30 new patients was collected at
the University Hospital of Caen (France) within the regulation
set by the local ethical committee. The images were acquired
using Philips scanners. The same protocol as the one used
for the CAMUS dataset was used to manually annotate the
entire cardiac cycle. To ensure a representative range of left
ventricle pathologies, five different groups equally distributed
were selected, resulting in six patients from each group. The
groups were defined by a diagnosis of aortic stenosis (AS),
hypertrophic cardiomyopathy (HCM), ischemic heart failure
(HF), non-ischemic HF and no disease. This resulted to an
auxiliary clinical dataset composed of 1,536 image pairs with
reference contours for both endocardial and epicardial borders.

B. Evaluated methods
As commercial applications like Tomtec and Echopac can-

not be easily configured to modify the input contour to be
tracked, we decided to assess the performance of the proposed
network with the FFT-Xcorr block matching method [5], the
Farnebäck optical flow method [6] and two DL methods,
namely the PWC-Net [12] and the EchoPWC-Net [24]. Re-
sults from EchoPWC-Net and Farnebäck methods were taken
directly from [24] due to difficulties in reproducing them.

1) FFT-Xcorr : Blockwise speckle tracking was implemented
using standard FFT-based cross-correlations (FFT-Xcorr) on
the B-mode images. The images were divided into subwin-
dows with a 75% overlap. We detected small and large

3www.creatis.insa-lyon.fr/˜valette/public/project/
desk/

displacements with a multi-scale approach: displacement es-
timates were iteratively refined by decreasing the size of the
subwindows (32×32, 16×16, and then 8×8). In contrast to [5],
we computed the normalized cross-correlations from only two
successive images (i.e., no ensemble correlation). To obtain
sub-pixel displacements, we used a parabolic fitting around the
correlation peak. The estimated displacements were smoothed
with an unsupervised robust spline smoother between two
consecutive scales [33].

2) Farnebäck: This method is a traditional dense optical
flow algorithm which is based on a pyramid of images at
different resolution levels to track image points. A detailed
description of the method and its parameters are given in [24].

3) EchoPWC-Net: This network is based on the PWC-Net
architecture with several modifications to improve results on
ultrasound data. The intuition behind these changes was to
preserve information brought by speckle patterns by optimiz-
ing local variations. The authors also proposed to reinforce the
resemblance of their solution with traditional speckle tracking
approaches by integrating block matching aspects during the
computation of the cost volume. The reader is referred to [24]
for more details on this method.

C. Implementation details
Our experiments were realized using Keras 2.3.1 and Ten-

sorflow 1.15 libraries. The modelling and experiments were
conducted on a workstation with Ubuntu 20.10 operating
system. The hardware consisted of an AMD Ryzen 9 3900X
processor and an NVIDIA GeForce RTX 2080Ti GPU with 12
GB of memory. The runtime achieved in inference was 20 ms
to estimate the myocardial motion between two consecutive
frames.

1) Architecture parameters: For the feature extractor of each
level of the pyramid, we used three convolutional layers,
including a convolution with a stride of two to downsample the
final feature maps. The number of filters per level is constant
and was set to 16, 32, 64, 96, 128 and 196 from top to bottom.
The search range of the cost volume was fixed to 4 pixels. The
same context network as the one proposed in [12] was used
at each resolution level, composed by a succession of dilated
convolutions with factors of 1, 2, 4, 8, 16, 1 and 1 respectively.
The total number of parameters of our network was 14M.

2) Training procedures: Our network was trained with the
Adam optimizer and a batch size of 4 for all the experiments.
The initial learning rate was set to 1e−4, with a halving
schedule every 20% of the training after 40% of the total
number of iterations. 200 epochs (150 hours) and 15 epochs
(15 hours) were used during the training on the natural and
ultrasound datasets, respectively. The weights were initialized
following the He initialization scheme [34].

3) Data augmentation: Different data augmentation strate-
gies were applied depending on the learning phase. During
training on the synthetic dataset with natural images, the same
data augmentation scheme as the one performed in [8] was
carried out. A random crop of size 448 × 384 was used to

http://humanheart-project.creatis.insa-lyon.fr/medicaid.html
http://humanheart-project.creatis.insa-lyon.fr/medicaid.html
www.creatis.insa-lyon.fr/~valette/public/project/desk/
www.creatis.insa-lyon.fr/~valette/public/project/desk/


select the images given as input to the network. In addition,
geometric transformations (translations, scaling, flipping) and
image alterations (brightness, Gaussian noise, contrast) were
used. During the transfer learning phase, only image alter-
ations (brightness and contrast) were used to respect the shapes
and geometrical properties of the ultrasound images.

4) Loss: We used a multi-scale loss function defined as

L(Θ) =
L∑
l=l0

αl
∑
x

|wlθ(x)− wlGT (x)|2 + γ|Θ|2, (1)

with Θ being the parameters, x the inputs, |.|2 the L2 norm
and wl the flow field at the lth pyramid level. The values
of the αl parameters correspond to the one proposed in
[8]. The regularization factor γ was set to 4e − 4. During
transfer learning, the optimization of this loss was restricted
to the region where the reference dense displacement field was
known, i.e. in the myocardial region.

D. Evaluation metrics

1) Geometrical metrics: To measure the accuracy of the
estimated motion and the tracked contours of a given method,
the endpoint error (EPE), the mean absolute distance (dm)
and the Hausdorff distance (dH ) were used. The endpoint
error is defined as EPE =

√
(u− ugt)2 + (v − vgt)2 and

corresponds to a distance measure between the estimated flow
(u, v) and the ground truth (ugt, vgt) [35]. This metric was
computed only in the myocardial region. dm corresponds to
the average distance between two contours while dH measures
the local maximum distance between the two contours. In
our experiments, dm and dH were used to assess tracking
quality by comparing the reference endocardial contours with
the contours obtained by propagating the reference contour
at the first frame with the successive motion estimations
obtained with the different techniques. The reported dm and
dH scores correspond to the average values computed from all
the contours obtained on the same sequence except the one at
the first frame.

2) Clinical metrics: We gauged the methods’ performance
with the Global Longitudinal Strain (GLS). There is currently
no consensus on the way to compute it. Strain estimation
from the epicardial border is generally avoided because of
the proximity of the pericardium, which makes several areas
difficult to segment. Because of a varying quality of the
speckle pattern along the heart muscle, strain estimation from
the myocardium is usually associated with a regularization
term that affects the quality of the measurements. Finally, the
strain estimation from the endocardium can be seen as the
more robust to achieve thanks to a sufficient contrast between
the blood pool and the myocardium. However, it is known
that the computation of the GLS from the endocardium takes
into account a part of the radial deformation [36]. In this
study, we decided to use the endocardial contour to compute
the longitudinal ventricular length L for each timestep t to
estimate the Lagrangian strain, defined as:

SL =
L(t)− L(t0)

L(t0)
, (2)

where L(t) stands for the longitudinal length at a given time
t with t0 corresponding to end-diastole. Moreover, to address
the weakness of using the endocardial contour to calculate
GLS, we use a complementary clinical index that provides
information exclusively on longitudinal deformation, named
Mitral Annular Plane Systolic Excursion (MAPSE) [37]. This
index is computed in the same way as the GLS, with the
difference that L denotes the distance between the apex and
the mid-basal point of the endocardial border. Both GLS and
MAPSE were computed for each time of the sequence. The
peak-systolic strain, defined as the minimum between end-
diastole and end-systole strain values, was finally calculated
for both indices, for which we computed three metrics: the
bias, the standard deviation σ and the mean absolute error
(mae). GLS and MAPSE ground truths were derived from
the expert manual annotation of the endocardial contour. For
fair comparisons, the same endocardial reference contours at
end-diastole were used as the initial contours from which
the different tracking methods were applied. All reference
contours were manually delineated prior to the application of
any method, thus avoiding any bias issues. It is important to
note that the quality of the results of our tracking depends on
the initial contour that is provided as input by an operator. Par-
ticular attention was therefore paid for accurately segmenting
the myocardium.

IV. RESULTS

A. Simulation

1) Ablation study: We first conducted an ablation study
to evaluate the influence of different design choices during
the training and inference phases. We used for this purpose
the open-access dataset of synthetic ultrasound sequences
described in Sec. III-A.2. This dataset was divided into
folds by vendor, of which five were used for training, one
for validation and one for testing. During this experience,
we trained our customized version of PWC-Net, referred as
c-PWC-Net in the sequel, using a composition of the following
temporal data augmentation strategies: i) using data in the
forward direction only; ii) using data in the forward/backward
directions and iii) using image pairs separated by one, two or
three frames. During inference, the composition consistency
described in Sec. II-B.5 was also investigated. The obtained
results are reported in Table I. From these results, we can
first observe the slight improvement (0.01 mm reduction of
the EPE) brought by the composition consistency procedure.
Regarding the training phase, the forward/backward and the
spaced image pairs strategies further improved the EPE. The
best configuration was obtained when combining the com-
position consistency in inference with the forward/backward
data augmentation strategy during training using image pairs
separated by one and two frames, the separation with more
images leading to an unchanged average EPE of 0.04± 0.03
mm. This configuration was therefore employed for all the
following experiments.

The importance of the modifications we brought to the
original PWC-Net architecture was investigated through two
complementary ablation studies. The first experiment was



TABLE I: Ablation study on the open access dataset [25]
for the temporal data augmentation and inference strategies
proposed in Sec. II-B. The proposed customized PWC-Net (c-
PWC-Net) was trained using forward (+), forward-backward
(+/-) and image pairs separated by n frames (0 meaning two
consecutive images). In inference, results were computed with
and without the composition consistency procedure given in
Sec. II-B.5.

c-PWC-Net EPE±σ
Training Inference mm.

+, 0 No composition 0.09 ± 0.07
+, 0 Composition 0.08 ± 0.07

+/-, 0 Composition 0.05 ± 0.04
+, 0, 1 Composition 0.05 ± 0.05

+/-, 0, 1 Composition 0.04 ± 0.04
+, 0, 1, 2 Composition 0.05 ± 0.03

+/-, 0, 1, 2 Composition 0.04 ± 0.03
+, 0, 1, 2, 3 Composition 0.04 ± 0.03

+/-, 0, 1, 2, 3 Composition 0.04 ± 0.03

realized on the same dataset as for the ablation study given
in Table I. During this experiment, we trained c-PWC-Net
using the same transfer learning strategy but for different
versions of its architecture: i) without skip connection and
contextual sub-networks; ii) with skip connection only; iii)
with contextual sub-networks only and iv) with both of them
(which corresponds to the proposed full architecture). From the
results given in Table II, one can clearly see the importance of
the skip connections and the contextual sub-networks, the use
of the contextual sub-networks resulting in an improvement
of 0.2 mm while its combination with skip connections
allowed to divide by 2 the average EPE compared to the
original architecture of PWC-Net (i.e. c-PWC-Net without
skip connection and contextual sub-network). Contrary to the
two previous ablation studies, we used the proposed synthetic
dataset to study the influence of the contextual sub-networks.
Indeed, this dataset presents more variety in terms of strain
deformations and therefore seems to be better suited. Dur-
ing this experiment, we trained c-PWC-Net using the same
transfer learning strategy and with the following conditions:
i) with a contextual sub-network for each resolution, except
the two lowest ones; ii) with a contextual sub-network for
each resolution, except the lowest one; iii) with a contextual
sub-network for all resolutions (i.e. 6 sub-networks in total).
Results given in Table III clearly show the interest of adding
a contextual sub-network at each resolution level, even for
the lowest ones. The best network architecture, subsequently
adopted, was therefore the combination of skip connections
with contextual sub-networks for all resolutions.

2) Open access synthetic US dataset: Table IV shows the
motion estimation performance of c-PWC-Net from the open
access synthetic US dataset [25]. We used the same nomencla-
ture as the one introduced in [24], by adding ”-gray” in case of
training performed on grayscale natural images, ”-us” in case
of training on the open access dataset and ”-ft” in case of fine-
tuning. For instance, PWC-Net-gray-usft refers to PWC-Net
first trained on natural grayscale images, then on the synthetic

TABLE II: Ablation study performed on the open access
dataset [25] for the architectural modifications given in Sec.
II-B.2. The different networks were trained in the same con-
ditions using the forward-backward strategy with image pairs
separated by 0, 1, and 2 frames.

c-PWC-Net architecture EPE±σ
Skip connections Contextual sub-net. mm.

8 8 0.08 ± 0.06
4 8 0.07 ± 0.06
8 4 0.06 ± 0.06
4 4 0.04 ± 0.03

TABLE III: Ablation study performed on the proposed syn-
thetic dataset for the influence of the contextual sub-networks
presented in Sec. II-B.2. The different networks were trained
under the same conditions as for the other ablation studies.
The column labeled Positions provides information about the
presence of a contextual sub-network relative to the pyramid
level (1 stands for the highest resolution, 6 to the lowest).

c-PWC-Net architecture EPE±σ
Number of sub-net. Positions mm.

4 1, 2, 3, 4 0.10 ± 0.08
5 1, 2, 3, 4, 5 0.09 ± 0.07
6 1, 2, 3, 4, 5, 6 0.07 ± 0.06

US dataset of [25] through transfer learning. The Farnebäck,
PWC-Net-gray-usft and EchoPWC-Net-us results were taken
from [24]. Concerning c-PWC-Net-gray-usft, the first training
performed on the gray-scaled FlyingChairs and FlyingThings
datasets was performed by splitting the full set of images into
training and validation sets. On the validation set, the network
achieved an average EPE of 1.53±5.28 pixels. The comparison
of the results obtained by the PWC-Net-gray-usft method
using either the transfer learning strategy given in [24] or the
one we proposed in Sec. II-B.3 clearly illustrates the relevance
of the choices we made. Indeed, using the same original
PWC-Net architecture, our transfer learning strategy yields an
overall improvement of 42% in the average EPE on the full
dataset, from 0.14 mm to 0.08 mm. In addition, it appears that
the architectural modifications we proposed further improve
the results obtained by c-PWC-Net-gray-usft by reducing the
average EPE by 0.02 mm. It is also worth noting that the two
non-DL methods outperformed c-PWC-Net-gray, which gave
notably bad results on the GE fold. This can be explained
by the fact that c-PWC-Net-gray is a method trained only on
simulated natural images. Its performance is naturally reduced
on echocardiographic images. In the open access dataset of
Alessandrini et al., the simulated sequences from the GE
vendor are found to be the most challenging in terms of
image quality with the least defined speckle pattern, making
the tracking task more difficult. This observation is confirmed
by the fact that all evaluated methods score their worst on this
fold. Finally, the best performing methods in this experiment
were obtained by the two DL techniques EchoPWC-Net-us
and c-PWC-Net-gray-usft which reached the same average
EPE of 0.06± 0.05 mm.



TABLE IV: Results on the open access synthetic dataset [25]. The methods are compared on seven vendors in apical four
chamber view. The metric used is the average endpoint error expressed in mm. The application of the Wilcoxon signed-rank
test shows the statistical difference (p < 0.0001) of c-PWC-Net-gray-usft with the methods for which we have the results for
all the patients (referred by *).

Methods ESAOTE GE HITACHI PHILIPS SIEMENS TOSHIBA SAMSUNG

mm. mm. mm. mm. mm. mm. mm.

Farnebäck [38] 0.08 (0.06) 0.09 (0.07) 0.06 (0.04) 0.08 (0.06) 0.06 (0.05) 0.07 (0.05) 0.07 (0.05)
FFT-Xcorr [5]* 0.10 (0.08) 0.14 (0.11) 0.11 (0.08) 0.09 (0.07) 0.09 (0.08) 0.09 (0.07) 0.09 (0.07)

PWC-Net-gray-usft [24] 0.14 (0.10) 0.17 (0.12) 0.13 (0.09) 0.14 (0.10) 0.14 (0.10) 0.14 (0.11) 0.13 (0.09)
EchoPWC-Net-us [24] 0.07 (0.06) 0.07 (0.06) 0.06 (0.04) 0.06 (0.05) 0.06 (0.05) 0.06 (0.04) 0.05 (0.04)

PWC-Net-gray-usft (ours)* 0.08 (0.07) 0.10 (0.07) 0.07 (0.04) 0.09 (0.06) 0.08 (0.06) 0.07 (0.05) 0.08 (0.06)
c-PWC-Net-gray* 0.15 (0.13) 0.34 (0.72) 0.11 (0.08) 0.12 (0.10) 0.09 (0.08) 0.12 (0.10) 0.13 (0.08)

c-PWC-Net-gray-usft 0.07 (0.06) 0.08 (0.07) 0.06 (0.04) 0.07 (0.06) 0.04 (0.03) 0.06 (0.04) 0.07 (0.05)

3) Proposed synthetic US dataset: We conducted experi-
ments to assess the added value of the proposed synthetic
ultrasound dataset described in Sec. II-A. The corresponding
results are given in Tables V and VI. In these experiments,
the training dataset was composed of the open access dataset
proposed in [25] augmented with data from 60 virtual patients,
while the validation and testing datasets were composed of the
data from the 10 and 30 remaining virtual patients. Patients
were randomly selected to create the different datasets. Several
trainings were performed by varying the number of added
virtual patients (from 20 to 60) and by including or not
the data with reverberation artifacts for the same patients. In
these tables, the different experiments are named according
to the number of added patients, with an A appended if the
simulated patients were included with and without artefacts.
For instance, c-PWC-Net-20A refers to c-PWC-Net trained
using the open access dataset augmented with 20 virtual
patients with and without reverberation artifacts. We com-
pared the performance of the c-PWC-Net with the FFT-Xcorr
block-matching approach. In these experiments, c-PWC-Net
outperformed FFT-Xcorr for most of the metrics and training
configurations.

In terms of geometric scores, it is worth noting the continu-
ous improvement in overall scores with the increasing amount
of synthetic data both in terms of mean and standard deviation,
from 1.53 ± 1.12 mm to 0.73 ± 0.49 mm for the dm metric
and from 0.14 ± 0.11 mm to 0.07 ± 0.06 mm for the EPE
computed on the testing dataset without artifact. The same
trend can be observed with the computation of the cumulative
EPE between ED and ES, i.e. an improvement of c-PWC-Net
from 2.66± 1.59 mm to 1.20± 0.67 mm when adding the 60
virtual patients. The same conclusions can be drawn on the
data with artifacts, with an improvement from 1.64±1.16 mm
to 0.79 ± 0.53 mm for the dm metric and from 0.16 ± 0.13
mm to 0.08 ± 0.06 mm for the EPE. The positive impact
of including synthetic data with and without reverberation
artifacts appeared systematically and for all metrics in Table
V.

For the clinical scores given in Table VI, the same trends
as for the geometric metrics can be drawn, with an overall
improvement of the different scores with the inclusion of more
synthetic data. Concerning the bias and standard deviations for

the two clinical indices, the main improvement occurred after
adding the first 20 patients, from 2.95±3.00 % to 0.57±1.73
% for the GLS and from 4.72±3.54 % to 1.45±2.47 % for the
MAPSE on the testing dataset without artifact. The addition of
more data resulted in a stagnation of the bias, but a decrease in
the standard deviation, leading to an overall improvement of
both indices. The same happened for the testing dataset with
reverberation artifacts. For both clinical indices, the addition
of the 60 simulated patients (with or without artifacts) allowed
a final improvement around 80% for the bias and 65% for the
mae.

B. Clinical data

1) Real patients from the CAMUS dataset: The performance
of c-PWC-Net was assessed on the clinical data described
in Sec. III-A.3. FFT-Xcorr, c-PWC-Net and c-PWC-Net-60A,
which performed best on the synthetic ultrasound dataset, were
compared in this experiment. The comparison of our method
with EchoPWC-Net would have been of interest. Unfortu-
nately this is impossible since neither the trained model nor the
test dataset were made publicly available by the authors. The
geometric scores are given in Table VII. Since real motions
are not known, only dm and dH metrics were computed from
the tracked contours. c-PWC-Net outperformed the FFT-Xcorr
block-matching method, with an improvement of 0.72 mm for
dH metric. Another interesting point is the improvement of
our model brought by the proposed synthetic dataset, resulting
in an overall performance of 1.86 ± 1.05 mm for dm and
3.81 ± 1.18 mm for dH . Table VIII lists the scores obtained
for the GLS and MAPSE clinical indices. The same trends as
observed for the geometric metrics can also be drawn. Indeed,
our DL solution outperformed FFT-Xcorr while the use of the
synthetic dataset significantly improved the different clinical
scores, with a mae from 4.29 ± 2.84 % to 2.55 ± 2.08 %
for the GLS and from 4.19 ± 2.78 % to 2.62 ± 2.09 % for
the MAPSE. As a complement, a correlation plot between the
estimated GLS and the ones from the ground truth is given
in the supplementary materials. A correlation coefficient of
0.77 was achieved, demonstrating the capacity of our method
to reproduce manual annotations with good fidelity. It is also
important to note that our correlation score was not as good as



TABLE V: Geometric results on the open access synthetic dataset [25] complemented with the proposed simulated database.
The p-value computed on the EPE with the Mann-Whitney U rank test between FFT-Xcorr and c-PWC-Net-60A was equal to
6e−6, proving the statistical difference between these two methods.

Methods*
Simulations Artifacts

EPE±σ dm ± σ dH ± σ EPE±σ dm ± σ dH ± σ

mm. mm. mm. mm. mm. mm.

FFT-Xcorr 0.26 ± 0.18 1.63 ± 0.97 4.64 ± 1.88 0.27 ± 0.19 1.86 ± 1.17 5.02 ± 2.02
c-PWC-Net-0 0.14 ± 0.11 1.53 ± 1.12 3.76 ± 1.36 0.16 ± 0.13 1.64 ± 1.16 4.07 ± 1.51

c-PWC-Net-20 0.09 ± 0.07 0.87 ± 0.59 2.37 ± 0.68 0.10 ± 0.09 1.06 ± 0.79 2.68 ± 0.84
c-PWC-Net-20A 0.08 ± 0.06 0.84 ± 0.57 2.32 ± 0.66 0.09 ± 0.07 0.90 ± 0.61 2.30 ± 0.64
c-PWC-Net-40 0.08 ± 0.06 0.79 ± 0.53 2.12 ± 0.61 0.09 ± 0.08 0.96 ± 0.70 2.36 ± 0.75

c-PWC-Net-40A 0.08 ± 0.06 0.78 ± 0.52 2.05 ± 0.56 0.08 ± 0.06 0.84 ± 0.57 2.13 ± 0.60
c-PWC-Net-60 0.08 ± 0.06 0.73 ± 0.49 1.98 ± 0.54 0.09 ± 0.07 0.92 ± 0.70 2.34 ± 0.74

c-PWC-Net-60A 0.07 ± 0.06 0.73 ± 0.49 2.03 ± 0.56 0.08 ± 0.06 0.79 ± 0.53 2.08 ± 0.60

TABLE VI: Clinical metrics on the open access synthetic dataset [25] complemented with the proposed simulated database.

Methods

Simulations Artifacts

GLS MAPSE GLS MAPSE

bias±σ mae±σ bias±σ mae±σ bias±σ mae±σ bias±σ mae±σ
%. %. % % %. %. % %

FFT-Xcorr 4.89 ± 1.69 4.89 ± 1.69 2.77 ± 1.25 2.77 ± 1.25 6.01 ± 2.12 6.01 ± 2.12 3.20 ± 1.24 3.20 ± 1.24
c-PWC-Net-0 2.95 ± 3.00 3.40 ± 2.46 3.26 ± 2.13 3.30 ± 2.06 4.72 ± 3.54 4.94 ± 3.21 4.34 ± 2.45 4.39 ± 2.35
c-PWC-Net-20 0.57 ± 1.73 1.56 ± 0.90 0.56 ± 1.36 1.17 ± 0.88 1.45 ± 2.47 2.43 ± 1.47 0.98 ± 1.45 1.48 ± 0.91

c-PWC-Net-20A 0.48 ± 1.72 1.54 ± 0.88 0.43 ± 1.24 1.03 ± 0.79 0.70 ± 1.86 1.70 ± 0.99 0.54 ± 1.20 1.09 ± 0.72
c-PWC-Net-40 0.68 ± 1.47 1.35 ± 0.87 0.69 ± 1.13 1.08 ± 0.74 1.57 ± 2.11 2.29 ± 1.24 1.10 ± 1.33 1.47 ± 0.88

c-PWC-Net-40A 0.83 ± 1.30 1.26 ± 0.87 0.60 ± 1.00 0.93 ± 0.70 0.97 ± 1.60 1.57 ± 1.00 0.64 ± 1.03 1.02 ± 0.64
c-PWC-Net-60 0.66 ± 1.31 1.20 ± 0.82 0.60 ± 0.89 0.89 ± 0.60 1.50 ± 1.89 2.08 ± 1.20 1.00 ± 1.06 1.25 ± 0.73

c-PWC-Net-60A 0.59 ± 1.44 1.27 ± 0.87 0.55 ± 0.90 0.85 ± 0.62 0.71 ± 1.55 1.42 ± 0.92 0.63 ± 0.92 0.95 ± 0.58

TABLE VII: Geometric results obtained on a subset of the
CAMUS dataset composed of 30 real patients acquired with
a GE system.

Methods dm ± σ dH ± σ

mm. mm.

FFT-Xcorr 2.27 ± 1.30 5.36 ± 2.07
c-PWC-Net 2.22 ± 1.34 4.64 ± 1.62

c-PWC-Net-60A 1.86 ± 1.05 3.81 ± 1.18

the one obtained in the recent study of [24]. This can be ex-
plained by the fact that the authors compare their method with
the results obtained by commercial methods usually based on
conventional speckle tracking algorithms. Using manual expert
annotations as references can be more difficult because they
are not based solely on image information and incorporate a
variety of complex information that may be subjective. Finally,
we observed that c-PWC-Net-60A has stable performances
even for images of lower quality (a dedicated table is provided
in the supplementary materials). This can be explained by the
fact that the training dataset included a large range of image
quality, and is encouraging as for the generalization capability
of our algorithm.

2) Real patients from the auxiliary dataset: The general-
ization capacity of c-PWC-Net-60A was assessed using the
auxiliary dataset described in Sec. III-A.3. This dataset con-
tains echocardiographic sequences acquired exclusively from

another hospital with a system from a different vendor than the
one used to create the synthetic data. Moreover, this dataset
was not used to generate new synthetic cases, so our algorithm
never integrated this new type of data during its learning phase.
From Table IX, it can first be observed that the geometric
scores remain unchanged, with a mean value of 1.81 ± 1.11
mm for dm and 3.45± 1.11 mm for dH . It is also interesting
to see that the quality of the tracking is homogeneous with
respect to the type of pathology, with a variability of 0.58
mm for dm and 0.88 for dH .

Table X shows that the same trends are true for the clinical
scores. Indeed, c-PWC-Net-60A obtained very similar results
on the Philips dataset compared to the GE one, with a mae of
2.89± 2.08 % and 2.86± 1.88 % for the GLS and MAPSE,
respectively. These results are also consistent between the
different pathological groups. A correlation plot between the
estimated GLS and the reference ones is also given in the
supplementary materials. Interestingly, a correlation coefficient
of 0.93 was obtained, which can be explained by an overall
better image quality in the Philips dataset.

During the manual contouring of the testing datasets, the
points used to define the reference contours were selected
independently from one frame to another by the expert cardi-
ologist. We therefore have no reference point tracked over the
cardiac cycle, which prevents us from computing the refer-
ence regional strain. Nevertheless, we conducted an additional
experience to assess the spatial distribution of the distance
errors between the reference and the estimated contours. In



TABLE VIII: Clinical results obtained on a subset of the CAMUS dataset composed of 30 real patients acquired with a GE
system.

Methods
GLS MAPSE

bias±σ mae±σ bias±σ mae±σ
%. %. %. %.

FFT-Xcorr 7.35 ± 3.42 7.35 ± 3.42 5.66 ± 3.43 5.66 ± 3.43
c-PWC-Net 3.96 ± 3.30 4.29 ± 2.84 3.90 ± 3.19 4.19 ± 2.78

c-PWC-Net-60A 1.85 ± 2.73 2.55 ± 2.08 1.83 ± 2.83 2.62 ± 2.09

TABLE IX: Geometric results obtained with the
c-PWC-Net-60A method on an auxiliary dataset composed of
30 real patients acquired with a Philips system.

Philips dataset dm ± σ dH ± σ

mm. mm.

Full dataset (#30) 1.81 ± 1.11 3.45 ± 1.11

Aortic Stenosis (#6) 1.72 ± 1.11 3.24 ± 1.02
Hypertrophic Cardiomyopathy (#6) 2.15 ± 1.26 3.91 ± 1.36

Ischemic (#6) 1.67 ± 1.08 3.38 ± 1.09
Non Ischemic (#6) 1.57 ± 0.95 3.03 ± 0.96

Normal (#6) 1.93 ± 1.14 3.69 ± 1.14

particular, the orientation of the long axis was first extracted
from the first frame of the processed sequence. For each
contour of the sequence, apical points were defined as the
intersection between the given contour and the line passing
by the mid-basal point with the same orientation as the one
computed on the first frame. A normalized parametrization
for each contour was then computed, where 0 corresponds
to the basal anterolateral point, 0.5 corresponds to the apex
point and 1 corresponds to the basal inferoseptum point. Mean
absolute distance between the reference and the estimated
contours were finally computed along the parametric axis. Fig.
6 displays the results obtained from the auxiliary dataset. Each
curve corresponds to one of the 30 evaluated patients. On this
figure, we can see that the errors are relatively homogeneous
on each side of the myocardium, with slightly higher average
values for the lateral side and at the apex (i.e. a mean error
of 1.4 mm on the septal side and 1.9 mm on the lateral side).

V. DISCUSSION

A. A new open access simulated ultrasound dataset
The open access dataset of [25] was generated with

synthetic deformation in lower ranges than normal strain
values. Moreover, the complex personalization procedure
in [25] limited the variability of geometries and motion
types that can be simulated. This limits the relevance of
using this dataset alone for DL training. Therefore, we
designed a solely image-based pipeline, bypassing the need
for an electromechanical model. This allowed to simulate
many cases from B-mode template cine loops on which
myocardial contours were manually annotated to generate
synthetic motion fields. As illustrated in Fig. 5, global
deformation ranges with our simulation method match those
of real sequences, although at a finer local scale disparities

Fig. 6: Evolution of the distance error along the endocardium
between the reference contours and the estimated ones using
c-PWC-Net-60A. Each blue contour corresponds to the mean
error computed over the cardiac cycle for one patient. The
mean curve is represented in black.

can occur. It is thus important to exploit this synthetic
dataset with care. Indeed, although the corresponding global
clinical indices seem relevant, the way in which the baseline
myocardial motion was generated does not allow our dataset
to be used to evaluate motion estimation algorithms. The
accuracy of the myocardial motion pattern is necessarily
limited and the proposed simulation pipeline should be
viewed as a synthetic ultrasound sequence generator for data
augmentation purposes only. With this in mind, we used
this simulation pipeline to augment the existing open-access
dataset of [25] and produced a more diverse synthetic dataset.
Tables V and VI showed the interest of our simulation
strategy, with an improvement of the geometric and clinical
scores when increasing the number of virtual patients in the
training dataset. Specifically, the geometrical errors were
mostly reduced by a factor of two thanks to the addition of
the 60 simulated patients. Our pipeline can also simulate
physical artifacts to improve the robustness of DL to these
application-specific sources of noise. We focused in this study
on reverberation artifacts. As shown in Table VI, incorporating
these artifacts in the training dataset significantly improved
both the GLS and MAPSE scores, if the same type of
artifact is present in the testing dataset. This validates the
relevance of generating synthetic images with artifacts as a
data augmentation procedure. The full set of the simulated



TABLE X: Clinical results obtained with the c-PWC-Net-60A method on an auxiliary dataset composed of 30 real patients
acquired with a Philips system.

Philips dataset
GLS MAPSE

bias±σ mae±σ bias±σ mae±σ
%. %. %. %.

Full dataset (#30) 2.85 ± 2.14 2.89 ± 2.08 2.74 ± 2.05 2.86 ± 1.88

Aortic Stenosis (#6) 2.85 ± 2.14 2.85 ± 2.14 2.22 ± 1.91 2.46 ± 1.52
Hypertrophic Cardiomyopathy (#6) 3.33 ± 2.26 3.33 ± 2.26 3.51 ± 2.27 3.51 ± 2.27

Ischemic (#6) 2.48 ± 1.59 2.50 ± 1.56 2.98 ± 1.29 2.98 ± 1.29
Non Ischemic (#6) 1.82 ± 1.92 2.01 ± 1.67 2.51 ± 1.77 2.51 ± 1.77

Normal (#6) 3.75 ± 2.84 3.75 ± 2.84 2.51 ± 3.08 2.85 ± 2.69

data is made publicly available. We claim that the access
to this synthetic dataset in addition to the one proposed
in [25] will provide valuable and complementary tools for
the research community. To better evaluate the quality of
the simulated dataset, several videos of synthetic sequences
are available at: http://humanheart-project.
creatis.insa-lyon.fr/medicaid.html. Finally, it
is worth noting that the manual annotation step involved in
the current version of the simulation pipeline can be time
consuming and is the main bottleneck to automatically deploy
our solution on more than 100 patients regardless of the type
of view during acquisition. This is the reason why we limited
our study to 100 patients acquired on the apical 4-chamber
view. In the near future, we plan to work on a fully automated
and controlled deployment of our simulation pipeline to be
able to generate larger and richer synthetic databases in terms
of diversity of cases, pathologies and acquisition view.

B. Interest of the training/inference strategies
The use of data augmentation is key for DL-based methods.

It thus appeared appealing to investigate dedicated strategies
for tracking in ultrasound. Table I shows a reduction of the
mean and standard deviation of the EPE by a factor of 2 when
using forward/backward and spaced image pairs. This can be
explained by the increase in motion diversity of the dataset
while preserving the decorrelation of the associated speckle
pattern. In parallel, we proposed a strategy for inference that
incorporates temporal consistency. Although it provided a 11%
improvement in the mean EPE, this procedure doubles the
inference time, limiting its application to scenarios for which
computation time is not a strong constraint.

C. Efficiency of the proposed transfer learning solution
We evaluated the relevance of our transfer learning solution

on both simulated and clinical data. We first benchmarked
our network against EchoPWC-Net [24] on the dataset of
[25]. As illustrated in Table IV, the results obtained by
the two networks are similar, despite different choices to
extend the original PWC-Net architecture for ultrasound image
processing. The authors of EchoPWC-Net obtained their best
results by learning directly from simulated echocardiographic
images, without any transfer learning. In contrast, we opted for
a transfer learning approach starting first on natural images,

before transferring to ultrasound data. Contrary to [24], we
assumed that first confronting the network with a wide variety
of images and motion types would enable a better generaliza-
tion ability and avoid overfitting. In [24], transfer learning was
evaluated but performed poorly. There may be several reasons
for this, including the limited variability in geometry and
motion types of the synthetic dataset used for training and the
lack of learning on the ultrasound synthetic data due to a low
learning rate. In our case, the learning rate was left unchanged
between initial and transfer learning phases. The interest of
our transfer learning approach was further validated by the
results obtained on clinical data. Indeed, Tables VII and VIII
showed that our method still significantly outperformed the
state-of-the-art FFT-Xcorr block-matching method, with 18%
and 29% improvements in the dm and dH scores, respectively.
This improvement was even bigger for the clinical indices,
with a reduction of the mae from 7.3% to 2.5% for the GLS
and from from 5.7% to 2.6% for the MAPSE. It would have
been interesting to compare our method with EchoPWC-Net
on clinical data. Unfortunately, this was impossible as neither
the testing dataset nor the commercial software they used are
accessible.

D. Capacity of generalization
Finally, we realized the first study on the generalization of

DL methods for motion estimation in echocardiography. To
this aim, we used two complementary datasets, the compo-
sition of which allowed us to conduct a multi-center, multi-
vendor and multi-disease study. Tables IX to X illustrate the
strong ability of our DL solution to provide accurate and
consistent results for a wide range of situations, from different
ultrasound machines to several pathologies with different
motion patterns. This adaptability confirms the relevance of
our transfer learning strategy as well as the quality of the
synthetic data we have generated. To better assess the quality
of the obtained results, several videos of tracking of the en-
docardial contours from both GE and Philips datasets are pro-
vided at: http://humanheart-project.creatis.
insa-lyon.fr/medicaid.html

E. Perspectives
Although our results on the clinical data are convincing, we

can observe a decrease of performance between simulation and

http://humanheart-project.creatis.insa-lyon.fr/medicaid.html
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clinical data. There is therefore room for improvement. For a
generalization point of view, it would be more interesting to
have the simulated reverberation artifacts appear at random
positions during training. Unfortunately, this implies the gen-
eration of new synthetic images when creating each new batch,
which is currently not possible due to the computation time
of the simulation (around 2 minutes per synthetic image). An
intermediate possibility would be to simulate for each patient
several sequences with reverberation artifacts at different po-
sitions and to draw the corresponding images randomly when
creating the different batches. An alternative to enhance the
generalization capability of DL methods would be to simulate
a richer dataset by changing the motion or reflection of the
scatterers to increase the variability of the image quality. It
would also be interesting to integrate out-of-plane motions as
they contribute to the deterioration of the motion estimation
in 2D. In parallel, another way to increase the accuracy of our
network would be to optimize more tasks on the same cine
loop. For instance, joint optimization of motion estimation and
segmentation tasks, as recently proposed in [22], may be an
interesting track to investigate.

VI. CONCLUSION

In this paper, we developed a deep learning method for
motion estimation in echocardiography. We showed that the
combination of a customized version of PWC-Net with a new
simulated synthetic dataset and a dedicated data augmentation
strategy outperforms the current state-of-the-art methods, both
for the tracking of endocardial borders and the estimation
of the GLS and MAPSE indices. The genericity of our
approach was also demonstrated from the first multi-center,
multi-vendor and multi-disease study. The proposed synthetic
dataset consists of 2D apical four chamber view sequences
for 100 virtual patients with or without reverberation artifacts
and with the corresponding myocardial displacement fields.
For open science purposes, the full dataset can be directly
accessed at http://humanheart-project.creatis.
insa-lyon.fr/medicaid.html.
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