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A thermochemical approach for calcium phosphate
precipitation modeling in a pellet reactor

L. Montastruc , C. Azzaro-Pantel, B. Biscans, M. Cabassud, S. Domenech
Laboratoire de Génie Chimique-UMR 5503, CNRS/INP/UPS, 5 Rue Paulin Talabot, BP 1301, 31106 Toulouse Cedex 1, France

Abstract

A common pathway for P-recovery from wastewater is phosphate precipitation as calcium phosphates. In this paper, a thermodynamic
model for phosphate precipitation is proposed based on various models of activity coefficient taking into account various calcium phosphate
phases which can crystallize in the range of pH to be considered, i.e. both dicalcium phosphate dihydrate (DCPD) and amorphous calcium
phosphate (ACP) for pH lower than 7.3 and only ACP for pH higher than 7.3. The parameters include the solubility products of ACP
and DCPD species. The observed discrepancy in liquid phase equilibrium constants reported in the literature leads to determination of an
uncertainty zone describing the precipitation domain. The results obtained offer interesting possibilities for a further optimization of process
operating conditions, i.e. determining Ca/P molar ratio, in order to reduce effluen pH (thus avoiding post-treatment) and, consequently, to

maximize reactor efficien y.

Keywords: Calcium phosphate; Precipitation; Activity coefficient Pellet reactor; Wastewater treatment

1. Introduction

Phosphorus can be found in various chemical forms in ur-
ban wastewater, which represents about 30-50% of the total
discharge of P: insoluble or dissolved organic phosphorus,
orthophosphates (until 70% sometimes) and condensed in-
organic phosphates. In France, the average concentration of
phosphorus in domestic wastewater is within the range of
15-25 mg/1, which may strongly vary from day to day, even
during the day. The discharge of phosphorus in the aqueous
natural environment leads to an excessive development of
algae and, generally to a pH increase, thus corresponding to
eutrophication. Consequently, phosphorus reduction in the
rivers is considered as a key factor in the figh against pol-
lution. The principal legislative tool in Europe for fightin
against eutrophication is the EC Urban Wastewater Treat-
ment Directive (271/91/EEC). This action came into force in
1991 and enabled water bodies to be classifie as sensitive
areas if they display symptoms of eutrophication.

Abbreviations: ACP, amorphous calcium phosphate (Ca3(POs););
DCPD, dicalcium phosphate dihydrate (CaHPO4-2H,0); HAP, hydroxya-
patite (Cajo(PO4)sOH)

In order to withdraw phosphorus from wastewater, the pel-
let reactor [1-3], particularly the so-called Crystalactor™
[4], was used. The principle of this process was to recover
phosphorus by calcium phosphate precipitation upon seed
grains in a fluidize bed. The precipitation is induced by the
addition of a base to the water, in order to bring the pH up
to 8-9, and by the addition of a calcium source. Despite its
interest, only a few studies [5] were based on a thermochem-
ical approach. Yet, the optimization of this complex precip-
itation for P-recovery implies a good chemical knowledge
of the underlying physicochemical mechanisms and requires
the development of a representative model of the involved
phenomena. In this work, carbonate and magnesium ions,
which may be encountered in wastewaters, will not be con-
sidered in the model.

Calcium phosphate precipitation is a very complex subject
involving various parameters. In particular, it depends on
calcium and phosphate ions concentrations, as well as on
supersaturation, ionic strength, temperature, ion types, pH
but also on time (solid—solid transformation) as noted in
the literature [6,12,13]. The different forms of crystallized
calcium phosphate are presented in Table 1.

It was observed [12] that phosphate precipitation by cal-
cium salts leads to the formation of both dicalcium phos-
phate dihydrate (DCPD) for a pH value of 7 and only to the
amorphous calcium phosphate (ACP) within a pH range of



Nomenclature

e electronic charge (1.60 x 10712 C)

kg Boltzmann constant (1.38 x 10723 J/K)
K solubility product

Na  Avogadro number (6.02 x 1023 mol~!)
pKs  —logio(Ks)

T temperature (K)

X phosphate conversion
zi charge number of ion
[ concentration (mol/l)

Greek letters

B supersaturation

& solvent dielectric constant (¢ = &; X &¢)
£0 vacuum permittivity (8.85 x 1072 F/m)
& relative solvent dielectric constant

A ion activity coefficien

n solution ionic strength (mol/1)

po  solvent density (kg/m®)

9-10.5. Some experiments carried out in a previous work, at
a temperature of 26 °C [12] for a pH range of 6—7.4 followed
the evolution of the different calcium phosphate forms. The
observed sequences as a function of pH are described in
Table 2.

In each case, Ostwald’s rule, which foresees that the least
thermodynamically stable phase formed is the firs one, is
respected. The evolution is not straightforward and a study
about the transformation of ACP in hydroxyapatite (HAP)
[13] for a pH range of 6.8—10.0 showed that the required
time for total conversion may vary from one hour for a pH
equal to 6.8 to more than 11h for a pH value equal to 10
(Table 3).

These studies showed that the nature of the calcium phos-
phate precipitate depends on the supersaturation of the vari-
ous species. However, it can be noted, on the one hand, that
the DCPD phase was far less observed due to its relatively
weak pKs and, on the other hand, that after the initial forma-
tion of an amorphous phase, a crystalline HAP phase was
observed. Only a single precipitated species, i.e. ACP, was
observed [10] for experiments carried out at a pH higher than
7, a phosphate concentration of 1.6 x 10~2 mol/l and a Ca/P
molar ratio equal to 3. However, the DCPD and ACP forms

Table 1
Different forms of calcium phosphate

Table 2
Transformation of the calcium phosphate crystalline forms

pH Transformation

6.0 OCP = DCPD (=) HAP
6.7 DCPD=0OCP = HAP

7.4 ACP = OCP = HAP
Table 3

Required time for total transformation of calcium phosphate in HAP as
function of pH [13]

pH Time (min)
6.8 60
7.0 130
7.5 255
8.0 400
9.0 410
10.0 700

were observed in additional experiments using the following
conditions, i.e. a pH range within 67, an initial phosphate
concentration of 3.2 x 1073 mol/l and a Ca/P molar ratio
varying from 1 to 7 [10].

Therefore, the hypothesis of the precipitation of both ACP
and DCPD seems important to examine within the frame-
work of this work. Since the precipitation was assumed to
take place in a pellet reactor, the transformation from ACP
to HAP is not possible due to a low residence time (see
Table 3).

This paper is devoted to the development of a simple
thermochemical model, enough representative of calcium
phosphate precipitation using various models of activity co-
efficient (Debye—Hiickel, Bromley and Pitzer). The model
results are then analyzed and discussed.

2. Chemical equilibrium model for calcium
phosphate precipitation

2.1. Model formulation

The objective is to propose a mathematical model for the
calculation of the conversion for the system Ca—PO4—H;O.
Only the fina stage of the calcium phosphate precipitation
is considered. Note also that solid—solid transformations are

Name Formula

pKs

Dicalcium phosphate dihydrate (DCPD)
Dicalcium phosphate anhydrate (DCPA)
Octocalcium phosphate (OCP)
Tricalcium phosphate (TCP)
Amorphous calcium phosphate (ACP)
Hydroxyapatite (HAP)

CaHPO4

CaHPO4-2H,0

CagH(PO4)3-2.5H,0
Ca3(PO4)2
Ca3(PO4)2
Cay9(PO4)s(OH)2

6.69 at 25°C [7], 6.6 at 25°C [8]
6.90 at 25°C |
49.60 at 25°C [
26.00 at 25°C |
26.52 at 25°C |
[

58.33 at 25°C

7]
7]
7]
9]
10], 25.20 at 20°C [11]
]

7
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Fig. 1. Principle of the method proposed for modeling calcium phosphate precipitation.

not taken into account. The situations simulated here as-
sumed non-dissolution of the less stable phase, and represent
no real equilibrium situations.

Precipitation of ACP can be written as

3Ca%t +2P043~ — Ca3(PO4), (1)

The model involves the mass balances for calcium and
for phosphate as a function of ACP conversion and the elec-
troneutrality equation.

The aqueous species considered are, on the one hand, for
the phosphoric acid H3PO4, HoPO4 ™, HPO42~, PO43~, and
on the other hand, the Ca?t concentration and the soluble
complexes of calcium and phosphate.

The ACP surpersaturation is define by the 8 parameter,
set at equilibrium (i.e. taken equal to zero):

1 (([Ca2+]ACaz+)3([P043—]AP043)2) o

Bacp = - In
5 K acp

The model inputs are the concentrations of calcium, phos-
phate and KOH.

The model is then used to determine if precipitation of
DCPD is possible in these new conditions, according to the
following reaction:

Ca’t + HPO42~ — CaHPO4 (3)

For this purpose, the phosphate mass balances and the
electroneutrality equation for DCPD precipitation are solved
and the DCPD supersaturation is computed according

toEq. (4):

Bocep = = In
2 K5 perp

1 (([Ca”]xCazn([HPoﬁ]prmz-)) @

If DCPD supersaturation is greater than zero, precipita-
tion of DCPD is likely to occur. The model outputs are the
conversions of both ACP and DCPD, the concentrations of
the different ions and pH. A fl wchart (Fig. 1) illustrates
the principle of the proposed method for calcium phosphate
precipitation.

The concentrations of ions and complexes are determined
from chemical equilibrium relations (see Table 4).

A sensitivity analysis has further shown that the com-
plexes involving the potassium and chloride ions did not
affect substantially the chemical equilibrium and are thus
neglected.

Table 4

Equilibrium constants for the system Ca—PO4—H,0, K; = A;B;/AB;
K; 4; B; AB;

K, Ht H,PO,4~ H3PO4
K> Ht HPO42~ H,PO,4~
K3 Ht PO43~ HPO,2~
Ky CaZt Hy,PO4~ CaHzPO4Jr
Ks Ca?t HPO42~ CaHPO,
Ks Ca2t PO43~ CaPO4*
K7 CaZt OH~ CaOH*
Ky Ht OH™ H,0




Table 5

Radius values of hydrated ions & in A found in the literature
Species Radius of the hydrated ions « (A)
H,yPO4~ 4.0 [15,16]; 5.4 [17]
HPO,2~ 4.0 [15,16]; 5.0 [17]
PO43~ 4.0 [15,16]; 5.0 [17]
CaH,PO,* 5.1 [18]; 5.4 [16,17]
CaPO4~ 4.0 [16]; 5.4 [17]

Ca’t 6.0 [15]

OH~ 3.5 [15]

H+ 9.0 [15]

Consequently, the system to be solved for ACP precip-
itation contains 12 non-linear equations with 12 variables,
i.e. concentrations of the aqueous species (11) and conver-
sion. This set of equations was solved by a Newton—Raphson
method. Since a difficul initialization phase is involved in
the numerical resolution of the above-mentioned set of equa-
tions, the number of equations was reduced to the four bal-
ance equations. The fina unknowns of the system were thus
only the concentrations [Ca®*], [PO43~], [H*] and the phos-
phate conversion. This system of equations was solved for
various initial KOH concentrations in order to analyze the
influenc of pH on conversion. Since calcium is fed in the
form of calcium chloride, the chloride concentration was
taken equal to 2 [Ca®t].

2.2. Preliminary study on activity coefficien modeling

A preliminary study on activity coefficien modeling was
carried out by using the well-known Debye—Hiickel model
(for low ionic strength). The various values found in the lit-
erature both for equilibrium constants and for the radius of
the hydrated ions were taken into account (see Table 5). De-
bye and Hiickel, recognizing this, added a correction term
to the limiting law. In assuming the ions to be point charges
they ignored the fact that it is impossible for ions to in-

9,5

where bpH = v/ 2e“NApo/ekB L and CpH 1S a constant equal
to 0.055.

Note that the distance « is not the same for all ions in the
system (Table 5). The main advantage of this model is to
consider the characteristics of each ion in solution [14]. Fur-
thermore, ion—ion and ion—solvent interactions were taken
into account by the addition of a new parameter Cpy, which
represents the reduction of the dielectric constant value as
the solution was more concentrated. This relation is valid for
ionic strength values lower than 0.1 M, which is typically
the case in this work (1 < 1.52 x 102 M).

3. Results and discussion

3.1. Dypical results -

Fig. 2 shows the evolution of pH and phosphate conver-
sion as a functionofthe KOH-quantity added in the mix-
ture with the Debye—Hiickel activity coefficien model. It
shows two successive “zones” corresponding, for low pH,
to the successive formation of ACP and DCPD and, for high
pH, only to ACP crystallization. Another result concerns
the evolution of ACP and DCPD precipitated amounts as a
function of the pH value (see Fig. 3). This result confirm
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Fig. 4. Comparison between the experimental values and the precipitation model with ACP and DCPD.

that the DCPD form cannot thermodynamically exist for pH
values higher than 7.3. The curve relative to DCPD repre-
sent the corresponding amount which is likely to precipitate.
The DCPD quantity decreases with pH whereas the ACP
increases in the pH range (6.5-8.5).

The values for the equilibrium constant used in this study
were selected by Vieillard [19] from thermodynamical con-
cepts (enthalpy of formation and specifi heat). This ap-
proach is interesting since it can be used for a further inves-
tigation on the influenc of temperature on equilibrium con-
stants. Experimental points available in the literature [5] are
used to validate the model in this article (Fig. 4). They cor-
respond to an initial concentration in phosphorus of 50 mg/I
with a Ca/P molar ratio equal to 3. The simulation fittin
was carried out by adjusting the solubility constant values
of both mineral species (ACP and DCPD).

The pKg value for ACP which corresponds to the best
fittin of the experimental results is equal to 25.7 for pH
values higher than 7.3. This pK; value has the same order
of magnitude than the average one reported in the literature
(see Table 6). Then, the pK; values for DCPD are fi ed to

6.54 when considering the zone with pH lower than 7.3, thus
implying precipitation of ACP and also DCPD, in order to
adjust the model with the experimental points (Fig. 4).

3.2. Use of more sophisticated coefficien
activity modeling

Among various models for estimating ionic activity coef-
ficient in complex aqueous electrolytes, the most successful
and widely applied models are the Pitzer and Bromley mod-
els [14]. The difficult involved in the use of such models
is that they require a lot of parameters (about 100 constants

Table 6

pK; values from literature for ACP and DCPD

Name pKs at 25°C

ACP 26.52 [5]; 25.2 [11]
26.68 [20]

DCPD 6.69 [7]; 6.6 [8]
5.7 [21]
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for ion-ion interaction in the system Ca—K-PO4—CIl-H,O
with Pitzer model). Let us recall that the ionic activity coef-
ficien of ion ‘i’ in a multicomponent solution at 25 °C with
the Bromley method (valid for strong electrolyte to ionic
strengths of 6 M) is given by

Apuz? It
logy,=——""—+F 7
gVi 1+ \/ﬁ i (N
The F; term is a summation of interaction parameters:
®)

Fo=) BiZim;
J

where j refers to an anion in the solution and i refers to a
cation:

Zj= (i +z)) )
and m; is the molality of ion j:
0.06 + 0.6B)|z;z;
;= ( + )Ilejl2 (10)
(14 (1.5/]zizjDu]
B=B;+ B; +6;; (11)

The values of B; and §; used in the Bromley equation are
reported in Table 7. Results obtained with Debye—Hiickel
(lower 0.1 M) and Pitzer models are compared in Fig. 5, the

Table 7

Values of B; and §; for individuals ion in aqueous solutions at 25 °C [14]
Tons i B; 8i

HT 0.0875 0.103
K* —0.0452 —0.079
Ca®* 0.0374 0.119
Cl~ 0.0643 —0.097
HyPO4~ —0.052 0.20
OH~™ 0.076 —1.00
HPO,2~ —0.010 —0.57
PO,3~ 0.024 —0.70
CaH,PO4TCaOH ' CaPO,4~ 0 0

results are quite similar. The maximum discrepancy (2.5%)
is obtained for a pH of about 7.3. The conversion obtained
with the Bromley model is 65.78% (respectively 67.42%
with Debye—Hiickel). In fact, the Debye—Hiickel model is
well suited for predicting short distance interactions, which
is typically the case for very low concentrations (lower to
0.1 M).

A design of experiments on activity coefficient was
carried out and showed that only four coefficient have an
influenc on the equilibrium curve, i.e. Ht, Ca?*, HPO42~
and H,PO4 ™. For this investigation, the following range for
the activity coefficient was used,i.e. 0.8 Apgy < A < 1.2Apy
(Apy is the value obtained with Debye—Hiickel model).
Besides, the analysis of the concentrations of the different
species showed that only fi e species were to be taken into
account (C1~, Kt, Ca?t, HPO42~ and H,PO4 ™), since the
other species are present in too low concentrations. Their
effect on activity coefficient can be relatively small and
was neglected.

In Pitzer’s method, the activity coefficient for a cation C
and an anion A in a multicomponent solution are given in
Appendix A.

The Pitzer parameters Bo, B1, B2, C®, 0 and ¥ used in
this study are given explicitly in Table 8.

According to the results, Pitzer, Bromley and Debye—
Hiickel models present very similar trends both quantita-
tively and qualitatively, as reported in Fig. 5. However, the
CPU time is twice higher when Pitzer or Bromley models
were used instead of Debye—Hiickel model. Furthermore,
as expected, the sophisticated models of Pitzer or Bromley
require a delicate initialization phase carried out from the
results obtained from the Debye—Hiickel model.

3.3. Significanc of the equilibrium constants

The evolution of conversion as a function of pH is re-
ported on Fig. 6. A database for constants was established



Table 8
Pitzer parameters used in this study

Table 9
Equilibrium constants values in the liquid phase found in the literature

Bo Bi c? pK at 25°C
H+/CI™ [22] 0.1775 0.2945 0.0008 < 2.125 [25]; 2.03 [26]; 2.2 [8]; 2.147 [27];
Ht/HPO42~ [23] Ignored Ignored Ignored 2.143 [28]; 2.148 [33]
H+/H,POs~ [23] 0.0227 34 0 K> 7.207 [25]; 7.19 [26]; 7.0 [8]; 7.205 [27]; 7.199 [28];
K*/Cl~ [22] 0.04835 0.2122 —0.00084 7.2 [8,31,33]
K+/HPO42~ [24] 0.02475 1.2743 0.01639 K3 12.00 [8,25]; 12.03 [26]; 12.343 [27,28]; 12.3 [8];
K*/HyPO4~ [24] —0.0678 —0.1042 0 12.325 [34]
Ca2+/Cl- [24] 0.3159 1.614 —0.00034 Ks 1.44 [29,35]; 1.408 [30]; 1.4 [32]
Ca*/HPO,>~ [24] -16 0 0 Ks 2.70 [8]; 2.61 [29]; 2.739 [30]; 2.5 [32]; 2.6 [35]
Ca+t/HyPOs~ [24] —0.29 0 0 K 6.459 [30]; 6.47 [26]; 6.5 [32]

) " K7 1.23 [35]
H+/K* 0.005 [22]  Cl-/H/K* —0.011 [22] .
H+/Ca2+ 0092 [22]  Cl/Ca¥*/K* 0,025 [22] for the pKs.pecpD .uncertalnly. At firs level, the coqstants
K+/Ca?t 0.032 [22] CI=/H,PO4~/K*t  —0.01 [24] relative to the solid phase were fi ed and the analysis was
Cl~/HyPO4~ 0.1 [24] Cl~/Ca>*/H* —0.015 [24] performed on six intervals for liquid phase thermodynam-
HPO4*~/HPO4~ Ignored [23] ics constants from the reported literature values. The results
CI=/HPO4*~ —0.105 [24]

from a literature review (Table 9). Different values for hy-
drated ions radius « were found (Table 5) but a preliminary
sensitivity analysis showed that they have a weak influenc
on the results (due to the presence of a logarithm). The val-
ues which have been finall adopted for modeling are pre-
sented in italics in Tables 5 and 9.

To quantify the influenc of the constants and to deter-
mine the error range, a two-stage method based on design of
experiments [36,37] was achieved. The influenc of eight pa-
rameters or equilibrium constant values (six in liquid phase
and two in solid phase) was studied. The interval limits for
the liquid phase constants were obtained from a literature
analysis (see Table 9) whereas the solid phase constants
(pKs) were determined with a pK; ocp uncertainty equal to
2% (25.19 < pKs < 25.70) and 5% (6.38 < pK; < 6.54)

100

showed that only three equilibrium constants K3, K3, K5 had
a significan effect in the system resolution. At second level,
the design of experiments was carried out with K3, K3, Ks
and also with the solubility products of calcium phosphates
(determined with respect to the observed experimental data)
as parameters. The error range obtained is shown on Fig. 6.
It can be noted that a small variation in these parameters
has a strong influenc on phosphate conversion. The Pitzer
parameters may be partly derived from the K values and are
likely to be influence as well (Table 10).

Let us note that low variations in equilibrium constants
involve strong variations on the equilibrium curves.

3.4. Influenc of initial conditions

The influenc of the initial conditions during cal-
cium phosphate precipitation in either neutral or basic
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Table 10

Equilibrium constants values used for quantify this influenc at 25°C
pK (lower pK (used in pK (upper
curve) the model) curve)

pKi 2.03 2.147 2.2

pK> 7.00 7.205 7.207

pK; 12.00 12.343 12.343

pKa 1.40 1.408 1.44

pKs 2.5 2.739 2.739

pKe 6.459 6.459 6.5

environment was analyzed. In particular the Ca/P molar ra-
tio while keeping the same initial phosphate concentration
(50 mg of P) was studied. The obtained results are shown
in Fig. 7. The results suggest possibilities for process opti-
mization, i.e. for setting operating conditions. The increase
in the initial concentration of calcium for the same effluen
pH leads to a higher phosphate conversion. For pH equal
to 8.5 (superior limit of river discharge in France), an in-
crease in calcium concentration of 2.5 times improves the
phosphate conversion of about 5%. On the contrary, for a
phosphate conversion value set at 98%, a simulation was
performed to compute the corresponding effluen pH. At
this level, the increase in the molar Ca/P ratio allows to
satisfy the effluen pH required for the admissible refusal
in river.

4. Conclusions

This study improves the understanding of the precipita-
tion of two calcium phosphates in either neutral or basic
environment from a thermodynamical point of view. It
gives for high pH values a domain in which only ACP
precipitation is likely to occur and for neutral pH values
a zone in which conditions of precipitation of ACP and
DCPD are likely to take place. The model only takes into

account thermodynamical concepts. Different activity co-
efficien models were tested (Debye—Hiickel, Bromley and
Pitzer). The results obtained have shown that the choice of
the activity coefficien model has not a great influenc in
the range of the operating conditions tested in this study.
The model developed in this study is now used for vali-
dation and determination of process operating conditions
for phosphate precipitation in a fluidized-be reactor. The
major interest of this model is to evaluate both quantita-
tively and qualitatively the precipitated calcium phosphates.
The conversions and pH values found in industrial practice
can be predicted. The model will now be embedded in a
global optimization loop with the Gibbs’ free energy as a
criterion to fin the quantities and composition of phases
at equilibrium.
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Appendix A. Pitzer model

Inyc = zi_fl’ + Zma {ZBca + (22”%&) CCa}
a c
+ch {2@(:0 + Zmacha}
c a

+D° mema(2% Bly + 1241Cea)

c a
+0-522mama/’>p&m/ (A.D)
a o



Inya =227+ me§2Bea + (2D maza | Cen
c a

—i—Zma 20p4 + chwAac
a c
+Y ) mema(22 B, + 12-1Ce0)
c a
+O~SZchmc’ Yee'a (A.2)
c ¢

where

__ Vi 2
1Y = A¢|:1+bﬁ+bln(l+bﬁ)} (A3)

1 e 3 [poNa
4o=3 (7amr) V" (A9

and b = 1.2, z; = ionic charge, m; = ionic molality, a =
subscript denoting anions, ¢ = subscript denoting cations.

2
B = o+ %{1.0 — (1.0 4 a1/p) exp(—a1/1))}
1
2
+£{1.0 — (1.0 — o/ 1) exp(—a2/1)} (A.5)
2
B =P 10_q 2
i _az,uz{_ .0 — (1.0 4 a1/p+0.5a7 1) exp(—a1 /1) }
1
2
+a2—1122{—1.0—(1.0+a2«/ﬁ+0.5a%p¢) exp(—a2/1)}
2

(A.6)

where o = 2.0 for 1-1, 2-1, 3-1, 4-1, and 5-1 electrolytes,
a1 = 1.4 for 2-2 electrolytes, oy = 0.0 for 1-1, 2-1, 3-1,
4-1, and 5-1 electrolytes, oy = 12.0 for 2-2 electrolytes,
Bo, B1, B2, C® = Pitzer parameter, 6 = Pitzer interaction
parameter, i = Pitzer ternary interaction parameter.
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