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Abstract
Mathematical modeling is a powerful tool that enables researchers to describe the experimentally observed dynamics of
complex systems. Starting with a robust model including model parameters, it is necessary to choose an appropriate set
of model parameters to reproduce experimental data. However, estimating an optimal solution of the inverse problem, i.e.,
finding a set of model parameters that yields the best possible fit to the experimental data, is a very challenging problem. In
the present work, we use different optimization algorithms based on a frequentist approach, as well as Monte Carlo Markov
Chain methods based on Bayesian inference techniques to solve the considered inverse problems. We first probe two case
studies with synthetic data and study models described by a stochastic non-delayed linear second-order differential equation
and a stochastic linear delay differential equation. In a third case study, a thalamo-cortical neural mass model is fitted to
the EEG spectral power measured during general anesthesia induced by anesthetics propofol and desflurane. We show that
the proposed neural mass model fits very well to the observed EEG power spectra, particularly to the power spectral peaks
within δ− (0 − 4 Hz) and α− (8 − 13 Hz) frequency ranges. Furthermore, for each case study, we perform a practical
identifiability analysis by estimating the confidence regions of the parameter estimates and interpret the corresponding
correlation and sensitivity matrices. Our results indicate that estimating the model parameters from analytically computed
spectral power, we are able to accurately estimate the unknown parameters while avoiding the computational costs due to
numerical integration of the model equations.
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6 Université de Lorraine, Loria, UMR nō 7503,
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Introduction 0

Although mathematical modeling plays a key role in 1

describing the dynamics of complex systems, it still remains 2

a challenging problem (Banga and Balsa-Canto 2008; van 3
Riel 2006; Stelling 2004; Kell 2004). In order to build a 4

successful model that allows one to reveal the mechanism 5

underlying a complex system, we first need to select a 6

robust model whose output is consistent with a priori avail- 7

able knowledge about the system dynamics (Kitano 2002; 8
Rodriguez-Fernandez et al. 2006a; Rodriguez-Fernandez 9

et al. 2013). The selected model should be able to repro- 10

duce, at least qualitatively, observed specific features in 11

experimental data. This task is referred to as structure 12
identification (Lillacci and Khammash 2010; Tashkova 13

et al. 2011). The subsequent task is parameter estima- 14

tion (Ashyraliyev et al. 2008, 2009). After the model 15
identification, one needs to determine the unknown model 16

parameters from the measurements. Since the output of a 17

model depends on the values of its parameters, reproducing 18
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specific features of the experimental measurements requires19

selecting a suitable set of the unknown parameters. There-20

fore, parameter estimation is a very important component of21

the model developing procedure. Broadly speaking, given22

a set of experimental data and a particular mathemati-23

cal model, the aim of parameter estimation (also known24

as model calibration) is to identify the unknown model25

parameters from the measurements for which substituting26

the estimated parameters in the model equations reproduces27

the experimental data in the best possible way (Rodriguez-28

Fernandez et al. 2006a). Nevertheless, finding a set of model29

parameters which accurately fits the recorded data is an30

extremely difficult task, especially for nonlinear dynamic31

models with many parameters and constraints. Numerical32

integration of differential equations and finding the best33

parameter values in the entire search domain, i.e. find-34

ing the global minimum, are two major challenges in the35

parameter estimation problems (Zhan and Yeung 2011). In36

particular for biological systems, these challenges need to37

be addressed in nonlinear high-dimensional models.38

In general, there are two broad classes of approaches39

for solving parameter estimation problems: the frequentist40

(classic) inference and Bayesian (probabilistic) estimation41

(Kimura et al. 2005; Myung 2003; Gelman et al. 2004).42

Both approaches have been applied successfully in a wide43

range of scientific areas with different applications while44

one over the other is preferable in specific problems (Green45

and Worden 2015; Prasad and Souradeep 2012; Lillacci and46

Khammash 2010; Ashyraliyev et al. 2009). Bayesian infer-47

ence gives the full probability distribution of the parameters48

rather than single optimal values as in frequentist infer-49

ence. However, the former approach is more complex and50

more expensive in terms of computational cost than the51

latter (Lillacci and Khammash 2010). In practice, the fre-52

quentist framework is more simple and more suitable for53

high-dimensional models (Tashkova et al. 2011).54

It is important to point out that there are various algo-55

rithms in both frequentist and Bayesian inferences, and no56

single algorithm is the best for all problems or even for a57

broad class of problems (Mendes and Kell 1998; Gelman58

et al. 2004; Haario et al. 2006; Girolami and Calderhead59

2011; Kramer et al. 2014). Specifically, in the frequentist60

approach the choice of the optimization technique com-61

monly depends on the nonlinearity of the model and its con-62

straints, on the problem dimensionality as well as on the a63

priori knowledge about the system.64

In the present study, we employ different algorithms65

within both frequentist and Bayesian inference frame-66

works. As frequentist techniques, we apply the Levenberg-67

Marquardt (LM) algorithm as a gradient descent local68

search method, the algorithm by Hooke and Jeeves (HJ) as69

direct local search method, in addition to Particle Swarm

Optimization (PSO), Differential Evolution (DE), Genetic 70

Algorithm (GA), and Covariance Matrix Adaptation Evolu- 71

tion Strategy (CMA-ES) as stochastic global search meth- 72

ods that have previously been compared and/or shown to 73

be efficient for fitting electrophysiological neuronal record- 74

ings (Buhry et al. 2012). We also use Metropolis-Hastings 75

(MH) and Simulated Annealing (SA) as the most estab- 76

lished Monte Carlo Markov Chain (MCMC) algorithms, 77

which are widely used in the Bayesian framework. Fur- 78

thermore, we evaluate the performance of aforementioned 79

algorithms to determine which method is more suitable for 80

each of the parameter estimation problem considered in this 81

study. 82

It is well known that the dynamics of a majority of 83

biological systems can be described by a set of coupled 84

Ordinary Differential Equations (ODEs) or Delay Differen- 85

tial Equations (DDEs) (Mendes and Kell 1998). Moreover, 86

biological systems are often subject to external random 87

fluctuations (noise) from signal stimuli and environmen- 88

tal perturbations (Daunizeau et al. 2009; Breakspear 2017). 89

Despite the importance of stochastic differential equations 90

(SDEs) in brain stimulation (Deco et al. 2009; Herrmann 91

et al. 2016) and describing biological systems (Wilkinson 92

2011; Hutt et al. 2016), their parameter inference by a 93

rigorous analytical approach have received relatively little 94

attention and substantial challenges remain in this context. 95

This motivated us to focus on the parameter estimation of 96

systems whose dynamics are governed by SDEs. 97

More precisely, a parameter estimation problem is shown 98

for a neurophysiological model describing recorded elec- 99

troencephalographic data (EEG) obtained under anesthesia. 100

We show that the proposed neural mass model is able to 101

fit very well to observed EEG spectral power peaks in the 102

δ− (0 − 4 Hz) and α− (8 − 13 Hz) frequency ranges. 103

For illustration reasons, firstly two in silico parameter esti- 104

mation problems are presented using synthetic data. These 105

case studies consider very basic linear stochastic models and 106

illustrate in detail the analysis applied. 107

After the parameter estimation task, another important 108

challenge is the identifiability of the estimates (Ashyraliyev 109

et al. 2009; Rodriguez-Fernandez et al. 2006b). Identifia- 110

bility analysis allows one to estimate whether the model 111

parameters can be uniquely determined by the given exper- 112

imental data (Rodriguez-Fernandez et al. 2013). For each 113

considered case study, we employ different methods to 114

address this issue. The confidence regions of the estimates 115

are plotted and the correlation and sensitivity matrices are 116

analyzed to assess the accuracy of the estimates. 117

Several previous methods need to integrate differential 118

equations to estimate model parameters, which is a major 119

time consuming problem for the parameter estimation of 120

nonlinear dynamic systems (Tsai and Wang 2005). In this
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work, we present a general methodological framework for121

estimating the parameters of systems described by a set of122

stochastic ODEs or DDEs. In our proposed scheme which123

is applicable in both frequentist and Bayesian inference124

frameworks, we compute analytically the power spectrum125

of model solutions by the aid of the Green’s function and126

fit these to the spectral power of measured data. This com-127

bination of techniques provides high estimation accuracy128

in addition to a great advantage in terms of optimiza-129

tion speed, because it allows us to avoid the numerical130

integration of model equations.131

The following section presents the acquisition proce-132

dure of experimental EEG under anesthesia. Then, we133

briefly review the parameter estimation algorithms and134

present the mathematical formulation of identifiability anal-135

ysis in details. Next, we provide the analytical derivation136

of system spectral power for the two synthetic case stud-137

ies and the thalamo-cortical model carried out in this work.138

The subsequent results section provides the performance139

of employed optimization algorithms for the synthetic and140

neurophysiological models. We can show the different sen-141

sitivity of model parameters in the thalamo-cortical model.142

Moreover, employing EAs yields very good model fits to the143

EEG spectral features within δ− and α−frequency ranges144

measured during general anesthesia. A final patient group145

study reveals which model parameters vary statistically sig-146

nificantly between experimental conditions and which are147

robust towards conditions.148

Materials and Methods149

EEG Acquisition during General Anesthesia150

The details of the patient management and EEG acquisition151

is described in Sleigh et al. (2010). In brief, frontal (FP2-152

FT7 montage) EEG was obtained from adult patients under153

general anesthesia that was maintained using either propofol154

and fentanyl, or desflurane and fentanyl. The hypnotic drugs155

were titrated to obtain a bispectral index value of 40-50156

as per clinical guidelines. The EEG data were collected157

2 minutes before, and 2 minutes after, the initial skin158

incision. The signal was digitized at 128/sec and with159

14 bit precision. To remove line artefact it was band-pass160

filtered between 1 Hz and 41 Hz.161

Objective Function162

The most widely used criteria to evaluate the goodness of163

a model fit are the maximum likelihood estimation (MLE)164

and the least-squares estimation (LSE) (Bates and Watts165

1988; Villaverde and Banga 2013). MLE implies Bayesian

inference and was originally introduced by R.A. Fisher 166

in 1912 (Aldrich 1997). It searches parameter space to 167

obtain the parameter probability distributions that produce 168

the observed data most likely (Kay 1993). In other words, 169

the MLE assesses the quality of estimated parameters by 170

maximizing the likelihood function (or equivalently the log- 171

likelihood function which is easier to work mathematically). 172

The likelihood function is the probability of obtaining 173

the set of observed data, with a given set of parameter 174

values. The set of parameters that maximizes the likelihood 175

function is called the maximum likelihood estimator. On the 176

other hand, choosing LSE method (frequentist inference), 177

we search for the parameter values that minimize the 178

sum of squared error (SSE) between the measured and 179

the simulated data (Ljung 1999; Myung 2003). As it is 180

widely known, if we assume that the experimental errors are 181

independent and normally distributed and assuming that the 182

measurement noise is uncorrelated and obeys a Gaussian 183

distribution, the MLE is equivalent to LSE (Bates and Watts 184

1980; Ljung 1999): 185

argmax
p

{P(p)} = argmin
p

{E(p)} , (1)

where 186

P(p)) = ln




Ny∏

i=1

(
1

2πσ 2
i

) 1
2




−1
2




N∑

i=1





(
Ŷi − Yi(t,p)

)2

σ 2
i







 , (2)

E(p) =
Ny∑

i=1





(
Ŷi − Yi(t,p)

)2

σ 2
i



 , (3)

where E(p) is the weighted least-squares fitness function, 187

Ŷi denotes the measured data in the i-th data point, Yi(t,p) 188

represents the corresponding model prediction at time point 189

ti , p is the parameter vector being estimated, σi are 190

the measurement errors (the variance of the experimental 191

fluctuations), and Ny is the number of sampling points 192

of the observed data. In addition, if we assume that all 193

variances σ 2
i are equal, Eq. 3 simplifies to the well-known 194

chi-squared error criterion (Walter and Pronzato 1997) 195

χ2 =
Ny∑

i=1

(
Ŷi − Yi(t,p)

)2
. (4)

When minimizing the standard chi-squared error criterion 196

failed to reveal the power peaks in certain frequency bands,
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we employ a modified chi-squared error criterion referred197

to as the biased chi-squared function given by198

χ2=c1

N1∑

i=1

(
Ŷi − Yi(t,p)

)2
+ c2

N2∑

i=N1

(
Ŷi −Yi(t,p)

)2

+c3

N3∑

i=N2

(
Ŷi −Yi(t,p)

)2
+ c4

Ny∑

i=N3

(
Ŷi −Yi(t,p)

)2
,

(5)

where c1, c2 and c3 c4 are manually chosen constants199

depending on the observed spectral peaks in the estimation200

problem. Let us consider a power spectrum that exhibits201

two peaks in δ− (0 − 4 Hz) and α− (8 − 13 Hz) fre-202

quency ranges. We can choose N1, N2, and N3 in such203

a way that the δ− and α− peaks fall within the ranges204

[1, N1] and [N2, N3], respectively. Then, large values of c1,205

c3 forces the model output to be fitted with the observed206

spectral peaks within these frequency ranges. It is trivial that207

c1 = c2 = c3 = 1 yields the standard chi-squared error208

criterion given by Eq. 4. To fit the model’s power spectrum209

to the empirical data, we take the logarithm of the spec-210

tral power i.e., Yi(t,p) = log(PSDmodel(fi, p)), where fi211

is the i-th frequency value and p contains all the unknown212

model parameters being estimated. Here, PSDmodel is213

the analytically derived power spectrum derived in214

Section “Case Studies”.215

Parameter Estimation Algorithms216

Optimization methods can be broadly divided into two217

major groups known as local optimization methods and218

global optimization methods. Local optimization methods219

can be further subdivided into two categories. First, gra-220

dient based methods involve the use of derivative infor-221

mation, such as Levenberg-Marquardt and Gauss-Newton222

algorithms. Second, pattern search methods, such as Nelder-223

Mead simplex and Hooke-Jeeves algorithms, which involve224

the use of function evaluations only and do not need the225

derivative information. Local optimization methods start226

with an initial guess for the parameter values and, in227

order to obtain satisfactory results, one has to manually228

tune the initial parameters. Although the local search algo-229

rithms converge very rapidly to a solution, they can easily230

get trapped at a local minimum if the algorithm is not ini-231

tialized close to the global minimum (Moles et al. 2003;232

Mendes and Kell 1998; Rodriguez-Fernandez et al. 2006a;233

Hamm et al. 2007). To overcome such drawbacks, stochas-234

tic global optimization methods have been widely used for235

the solving of nonlinear optimization problems (Rodriguez-236

Fernandez et al. 2006b; Svensson et al. 2012; Tashkova237

et al. 2011). These methods need neither an initial guess for238

the parameters nor the gradient of the objective function.239

Although stochastic global search methods cannot guaran- 240

tee the convergence to a global optimum, they are particu- 241

larly adapted to black-box optimization problems (Pardalos 242

et al. 2000; Papamichail and Adjiman 2004; Lera and 243

Dergeyev 2010). These methods are also usually more 244

efficient in locating a global minimum than deterministic 245

methods, which are based on the computation of gradient 246

information (Georgieva and Jordanov 2009; Cuevas et al. 247

2014). 248

There are several types of stochastic global optimization 249

methods, which are mostly based on biological or physical 250

phenomena (Corne et al. 1999; Fogel 2000). Evolutionary 251

algorithms (EAs) are stochastic search methods, which 252

incorporate a random search principle existing in natural 253

systems including biological evolution (e.g. GA inspired by 254

mating and mutation), artificial evolution (if one does not 255

deal with binary data), and social swarming behavior of 256

living organisms. As an example for the latter algorithm, 257

Particle Swarm Optimization is inspired by birds flocking 258

and fish schooling. 259

In this study, we use the most popular optimization 260

algorithms namely Levenberg-Marquardt (LM) algorithm 261

and Hooke and Jeeves (HJ) algorithm selected from local 262

search category, and Particle Swarm Optimization (PSO), 263

Differential Evolution (DE), Genetic Algorithm (GA), and 264

Covariance Matrix Adaptation Evolution Strategy (CMA- 265

ES) from stochastic global search methods. Furthermore, 266

we use Metropolis-Hastings (MH) and Simulated Annealing 267

(SA) as the popular sampling algorithm belonging to Monte 268

Carlo Markov Chain (MCMC) methods. In addition, to 269

confirm our results obtained by MH, we have used PyMC, 270

which is a probabilistic programming language to perform 271

Bayesian inference in Python (Patil et al. 2010). The 272

details of these algorithms are explained in Appendix A in
Q2

273

Supplementary Material. 274

Identifiability Analysis 275

Once the model parameters have been estimated, it is nec- 276

essary to determine the identifiability of the estimates, i.e., 277

whether the model parameters can be uniquely determined 278

by the given experimental data (Raue et al. 2011, 2009; 279

Quaiser and Monnigmann 2009). This task is referred to as 280

practical identifiability of the estimates. Several approaches 281

have been suggested to assess the reliability and accuracy 282

of the estimated parameters. In what follows, we describe 283

the most widely used metrics for assessing the accuracy of 284

estimates. 285

Confidence Regions 286

A widely used method in statistical inference to assess 287

the precision of estimated parameters is constructing the 288
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confidence regions (Draper and Smith 1998; Rawlings et al.289

1998). A confidence region with the confidence level of290

(1 − α)% is a region around the estimated parameter that291

contains the true parameter with a probability of (1 − α).292

Since the sum of squares function is quadratic in linear293

models, the confidence regions for linear problems with294

Gaussian noise can be obtained exactly as the ellipsoid (Kay295

1993)296

(p∗ − p)#C−1
lin (p∗ − p) ≤ NpF1−α

NP ,Ny−Np
. (6)

It is centered at the estimated parameter p∗ with principal297

axes directed along the eigenvectors of C−1
lin , where Clin298

denotes the covariance matrix of the linear model, F is299

the Fisher distribution with Np and Ny − Np degrees of300

freedom, Np and Ny are the number of model parameters301

and the total number of data points, respectively.302

In contrast, for nonlinear models there is no exact303

solution to obtain the confidence regions (Marsili-Libelli304

et al. 2003). In these cases, we have to approximate the305

covariance matrix to extend (6) for nonlinear models leading306

to (Seber and Wild 1997; Ljung 1999)307

(p∗ − p)#C−1
approx(p

∗ − p) ≤ NpF1−α
NP ,Ny−Np

. (7)

Here Capprox is an approximation of covariance matrix and308

it can be computed by either the Fisher information matrix309

(represented by CJ ), or the Hessian matrix (represented by310

CH ).311

Applying the Fisher matrix CJ = FIM−1, the312

approximate covariance matrix is given by (Rodriguez-313

Fernandez et al. 2006a)314

CJ = s2
(
J (p)#WJ(p)

)−1
, (8)

where s2 = E(p∗)/(Ny −Np) is an unbiased approximation315

of the measurement variance,316

J (p) = ∂Y (t, p)

∂p
|p∗

is an Ny × Np matrix indicating the Jacobian matrix317

evaluated at p∗, and W is a weighting diagonal matrix318

with elements w2
ii = 1/σ 2

ii in the principal diagonal.319

Consequently, by substituting (8) into (7), the confidence320

region obtained with the Fisher matrix reads321

(p∗−p)#
(
J (p)#WJ(p)

)
(p∗−p) ≤ Np

E(p∗)
Ny −Np

×F1−α
NP ,Ny−Np

. (9)

In another approach, the approximate covariance matrix322

can be derived from the curvature of the objective function323

through the Hessian matrix (Marsili-Libelli et al. 2003):324

CH = 2s2H(p)−1, (10)

where 325

H(p) = ∂2E(p)

∂p∂p# |p∗ .

Therefore, the confidence region based on Hessian matrix 326

reads 327

(p∗−p)#H(p)(p∗−p) ≤ 2Np
E(p∗)

Ny − Np
F1−α

NP ,Ny−Np
. (11)

It is important to note that if both approaches yield the 328

same confidence ellipsoids, the estimation converges to the 329

true parameters. Otherwise, any discrepancy between them 330

indicates an inaccurate estimation (Marsili-Libelli et al. 331

2003; Rodriguez-Fernandez et al. 2006b). 332

Another way of constructing the confidence regions in 333

non-linear models is known as the likelihood method. In this 334

approach, an approximate confidence region is defined as 335

all the parameter sets that satisfy (Donaldson and Schnabel 336

1985) 337

E(p) ≤ E(p∗)
(

1 + Np

Ny − Np
F1−α

NP ,Ny−Np

)
. (12)

In general, the confidence regions constructed by this 338

approach do not have to be elliptical. Furthermore, since 339

the (12) does not depend on the linearizion, the confi- 340

dence regions obtained through the likelihood method are 341

more precise than those computed through the approxi- 342

mate covariance matrix (Schmeink et al. 2011). Generat- 343

ing likelihood-based confidence regions requires a large 344

number of function evaluations, which can be compu- 345

tationally expensive. Despite this fact, since minimiz- 346

ing an objective function with metaheuristic optimiza- 347

tion algorithms like PSO is performed through func- 348

tion evaluations, using them is a suitable way to 349

obtain the likelihood confidence regions (Schwaab et al. 350

2008). In this work, we employ the PSO algorithm 351

to compute the likelihood confidence regions which 352

will be compared with those obtained through the 353

covariance approximation. 354

Correlation Analysis 355

The correlation matrix quantifies the possible interrelation- 356

ship among the model parameters, which can be obtained 357

from the covariance matrix. The correlation coefficient 358

between the i-th and j -th parameter is defined by 359

Rij = Cij√
CiiCjj

(13)

where Cij is the covariance between the i-th and j -th 360

parameter estimates (Rodriguez-Fernandez et al. 2006a). 361

By virtue of the conceptual definition of the correla- 362

tion coefficient, the correlation among parameters leads to 363
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non-identifiability problems (Li and Vu 2013; Rodriguez-364

Fernandez et al. 2006b). Thus, highly correlated parameters365

cannot be uniquely estimated, because the output modifica-366

tion due to small change in one of the correlated parameter367

can be compensated by an appropriate change in the other368

parameter.369

Sensitivity Analysis370

Sensitivity analysis is an appropriate way to identify which371

model parameters contribute most to variations in model372

output due to the changes in model input (Rateitschak et al.373

2012). A local sensitivity coefficient measures the influence374

of small changes in one model parameter on the model375

output, while the other parameters are held constant (Ingalls376

2008; Zi 2011). The local sensitivity coefficients can be377

defined by (Brun et al. 2001)378

'(pj ) = D(J (p)#WJ(p)), (14)

where D denotes the main diagonal elements of a matrix. In379

addition, the local sensitivity matrix can be determined by380

computing the curvature of the objective function through381

the Hessian matrix (Bates and Watts 1980)382

((pj ) = D(H(p)). (15)

The sensitivity analysis can shed light on the identifiabil-383

ity of model parameters. Making a small change in a very384

sensitive model parameter causes a strong response in the385

model output, which indicates that the parameter is more386

identifiable. On the contrary, a model parameter with low387

sensitivity is more difficult to being identified, because any388

modification in an insensitive parameter has no influence on389

the model output (Rodriguez-Fernandez et al. 2013).390

Case Studies391

Firstly, in order to illustrate the performance and capability392

of the parameter estimation method carried out in this work,393

we estimate the model parameters of two case studies:394

Case Study I) a stochastic damped harmonic oscillator, and395

Case Study II) a stochastic delayed oscillator. For each396

case we have generated in silico data, i.e., the measured397

data is generated artificially by adding noise to the model398

output obtained by simulating the model equations with399

a set of pre-chosen parameters referred to as the true400

values. Finally, in Case Study III) the parameters of a401

thalamo-ocortical model are inferred by fitting the model402

power spectrum to the EEG spectral power recorded under403

various experimental conditions. All the computations in the404

present work were implemented in Matlab (The Mathworks405

Inc., MA) on a Mac OS X machine with 2.5 GHz406

Intel Core i5 processor and 12 GB of 1333 MHz DDR3407

memory.408

Case Study I: a Stochastic Damped Harmonic Oscillator 409

Consider a damped harmonic oscillator driven by a random 410

stochastic force given by (Øksendal 2007) 411

d2x

dt2 + γ
dx

dt
+ ω2

0x = ξ(t), (16)

where ω0 is the intrinsic angular frequency of the oscillator, 412

and γ denotes the damping coefficient. The additive 413

Gaussian white noise ξ(t) obeys 414

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = 2κδ(t − t ′), (17)

where κ is the intensity of the uncorrelated driving noise, 415

and 〈.〉 denotes the ensemble average (Risken 1984; 1996). 416

Using the Wiener-Khinchin theorem, the power spectrum 417

of the stochastic differential equation (16) reads (Wang and 418

Uhlenbeck 1945; Masoliver and Porrá 1993) 419

P(ω) = 2κ√
2π

1

(ω2 − ω2
0)

2 + γ 2ω2
, (18)

where ω = 2πf denotes the angular frequency. It can 420

be shown that the only maximum of P(ω) is located at 421

ωmax =
√

ω2
0 − γ 2/2, where f0 = ω0/2π is the resonant 422

frequency of the system. In this case study, the vector of 423

unknown parameters being estimated is pI = (κ, γ , f0) 424

with the constraint κ, γ , f0 > 0. 425

Case Study II: a Stochastic Linear Delayed Oscillator 426

Consider a linear scalar delay differential equation in the 427

presence of additive white noise given by 428

dy(t)

dt
= ay(t) + by(t − τ ) + ξ(t). (19)

where the noise ξ(t) obeys the properties given by Eq. 17. 429

The power spectrum of the corresponding solution is 430

P(ω) = 2κ√
2π

1
(a + b cos(ωτ ))2 + (ω + b sin(ωτ ))2 , (20)

where κ is the intensity of the additive white Gaussian noise. 431

In this case study the vector of unknown parameters being 432

estimated is pII = (κ, a, b, τ ), where κ > 0, τ > 0, and 433

a, b ∈ R. 434

Case Study III: a Thalamo-Cortical Model Reproducing 435

the EEG Rhythms 436

Case Study III aims to estimate the parameters of a 437

neural mass model by fitting the power spectrum of 438

the system to the recorded EEG data during awake and 439

anesthesia conditions. To this end, we consider a reduced 440

thalamo-cortical neuronal population model, which is able 441

to reproduce the characteristic spectral changes in EEG 442

rhythms observed experimentally during propofol-induced 443
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anesthesia (Hashemi et al. 2014; 2015). In the following,444

the model equations are given, then we derive the analytical445

expression for EEG power spectrum which will be fitted to446

the empirical spectra.447

Consider the thalamo-cortical system shown schemati-448

cally in Fig. 1. The model consists of a network of three449

populations of neurons: cortical pyramidal neurons (E),450

thalamo-cortical relay neurons (S) which both are excita-451

tory glutamatergic neurons, and thalamic reticular nucleus452

(R) which is a thin shell of GABAergic cells surrounding453

the thalamus. The cortical pyramidal neurons (E) receives454

excitatory input from thalamo-cortical relay neurons (S)455

and projects back to the same nucleus. This reciprocal456

long-range excitatory interaction would generates a positive457

feedback which is associated with a conduction delay τ .458

However, the incessant excitation in this loop is prevented459

by the interposed inhibition to thalamo-cortical relay neu-460

rons (S) which originates from thalamic reticular nucleus461

(R). The thalamic reticular nucleus (R) receive excitatory462

input from axon collaterals of the cortical pyramidal neu-463

rons (E) and thalamo-cortical relay neurons (S), which the464

former input is associated with a constant time delay τ465

(Robinson et al. 2001a; Victor et al. 2011).466

Following Hashemi et al. (2014, 2015), we denote the467

excitatory and inhibitory postsynaptic potentials (PSPs)468

in the model’s neuronal populations by V c
a , where a ∈ 469

{E,R, S} represents the pyramidal (E), relay (S), and 470

reticular (R) neurons, respectively, and c ∈ {e, i} indicates 471

the excitatory and inhibitory synapses, respectively. The 472

system dynamics are governed by the following set of 473

coupled delay differential equations 474

L̂eV
e
E(t) = KESSS[V e

S (t − τ ) − V i
S(t − τ )],

L̂eV
e
S (t) = KSESE[V e

E(t − τ )] + I (t),

L̂iV
i
S(t) = KSRSR[V e

R(t)],
L̂eV

e
R(t) = KRESE[V e

E(t − τ )] + KRSSS[V e
S (t) − V i

S(t)]
(21)

where the parameters Kab are the synaptic connection stre- 475

ngths in population a originating from population b and τ is 476

the transmission time delay between cortex and thalamus. 477

The additional activity I (t) introduces an external input to the 478

system considered as a non-specific input to relay neurons 479

I (t) = I0 + ξ(t), (22)

where I0 is the input mean value, and the noise ξ(t) obeys 480

the properties given by Eq. 17. According to previous 481

studies, we assume that the EEG can be described in a 482

good approximation by spatially constant neural population 483

activity (Robinson et al. 2001a, b, 2002). Thus, under the 484

Fig. 1 Schematic diagram of the
reduced thalamo-cortical model.
The excitatory connections
(glutamatergic) are indicated
with blue arrows, while the
inhibitory connections
(GABAergic) are represented by
red lines with filled circle ends.
The connections between
cortical pyramidal neurons (E)
and the thalamus consisting of
thalamocortical relay neurons
(S) and thalamic reticular
nucleus (R) are associated with
a constant time delay τ

Cerebral Cortex 

Thalamus 

Subthalamus

Thalamocortical Relay Nucleus 

Thalamic Reticular Nucleus 

Pyramidal cells 
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assumption of the spatial homogeneity, mean post-synaptic485

potentials in above equations do not depend on spatial486

locations. The parameters Sa[.] describe the mean firing rate487

functions for neuronal populations a ∈ {E, S,R}, in which488

they are generally considered as a standard sigmoid function489

Sa(V ) = Smax
a

1 + e−c(V −V th
a )

, (23)

where Smax
a is the maximum firing rate of population a,490

V th
a indicates the mean firing threshold, and c denotes the491

slope of the sigmoid function at the inflexion-point V th. The492

temporal operators L̂e,i are given by493

L̂e(∂/∂t) = 1
αeβe

∂2

∂t2 + (
1
αe

+ 1
βe

)
∂

∂t
+ 1,

L̂i(∂/∂t) = 1
αiβi

∂2

∂t2 + (
1
αi

+ 1
βi

)
∂

∂t
+ 1,

(24)

with αe > βe, and αi > βi , where αe and αi indicate the494

synaptic rise rates of the response functions for excitatory495

and inhibitory synapses in s−1, respectively, and βe and βi496

denote the corresponding decay rate constants. Moreover,497

the delay term, τ , is zero if both the sending and receiving498

populations are in the thalamus while for the thalamo-499

cortical or cortico-thalamic pathways, the delay term is500

nonzero. For further details on model equation derivation501

see Hashemi et al. (2015).502

Finally, since we assume that the EEG is generated503

by the activity of pyramidal cortical cells (Nunez and504

Srinivasan 2006; Rennie et al. 2002), and by virtue of the505

specific choice of external input to relay neurons, the power506

spectrum of the EEG just depends on one matrix component507

of the Green’s function by (Hutt 2013; Hashemi et al. 2015)508

PE(ω) = 2κ
√

2π
∣∣∣G̃1,2(ω)

∣∣∣
2
, (25)

where509

G̃1,2(ω) = −K1L̂ie
−iωτ

L̂e(L̂eL̂i + Gsrs) + e−2iωτ (Gesre − GeseL̂i)
,

(26)

with Gese = K1K2, Gsrs = K3K5 and Gesre = K1K3K4,510

and511

L̂e =
(

1 + iω

αe

) (
1 + iω

βe

)
, L̂i =

(
1 + iω

αi

)(
1 + iω

βi

)
,

K1 =KES
dSS [V ]

dV
|V =(V ∗e

S −V ∗i
S ), K2 =KSE

dSE[V ]
dV

|V =V ∗e
E

,

K3 =KSR
dSR[V ]

dV
|V =V ∗e

R
, K4 =KRE

dSE[V ]
dV

|V =V ∗e
E

,

K5 =KRS
dSS [V ]

dV
|V =(V ∗e

S −V ∗i
S ) .

In a reasonable approximation, we assume an instanta-512

neous rise of the synaptic response function followed by an513

exponential decay i.e., αe + βe, and αi + βi (Hashemi514

et al. 2017). This approximation reduces the second-order 515

temporal operators L̂e,i given by Eq. 24 to the first-order 516

operators L̂e = 1 + iω/βe, and L̂i = 1 + iω/βi . Using 517

this approximation, the sixth-order characteristic equation 518

(the denominator of G̃1,2 given by Eq. 26) simplifies to a 519

third-order equation, which is more analytically tractable. 520

In our previous study (Hashemi et al. 2017), we have 521

shown that this simplification does not affect the spectral 522

power in the delta and alpha ranges. Moreover, it is widely 523

accepted that anesthetic agent propofol prolongs the tempo- 524

ral decay phase of inhibitory synapses while the rise rates 525

remain unaffected (Hutt and Longtin 2009; Hutt et al. 2015; 526

Hashemi et al. 2014, 2015). 527

Taken together, by fitting the power spectrum of EEG given 528

by Eq. 25 to the empirical spectra, we aim to estimate seven 529

model parameters, namely, the power normalization D = 530√
2κK1, the excitatory and inhibitory synaptic decay rates βe, 531

and βi , respectively, the axonal propagation delay τ , and the 532

closed-loop gains Gese, Gsrs , and Gesre. Thus, the vector 533

of unknown parameters being estimated is pIII = (D, τ, 534

βe, βi , Gese, Gsrs, Gesre), where based on the physiological 535

limits, all the parameters are restricted to be positive. 536

Furthermore, there are six inequality constraints on 537

system parameters, which will be imposed over the chi- 538

squared error function in spectral fitting problem. The 539

first constraint is related to the synaptic rise and decay 540

rate constants. Since response functions for the excitatory 541

synapses exhibit a longer characteristic rise and decay times 542

than the inhibitory synapses, thus αe > αi , and βe > βi 543

(Constraint I). Following the analytical approach described 544

in Forde and Nelson (2004) to obtain stability conditions 545

for characteristic equation of DDEs, we have derived five 546

analytical conditions for the stability of the considered 547

thalamo-cortical system. According to this approach, we 548

first investigate the conditions under which the system is 549

stable in the absence of time delay (τ = 0). Then, by 550

increasing the delay value (τ > 0), we seek to determine 551

whether there exists a critical delay value for which 552

the system becomes unstable. Since the power spectrum 553

analysis is valid only if the system resting state is stable, we 554

probe the conditions under which the introduction of time 555

delay cannot cause a bifurcation. The following conditions 556

guarantee that the system is stable when τ = 0, and 557

increasing the delay value does not change the stability of 558

the system (see (Hashemi et al. 2017) for the details): 559

βi (2 + Gsrs)+βe(1−Gese)>0, (Constraint II)
1+Gesre+Gsrs −Gese >0, (Constraint III)

(2βe + βi )

(
2 + Gsrs

βe
+ 1−Gese

βi

)

−(1 + Gesre + Gsrs − Gese)>0, (Constraint IV)

(β2
e βi )

2
(
(1+Gsrs)

2−(Gesre−Gese)
2
)
>0, (Constraint V)

/=18ξ2ξ1ξ0 − 4ξ3
2 ξ0 + ξ2

2 ξ2
1 − 4ξ3

1 − 27ξ2
0 <0. (Constraint VI)
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Results560

In the following, the results of model parameter estimation561

for the case studies described in the previous section are562

presented. The first two case studies aim to illustrate563

important features of the methods applied laying the ground564

for the analysis of recorded experimental data by a thalamo-565

cortical model. An outline of the parameter inference in566

this study is illustrated in Fig. 2. In Case Study I and567

II, the unknown parameters of set of SDEs (stochastic568

ordinary and delay differential equation, respectively) are569

inferred from pseudo-experimental data. As can be observed570

from the schematic illustration, in order to estimate the571

unknown parameters of a set of SDE, we transform the572

observation from time-domain to frequency-domain data.573

To this end, the power spectrum of the system is computed574

analytically by the aid of the Green’s function to generate575

the true signal, i.e. the signal constructed by the nominal576

(true) parameters. In addition, the system spectral power577

is calculated numerically to acquire the measurement578

signal by applying the Welch method. Then, the model 579

parameters are estimated by fitting the experimental data to 580

the corresponding model power spectrum. In general, the 581

generated in silico data can be mathematically expressed 582

as 0 = 1 + noise, where 1 and 0 denote the noise- 583

free observation (true signal) and the corresponding noisy 584

data (measured signal), respectively. Finally, in the main 585

Case Study III, the proposed parameter inference method 586

is applied to the real experimental data set to estimate the 587

parameters of a neural mass thalamo-cortical model (true 588

signal) from the EEG spectral power (measured signal). 589

Case Study I 590

Case Study I deals with estimating the parameters of a 591

stochastic damped harmonic oscillator by fitting the model’s 592

spectrum to a set of pseudo-experimental data. The result 593

of this estimation is shown in Fig. 3. In Fig. 3a, the 594

estimated power spectrum obtained by PSO is compared 595

with the respective noise-free and the noisy spectra. From 596

SDE
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Fig. 2 Schematic illustration of parameter inference carried out in this
work. In Case studies I and II, the true signal (analytical power spec-
trum, 1) is fitted to the measured signal (numerical power spectrum,

0). In a simmilar manner applied to real data measuremet, in Case
study III, the power spectrum of a neural mass model (true signal) is
fitted to the EEG spectral power (measured signal)
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a b

c

d

Fig. 3 Parameter estimation of a stochastic damped harmonic oscil-
lator (Case Study I) from a set of noisy in silico data. a Estimated
power spectrum is plotted versus the noise-free and the noisy spectrum,
encoded in dashed green, solid blue, and dashed red lines, respec-
tively. In addition, the grey shaded area represents the 95% confidence
interval. The true and estimated parameters obtained by PSO are

pI = (κ, γ , f0) = (0.1 mV, 5.0 Hz, 3.0 Hz), and p∗
I = (κ, γ , f0) =

(0.103 mV, 4.562 Hz, 3.00 Hz), respectively. b, c, d Histogram of
Markov chains constructed by the MH algorithm for parameters κ , γ
and f0, respectively. The mean value of Markov chains (vertical red
lines) indicate near identical estimates with those obtained by the PSO
algorithm

the result, we observe that the estimated power spectrum597

is in very good agreement with the power spectrum598

computed from the given signal. The noise-free power599

spectrum was generated according to Eq. 18 with the true600

parameters pI = (κ, γ , f0) = (0.1 mV, 5.0 Hz, 3.0 Hz).601

The estimated parameters p∗
I = (κ, γ , f0) = (0.103 mV,602

4.562 Hz, 3.00 Hz) are very close to the true parameters pI603

and yield the best-fit value E(p∗
I ) = 0.6554. It is worth604

pointing out that other EAs such as GA and DE yield similar605

estimations.606

Moreover, using MCMC methods we can produce an607

estimate of the means and standard deviations of the inferred608

parameters. The histogram of Markov Chains constructed609

by the MH algorithm for model parameters κ , γ , and610

f0 are shown in Fig. 3b, c and d, respectively. One can611

see that the Markov chains obey a Gaussian distribution,612

where the mean values (vertical red lines) indicate near613

identical estimates with those obtained by PSO algorithm.614

This result represents a very close agreement between the615

MLE and LSE obtained by the MH and the PSO algorithm,616

respectively.617

Once the model parameters have been inferred, one can618

determine the uncertainties in the parameter estimations.619

In order to assess the accuracy of the estimates shown in620

Fig. 3, we plot the confidence regions of the calibrated621

parameters. Figure 4 illustrates the 95% confidence regions622

for different pairs of parameter estimates in Case Study I.623

Covariance matrix estimation yields elliptical confidence624

regions, whereas the likelihood confidence regions are625

estimated by PSO algorithm. Since J (p∗)#WJ(p∗) =626

2H(p∗) the covariance matrix approximated by the Fisher 627

Information Matrix (cf. Eq. 9) and Hessian matrix (cf. 628

Eq. 11) are equal. This yields identical elliptical confidence 629

regions, cf. dashed red and green lines in Fig. 4a. 630

Considering the conceptual difference of Hessian and FIM 631

approaches in the derivative terms, the exact coincidence 632

of the ellipsoids obtained by these methods confirms that 633

the accuracy in parameter estimations are well captured 634

(Marsili-Libelli et al. 2003). Moreover, comparing the 635

likelihood confidence regions (calculated from Eq. 12) 636

with the elliptical confidence regions indicates that high 637

inference precision have been obtained by PSO algorithm. 638

This demonstrates further the benefits of the PSO algorithm 639

in estimating the model parameters combined with a 640

simultaneous computation of the confidence estimates. 641

To further confirm the reliability of the obtained 642

confidence regions, we have also computed the 95% 643

confidence regions by PyMC package (Patil et al. 2010). As 644

presented in Fig. 4b, one observes very good agreement with 645

the results illustrated in panel a. 646

An easy way to study the practical identifiability of an 647

estimation is to plot the correlation matrix of the model 648

parameters. Here, the local identifiability of the obtained 649

estimations is evaluated based on the correlation analysis. 650

For Case Study I, Fig. 5 displays the absolute value of 651

the correlation coefficients obtained according to Eq. 13. 652

The figure shows low correlation values in non-diagonal 653

elements. The lack of correlation between the estimated 654

parameters indicates that all the parameters are identifiable. 655

Furthermore, we have carried out the sensitivity analysis 656
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Fig. 4 Comparison of 95%
confidence regions for different
pairs of parameter estimates in
Case Study I. a The ellipsoids
encoded in dashed red and green
lines show the confidence
regions obtained by
approximating the covariance
matrix through the use of FIM
and Hessian approaches,
respectively. The regions
constructed by the blue markers
indicate the likelihood
confidence regions produced by
the PSO algorithm. b
Confidence regions for model
parameters obtained by MH
algorithm. The regions are
centered at the optimal
parameters p∗

I illustrated by the
filled red circles

for this case study (see the relevant result presented in657

Appendix B in Supplementary Material) revealing that the658

estimated parameters in this case study are captured in an659

accurate manner.660

Further it is interesting to take a closer look at the661

convergence speed of different algorithms carried out in662

Case Study I. Figure 6 shows the convergence functions,663

i.e., The fitness values versus the function evaluations, for664

LM, HJ, PSO, DE, GA, CMA-ES, MH, and SA algorithms665

averaged over 100 runs. Although the fitness function of666

all algorithms finally reach the global minimum, the local667

search algorithms (LM and HJ) show a faster convergence668

speed compared to the others, whereas the EAs (including669

PSO, DE, GA, CMA-ES) indicate faster convergence670

than MH and SA as MCMC algorithms. In addition, SA671

Fig. 5 Correlation matrix for Case Study I. The figure shows the
absolute value of the correlation coefficients indicating lack of
correlation between the estimated model parameters κ , γ , and f0

converges finally to the minimum value in a damping 672

manner (when the temperature is reduced toward zero). In 673

contrast, the fitness function of MH keeps oscillating about 674

the minimum value. 675

Case Study II 676

In Case Study II, the power spectrum of a linear SDDE 677

is fit to a set of pseudo-experimental data. Note that this 678

case study poses a multimodal objective function, which is 679

a more challenging problem in finding the global minimum 680

compared to Case Study I as an example of unimodal 681

functions. Figure 7 illustrates the parameter inference of 682

the SDDE from a noisy measurement. The estimated power 683

spectrum shows a striking close match to the reference 684

spectrum in Fig. 7a. Here, the noise-free observations 685

are generated by substituting the true parameters pII = 686

(κ, a, b, τ ) = (0.1 mV, −17.3, −21.32, 0.2) in Eq. 20. 687

The fit based on PSO yields the optimal parameters 688

p∗
II = (κ, a, b, τ ) = (0.103 mV, −18.4, −21.49, 0.2), 689

that is in very good agreement with the original model 690

parameters. The corresponding estimation’s fitness function 691

value is E(p∗
II ) = 33.19. Furthermore, the histograms 692

of Markov Chains constructed by the MH algorithm for 693

model parameters κ , a, b and τ are shown in Fig. 7b–e, 694

respectively. We observe that the estimates calculated by the 695

MH (vertical red lines) are very close to those obtained by 696

PSO algorithm. 697

Figure 8 displays the confidence regions for all possible 698

pairs of the estimated parameters in Case Study II. Similar 699

to Case Study I, the elliptical confidence regions are 700

computed by covariance matrix estimation according to 701

Eqs. 9, and 11, whereas the likelihood confidence regions 702

are provided by PSO according to Eq. 12. One can see that 703

the ellipsoids constructed with covariance matrix estimation 704
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Fig. 6 Convergence functions of
several optimization algorithms
used in Case Study I. The
fitness values versus the
function evaluations in a log-log
scale for different algorithms:
LM and HJ as local search
algorithm, PSO, DE, GA,
CMA-ES from global search
algorithms, and MH and SA
known as sampling algorithms
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using FIM and Hessian matrix coincide, because in this case705

study J (p∗)#WJ(p∗) = 2H(p∗). However, comparing706

the elliptical and likelihood confidence regions, there is707

a discrepancy between the regions evaluated based on708

covariance matrix and those computed through the PSO709

method.710

In order to identify the origin of the discrepancy between711

elliptical and likelihood confidence regions observed in712

Fig. 8, we investigate the correlation among the model713

parameters. Figure 9 represents the correlation matrix of714

the model parameters in case study II. If two parameters715

are highly correlated, the change in model output caused716

by change in one parameter can be compensated by an717

appropriate change in the other parameter. This prevents 718

the parameters from being uniquely identifiable. In other 719

words, for a pair of correlated parameters there exist many 720

combinations that give almost the same value of fitness 721

function. This aspect reflects a degeneracy of solutions, 722

resulting from the non-uniqueness of the inverse problem 723

solution. According to the absolute value of the correlation 724

coefficients plotted in Fig. 9a, the parameters a and b are 725

practically non-identifiable since they are highly correlated, 726

whereas other pairs of parameters are uncorrelated. To 727

overcome such problem, the pairs of correlated parameters 728

must be removed analytically by introduction of new 729

variables. In this case study, setting a candidate solution in 730

a b

c

d

e

Fig. 7 Inferring the parameter values of a stochastic linear delay dif-
ferential equation (Case Study II) from a set of in silico data. a
The estimated power spectrum (dashed green line), the correspond-
ing noise-free spectrum (blue line) and the spectrum from noisy
measured data (dashed red line). The grey shaded area encodes
the 95% confidence interval. The true and estimated parameters are

pII = (κ, a, b, τ ) = (0.1 mV, −17.3, −21.32, 0.2), and p∗
II =

(κ, a, b, τ ) = (0.103 mV, −18.4, −21.49, 0.2), respectively. b, c, d,
e Histograms of Markov chains constructed by the MH algorithm
for parameters κ , a, b and τ , respectively. The mean value of gener-
ated Markov chains (vertical red lines) are very close to the estimates
obtained by the PSO algorithm
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Fig. 8 Elliptical and likelihood
confidence regions at 95%
confidence level for each pair of
estimated parameters in Case
Study II. The ellipsoids are
computed with the FIM informa-
tion (in dashed red) and Hessian
matrix (in green), whereas the
likelihood confidence regions
(in blue) are estimated by the
PSO algorithm. The estimated
parameters p∗

II = (κ, a, b, τ ) =
(0.103 mV, −18.4, −21.49, 0.201)
are represented by filled red
circles

the form of y(t) = Ceλt yields the following nonlinear731

transcendental characteristic equation:732

λ − a − be−λτ = 0,

where, by inserting λ = iω, and separating the real and733

imaginary parts we obtain734

a = −b cos(ωτ ),

3 = −b sin(ωτ ), (27)

or equivalently,735

a = ω/ tan(ωτ ),

b = −ω/ sin(ωτ ). (28)

where ω = 2π3. Now, introducing the parameter 3736

according to the above equations leads to a model equa-737
tion containing three uncorrelated parameters: κ , 3, τ (cf.738

Fig. 9b). As it is shown in Fig. 10a, for this set of uncorre-739

lated parameters, the elliptical confidence regions coincide740
very well with the likelihood-based regions. These results741

indicate a precise estimation with uniquely identifiable esti-742

mates. Here, to compute the confidence regions of the model743
parameters, we employed the same approach as used in744

Fig. 8. In addition, the 95% confidence regions obtained

by PyMC are displayed in Fig. 10b. From Figs. 7 and 10, 745
we observe very close agreement between the inference 746

obtained by PSO and MH. 747

Finally, for this case study, we compare the performance 748

of different algorithms used in this study. For the sake of 749

fair comparison, the initial guesses in the MH and SA algo- 750

rithms were created randomly within the parameter search 751

space to have an identical strategy for starting condition 752

with the EAs (i.e., PSO, DE, GA, CMA-ES). The parameter 753

search space was limited in the range [0, 20] for each param- 754

eter. We have also applied the local algorithms LM and 755

HJ, but nonlocal algorithms out-perform them clearly (LM 756

and HJ algorithms failed to arrive at the global minimum). 757

This is why we do not discuss their corresponding results 758

in the following. 759

The results for 100 runs are reported in Fig. 11 and 760

Table 1. We found that PSO, DE, GA, CMA-ES, SA, MH 761

methods succeeded in finding the global minimum. 762

In addition, for each algorithm, the mean and minimum 763

values of obtained fitness function, and the average of run- 764

ning time are listed in Table 1. Although EAs reveal a high 765

computational cost, they show a very good performance in 766

finding the global solution. According to these results, PSO 767

delivers slightly better solutions than other EAs, although 768

Fig. 9 Correlation matrix
(absolute values) for Case Study
II. a The estimated parameters
are κ , a, b, and τ . From this
panel, we observe that
parameters a and b are highly
correlated, which were causing
identifiability problem. b
Introducing the parameter 3
according to Eq. 27 yields a
model with three uncorrelated
parameters: κ , 3, τ
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Fig. 10 Confidence regions for
the parameters of Case Study II.
a The elliptic and likelihood
confidence regions for the
uncorrelated parameters κ , 3,
and τ . b Confidence regions of
the parameters built from MH
algorithm. The regions are
centered at the estimated
parameters p∗

II = (κ, 3, τ ) =
(0.103 mV, 1.99, 0.2)

the employed EAs are competitive in finding the global769

minimum.770

Case Study III771

The first two case studies were designed with the measured772

in silico data. In the following, we identify the parameters773

of a thalamo-cortical model described by a set of coupled774

stochastic delay differential equations through the model775

spectral fitting to the in vivo experimental data.776

Figure 12 shows the power spectrum of the model777

given by Eq. 25 fit to the power spectra of EEG recorded778

over frontal and occipital head regions during awake and779

anesthesia conditions. As a consequence of the very good780

performance of the parameter estimation based on PSO, we781

applied it to estimate model parameters optimally. Figure 12782

shows a good prediction of the observed spectral power 783

features in experimental data. 784

It is important to point out that, in most of the datasets, 785

implementing a standard fitness function defined by the 786

discrepancy between the models output and the measured 787

data does not allow to fit well the spectral power peak in δ− 788

and α−frequency ranges (cf. the inset in Fig. 12a). Since 789

the δ− and α−peaks are important and informative signal 790

features observed during anesthesia, we employed a biased 791

chi-squared function given by Eq. 5 in order to fit the model 792

with the spectral power peak within these frequency ranges. 793

Taking a biased fitness function with more weight value in 794

δ− and α−frequency bands, the model output is forced to 795

improve the fit of the corresponding experimental spectral 796

power peaks. For instance, in panel A, we set c1 = 20, 797

c2 = 1, c3 = 10, c4 = 1 to capture the observed δ− and α− 798

Fig. 11 Comparing the
performance of different
algorithms through 100
independent runs in Case Study
II. The red bars indicate the
histogram of fitness function
values (the number of counts of
the best fitness value) obtaiend
by PSO, DE, GA, CMA-ES,
MH and SA algorithm
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Table 1 Comparing the results obtained by different search algorithms
achieved from 100 independent runs in Case Study II

Algorithm Min Counts Mean Time(s)

PSO 33.19 100 33.19 27.5

DE 46.22 95 58.73 27.9

GA 47.76 94 60.04 31.5

CMA 107.03 54 699.59 67.03

SA 112.09 52 825.90 116.3

MH 114.52 44 850.69 117.3

The best values of fitness function (minimum), the related counts, its
mean value and the average of computational time (in second) for each
algorithm are illustrated in the table

peak. It is trivial that c1 = c2 = c3 = c4 = 1 results in the799

standard chi-squared function.800

The sensitivity analysis of the fitness function to the801

estimated parameters for this case study is shown in802

Appendix B in Supplementary Mateial.803

In order to demonstrate the power of the thalamo-cortical804

neural mass model, it is fit to EEG spectral power of eight805

patients recorded during pre- and post-incision anesthesia806

induced by propofol and desflurane, as shown in Fig. 13.807

In this figure, we also observe that the model fits measured808

data very well in δ− and α−frequency bands. These results809

indicate that the considered thalamo-cortical model in this810

work is able to reproduce the specific features observed811

in EEG spectral power data adequately. For completeness,812

statistics of the estimated parameters are given in Fig. 14 for813

all patients. Most parameters are stable over experimental 814

conditions and subjects, such as the thalamo-cortical 815

delay time τ . Conversely, the decay rates βe and βi 816

are significantly different under desflurane and propofol 817

anesthesia under the pre-incision condition (p < 0.05). 818

Moreover, the noise strength is significantly different under 819

desflurane and propofol anesthesia in both experimental 820

conditions (p < 0.05). The detailed parameter statistics for 821

each patient are reported in Appendix C in Supplementary 822

Material. 823

Discussion 824

In a great variety of scientific fields, stochastic differential 825

equations arise naturally in the modeling of systems due 826

to random forcing or other noisy input (Faisal et al. 2008). 827

Numerical integration of differential equations is a major 828

time consuming problem in the parameter estimation of 829

nonlinear dynamics describing biological systems (Liang 830

and Lord 2010). Furthermore, inferring the parameters of 831

SDEs are more problematic due to the inherent noise in 832

system equations. 833

Various previous methods attack the parameter inference 834

problem. It has been shown that a decoupling strategy 835

(slope approximation), that considers the derivative values 836

of system state variables, avoids numerical integration 837

altogether by fitting models to the slope of time-series 838

data (Almeida and Voit 2003; Voit and Almeida 2004). 839

However, this technique is not applicable in most inverse 840

Fig. 12 Fitting a reduced
thalamo-cortical model to the
EEG power spectra in awake
and anesthesia conditions. In
each panel, the spectral power of
recorded EEG data is shown as a
dashed red line. The fit EEG
power spectra using standard
chi-squared function are
illustrated by green lines,
whereas those obtained through
the biased chi-squared function
are shown by blue lines. Panels a
and b illustrate the EEG spectral
power over the frontal head
region in awake and anesthesia
conditions, respectively. The
occipital EEG spectral power in
awake and anesthesia conditions
are displayed in panels c and d,
respectively
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Fig. 13 Fitting a reduced
thalamo-cortical model to EEG
spectral power in pre- and
post-incision anesthesia induced
by propofol and desflurane. The
recorded EEG data for eight
patients are shown by dashed
lines, whereas the corresponding
fitted model are illustrated by
solid lines. a The EEG power
spectra recorded in pre- and b in
post-incision condition induced
by propofol are illustrated by
dashed red and green lines,
respectively. In addition, the
solid blue and black lines depict
the corresponding fitted
thalamo-cortical model to
experimental data. Panels c) and
d show the the fitted mode
against the spectral power of
recorded EEG data during
desflurane induced anesthesia in
pre- and post-incision
conditions, respectively

a

b

c

d

problems. For instance, if an equation is affected by a841

state variable for which there is no data available, then the842

decoupling technique cannot be applied to that equation.843

Moreover, this strategy cannot provides a model that is844

readily applicable to the computational simulation when the845

given time-series data contain measurement errors (Kimura846

et al. 2005).847

In another work, Tsai and Wang (2005) have proposed848

a modified collocation approximation technique to convert849

differential equations into a set of algebraic equations. This850

method has the obvious advantage of avoiding numerical851

integration of differential equations. They have shown852

that their method yields accurate parameter estimation for853

S-system models of genetic networks what also saves854

much computational time. However, such an approximation855

cannot always be employed in general complex nonlinear856

inverse problems.857

In the last decade, there have been several studies on858

fitting the neural population models to experimental data. In859

neuroimaging literature, Dynamic Causal Modeling (DCM) 860

has been used successfully to infer hidden neuronal states 861

from measurements of brain activity (Friston et al. 2003; 862

David et al. 2006; Pinotsis et al. 2012). It has been shown 863

previously that characterizing neural fluctuations in terms 864

of spectral densities leads to more accurate inference than 865

stochastic scheme (Razi et al. 2015; Jirsa et al. 2017). 866

However, in most of the previous studies, a rigorous 867

analytical approach to overcome the inference difficulties 868

due to the additive noise has received relatively little 869

attention (Daunizeau et al. 2012; Ostwald et al. 2014; 870

Ostwald and Starke 2016). In the technique presented 871

in this study, we estimated the model parameters from 872

the power spectrum derived analytically from the system 873

equations. By the aid of the Green’s function method, 874

we can easily compute the power spectrum of a linear 875

system whose dynamics are governed by a set of coupled 876

stochastic ordinary or delay differential equations. By fitting 877

the analytically computed spectral power to the spectral 878
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Fig. 14 Statistics of the
estimated parameters of the
thalamo-cortical model for 25
patients during general
anesthesia. Each boxplot shows
the Kruskal-Wallis test statistic
for the estimated parameters of
the thalamo-cortical neural mass
model fitted to EEG spectral
power in pre- and post-incision
anesthesia induced by propofol
and desflurane. Dpre and Dpst

stand for pre- and post- incision
induced by desflurane,
respectively. Ppre and Ppst

stand for pre- and post- incision
induced by propofol,
respectively
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power estimated from corresponding measurements, we can879

estimate the model parameters without solving the model880

equations. Hence we are able to avoid the computational881

costs of numerical integration, which dramatically reduces882

the computational time burden. Note that investigating the883

structural identifiability (model selection practice) in order884

to identify which model best explains the experimental data,885

is beyond the scope of the present manuscript. The reader886

is referred to further literature for a more detailed review of887

the model comparison (Daunizeau et al. 2009; Raue et al.888

2009; Penny 2012).889

In general, the inverse problems can be solved by opti-890

mization algorithms and MCMCs methods (Myung 2003;891

Tashkova et al. 2011; Gelman et al. 2004). Optimization892

methods are simple and straightforward to minimize the893

error between the model prediction and the measured data894

(Mendes and Kell 1998; Moles et al. 2003; Kimura et al.895

2015). On the other side, many sampling algorithms and896

probabilistic programming languages have been created to897

perform Bayesian inference, especially for high dimen-898

sional and complex posterior distributions e.g., Carpenter899

et al. (2017) and Patil et al. (2010). This maximum like-900

lihood approach provides us uncertainty information in901

addition to the optimum value for each parameter. In the902

present work, we have used several optimization algorithms 903

as well as classical sampling methods (MH) to benefit from 904

and compare both classic and probabilistic inferences. 905

We compared the performance of EAs including PSO, 906

DE, GA, CMA-ES and the well-known sampling algorithms 907

MH, and SA (Case Study I and Case Study II, cf. 908

Figs. 6, and 11)). Our results show that in the case of a 909

unimodal problem (single spectral peak), EAs outperform 910

the sampling algorithms while they are computationally 911

more expensive. 912

In recent years, many algorithms have been proposed to 913

solve inverse problems (Rodriguez-Fernandez et al. 2006b; 914

Kramer et al. 2014; Kimura et al. 2015). Notably, it is shown 915

that both the choice of algorithm applied in the estimating 916

problems and the formulation of the objective function 917

plays a crucial role in reproducing the key features of the 918

measured data (Kimura et al. 2005). This is confirmed 919

by our study demonstrating that the specific choice of the 920

fitness function, e.g. by weighting different signal elements, 921

plays a decisive role in reproducing the key features of the 922

measured data. We showed that using the standard least 923

squares function the thalamo-cortical neural mass model 924

fails to be fit to the spectral power peak observed in δ− and 925

α−frequency ranges. This can be improved by adding more 926
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weights to the fitness function in certain frequency bands927

than the others, cf. Fig 12.928

For each parameter estimation problem carried out in this929

study, we also employed the practical identifiability analysis930

to check the reliability of the estimates. The identifiability931

analysis in this work comprised the Fisher Information932

Matrix (FIM) to compute the sensitivity and the correlation933

matrices, in addition to plotting the confidence regions for934

estimated parameters. We illustrated that the identifiability935

analysis can be easily exploited by plotting the confidence936

regions according to the covariance approximation or by937

employing PSO and MH algorithms. For instance, the938

confidence regions obtained through Hessian and FIM939

approaches were compared in Figs. 4 and 10. By virtue940

of the conceptual difference between these approaches,941

the exact coincidence of the ellipsoids obtained based on942

Hessian and FIM information indicates that the estimated943

parameters are uniquely identifiable and we were able to944

obtain reliable estimates (Marsili-Libelli et al. 2003). To945

further confirm the reliability of the shown confidence946

regions, we have also compared the results obtained by the947

PSO and the MH algorithms. As presented in Figs. 4 and 10,948

we observed very good agreement with these approaches.949

Furthermore, by measuring the sensitivity values, it950

is possible to investigate how the system output will951

change in response to small modification in the model952

parameters (Rodriguez-Fernandez et al. 2006b, 2013).953

This allows us to reveal which model parameters play a954

decisive role in the model behavior. A high sensitivity955

index for a parameter shows that the small changes on956

that parameter cause a strong response in model output.957

This indicates that the parameters with higher sensitivity958

values are more identifiable than those parameters with959

low sensitivity indices (cf. Appendix B in Supplementary960

Material). The correlation plots also provide information961

about the parameter identifiability. The lack of correlation962

among the estimated parameters reveals that the parameters963

are identifiable, as shown in Fig. 5. On the contrary, the964

highly correlated parameters are not identifiable since there965

exist combinations of them yielding an identical fitness966

value, cf. Fig. 9. The high correlation between parameters967

can also cause a discrepancy between the elliptical and968

likelihood-based confidence regions, as illustrated in Fig. 8.969

To surmount this problem, the pairs of correlated parameters970

must be removed by introduction of new variables.971

Up to now, few studies have investigated the parameter972

estimation problems in the context of neural population973

modeling, which is well-established to reproduce the974

measured EEG data during different behavioral states. To975

our best knowledge, the present study is the first that fits976

a thalamo-cortical model to EEG spectral power peaks977

observed in both δ− and α−frequency ranges. A pioneer978

study by Bojak and Liley (2005) fitted a neural population979

model comprising excitatory and inhibitory cortical neurons 980

to a set of pseudo-experimental data. In another study, 981

Rowe et al. (2004) have estimated the values of key 982

neurophysiological parameters by fitting the model’s single- 983

peak spectrum to EEG spectra in awake eyes-closed 984

and eyes-open states. Although they have achieved good 985

predictions of the measured data, their data do not exhibit a 986

second spectral power peak as in our data in δ−frequency 987

range. Moreover, they have used a local search method (LM 988

method) which requires an initial guess for the parameters. 989

In a similar approach, Van Albada et al. (2010) have fit a 990

neural mass model to eyes-closed EEG spectra of a large 991

number of subjects to probe the age-associated changes 992

in the physiological model’s parameters. Their findings 993

suggest that the inverse modeling of EEG spectral power is 994

a reliable and non-invasive method for investigating large- 995

scale dynamics, which allows us to extract physiological 996

information from EEG spectra. In line with these studies, 997

the data-driven approach presented in the current study 998

provides a proper guidance for fitting the thalamo-cortical 999

model to a large set of experimental recordings. This 1000

enables us to investigate the parameter changes during the 1001

transition from awake to anesthesia state, especially those 1002

parameters that cannot be measured directly. An important 1003

finding of our data-based analysis in fitting a thalamo- 1004

cortical model to the EEG spectra is that the model is 1005

heavily sensitive to the delay transmission in the system 1006

(cf. Appendix B in Supplementary Material). This is in 1007

agreement with previous studies suggesting that the location 1008

of spectral power peaks especially in alpha frequency range 1009

heavily depends to the delay values in the thalamo-cortical 1010

circuits (Robinson et al. 2001a, b; Rowe et al. 2004). 1011

Hence the transmission delay can provide a basis for the 1012

reproduction of certain features in experimental data seen 1013

at high concentration of anesthetics. For instance, a recent 1014

study by Hashemi et al. (2017) has considered the effect of 1015

anesthetics on the axonal transmission delay to reproduce 1016

the beta power surging observed in EEG power spectrum 1017

close to loss of consciousness. Inferring the parameter 1018

changes associated to the changes in brain activities from 1019

model fitting to a large data set remains to be investigated in 1020

future work. 1021

Conclusion 1022

The results obtained in the present work reveal that given 1023

a set of stochastic ordinary or delay differential equations 1024

(SDEs) and a set of experimental data, we are able to fit 1025

the model power spectrum to the related data with a high 1026

accuracy and very low computational costs by the aid of 1027

the Green’s function method and evolutionary algorithms. 1028

We demonstrated that using evolutionary algorithms, the 1029
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proposed thalamo-cortical neural population model fits1030

very well to the EEG spectral features within δ− and1031

α−frequency ranges measured during general anesthesia.1032

Moreover, we showed that in multimodal optimization1033

problems, the use of a global optimization approach such as1034

PSO or DE is required in order to accurately estimate the1035

model parameters.1036

Our analysis indicates further that one can employ a data-1037

driven approach to provide new valuable insights into the1038

mechanisms underlying the behavior of complex systems.1039

This approach will provide an appropriate guidance in1040

future brain experiments to better understand different1041

behavioral activities. As a summary, this work can serve1042

as a basis for future studies revealing biomarkers from1043

physiological signals.1044
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