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Introduction

Although mathematical modeling plays a key role in describing the dynamics of complex systems, it still remains a challenging problem [START_REF] Banga | Parameter estimation and 1074 optimal experimental design[END_REF][START_REF] Van Riel | Dynamic modelling and analysis of biochemical networks: mechanism-based models and modelbased experiments[END_REF][START_REF] Stelling | Mathematical models in microbial systems biology[END_REF][START_REF] Kell | Metabolomic and systems bilogy: making sense of 1188 the soup[END_REF]). In order to build a successful model that allows one to reveal the mechanism underlying a complex system, we first need to select a robust model whose output is consistent with a priori available knowledge about the system dynamics [START_REF] Kitano | Computational systems biology[END_REF]Rodriguez-Fernandez et al. 2006a;Rodriguez-Fernandez et al. 2013). The selected model should be able to reproduce, at least qualitatively, observed specific features in experimental data. This task is referred to as structure identification [START_REF] Lillacci | Parameter estimation and model selection in computational biology[END_REF][START_REF] Tashkova | Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis[END_REF]. The subsequent task is parameter estimation [START_REF] Ashyraliyev | Parameter estimation 1067 and determinability analysis applied to Drosophila gap gene 1068 circuits[END_REF][START_REF] Ashyraliyev | Systems biology: Parameter estimation for biochemical 1071 models: Parameter estimation in systems biology[END_REF]. After the model identification, one needs to determine the unknown model parameters from the measurements. Since the output of a model depends on the values of its parameters, reproducing Optimization (PSO), Differential Evolution (DE), Genetic Algorithm (GA), and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) as stochastic global search methods that have previously been compared and/or shown to be efficient for fitting electrophysiological neuronal recordings [START_REF] Buhry | Global parameter estimation of an hodgkin-huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits[END_REF]. We also use Metropolis-Hastings (MH) and Simulated Annealing (SA) as the most established Monte Carlo Markov Chain (MCMC) algorithms, which are widely used in the Bayesian framework. Furthermore, we evaluate the performance of aforementioned algorithms to determine which method is more suitable for each of the parameter estimation problem considered in this study.

It is well known that the dynamics of a majority of biological systems can be described by a set of coupled Ordinary Differential Equations (ODEs) or Delay Differential Equations (DDEs) [START_REF] Mendes | Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation[END_REF]. Moreover, biological systems are often subject to external random fluctuations (noise) from signal stimuli and environmental perturbations [START_REF] Daunizeau | Variational bayesian identification and prediction of stochastic nonlinear dynamic causal models[END_REF][START_REF] Breakspear | Dynamic models of large-scale brain activity[END_REF]. Despite the importance of stochastic differential equations (SDEs) in brain stimulation [START_REF] Deco | Key role of coupling, delay, and noise in resting brain fluctuations[END_REF][START_REF] Herrmann | 1163 Shaping intrinsic neural oscillations with periodic stimulation[END_REF]) and describing biological systems [START_REF] Wilkinson | Stochastic modelling for systems biology[END_REF][START_REF] Hutt | Dynamic control of 1176 synchronous activity in networks of spiking neurons[END_REF], their parameter inference by a rigorous analytical approach have received relatively little attention and substantial challenges remain in this context. This motivated us to focus on the parameter estimation of systems whose dynamics are governed by SDEs.

More precisely, a parameter estimation problem is shown for a neurophysiological model describing recorded electroencephalographic data (EEG) obtained under anesthesia. We show that the proposed neural mass model is able to fit very well to observed EEG spectral power peaks in the δ-(0 -4 Hz) and α-(8 -13 Hz) frequency ranges. For illustration reasons, firstly two in silico parameter estimation problems are presented using synthetic data. These case studies consider very basic linear stochastic models and illustrate in detail the analysis applied.

After the parameter estimation task, another important challenge is the identifiability of the estimates [START_REF] Ashyraliyev | Systems biology: Parameter estimation for biochemical 1071 models: Parameter estimation in systems biology[END_REF]Rodriguez-Fernandez et al. 2006b). Identifiability analysis allows one to estimate whether the model parameters can be uniquely determined by the given experimental data (Rodriguez-Fernandez et al. 2013). For each considered case study, we employ different methods to address this issue. The confidence regions of the estimates are plotted and the correlation and sensitivity matrices are analyzed to assess the accuracy of the estimates.

Several previous methods need to integrate differential equations to estimate model parameters, which is a major time consuming problem for the parameter estimation of nonlinear dynamic systems [START_REF] Tsai | Evolutionary optimization with data collocation for reverse engineering of biological networks[END_REF]. In this
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Neuroinform work, we present a general methodological framework for estimating the parameters of systems described by a set of stochastic ODEs or DDEs. In our proposed scheme which is applicable in both frequentist and Bayesian inference frameworks, we compute analytically the power spectrum of model solutions by the aid of the Green's function and fit these to the spectral power of measured data. This combination of techniques provides high estimation accuracy in addition to a great advantage in terms of optimization speed, because it allows us to avoid the numerical integration of model equations.

The following section presents the acquisition procedure of experimental EEG under anesthesia. Then, we briefly review the parameter estimation algorithms and present the mathematical formulation of identifiability analysis in details. Next, we provide the analytical derivation of system spectral power for the two synthetic case studies and the thalamo-cortical model carried out in this work.

The subsequent results section provides the performance of employed optimization algorithms for the synthetic and neurophysiological models. We can show the different sensitivity of model parameters in the thalamo-cortical model. 

Materials and Methods

EEG Acquisition during General Anesthesia

The details of the patient management and EEG acquisition is described in [START_REF] Sleigh | The effect of skin incision 1314 on the electroencephalogram during general anesthesia maintained 1315 with propofol or desflurane[END_REF]. In brief, frontal (FP2-FT7 montage) EEG was obtained from adult patients under general anesthesia that was maintained using either propofol and fentanyl, or desflurane and fentanyl. The hypnotic drugs were titrated to obtain a bispectral index value of 40-50

as per clinical guidelines. The EEG data were collected 2 minutes before, and 2 minutes after, the initial skin incision. The signal was digitized at 128/sec and with 14 bit precision. To remove line artefact it was band-pass filtered between 1 Hz and 41 Hz.

Objective Function

The most widely used criteria to evaluate the goodness of a model fit are the maximum likelihood estimation (MLE)

and the least-squares estimation (LSE) [START_REF] Bates | Nonlinear regression analysis and its applications[END_REF][START_REF] Villaverde | Reverse engineering and identification in systems biology: strategies, perspectives and challenges[END_REF]. MLE implies Bayesian inference and was originally introduced by R.A. Fisher 166 in 1912 [START_REF] Aldrich | Fisher and the making of maximum 1062 likelihood 1912-1922[END_REF]. It searches parameter space to 167 obtain the parameter probability distributions that produce 168 the observed data most likely [START_REF] Kay | Fundamentals of statistical signal processing: 1186 estimation theory[END_REF] 

185 argmax p {P(p)} = argmin p {E(p)} , (1) 
where

186 P(p)) = ln   N y i=1 1 2πσ 2 i 1 2   - 1 2    N i=1    Ŷi -Y i (t, p) 2 σ 2 i       , (2) 
E(p) = N y i=1    Ŷi -Y i (t, p) 2 σ 2 i    , (3) 
where [START_REF] Walter | Identification of parametric models from experimental data[END_REF] 195

χ 2 = N y i=1 Ŷi -Y i (t, p) 2 .
(4)

When minimizing the standard chi-squared error criterion 196 failed to reveal the power peaks in certain frequency bands,
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Neuroinform we employ a modified chi-squared error criterion referred 197 to as the biased chi-squared function given by

χ 2 =c 1 N 1 i=1 Ŷi -Y i (t, p) 2 + c 2 N 2 i=N 1 Ŷi -Y i (t, p) 2 +c 3 N 3 i=N 2 Ŷi -Y i (t, p) 2 + c 4 N y i=N 3 Ŷi -Y i (t, p) 2 , (5) 
where c 1 , c 2 and c 3 c 4 are manually chosen constants

Although stochastic global search methods cannot guarantee the convergence to a global optimum, they are particularly adapted to black-box optimization problems [START_REF] Pardalos | Recent developments and trends in global optimization[END_REF][START_REF] Papamichail | Global optimization of dynamic systems[END_REF][START_REF] Lera | Lipschitz and holder global 1204 optimization using space-filling curves[END_REF]. These methods are also usually more efficient in locating a global minimum than deterministic methods, which are based on the computation of gradient information [START_REF] Georgieva | Global optimization based onnovel heuristics, low-discrepancy sequences and genetic algorithms[END_REF][START_REF] Cuevas | An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation[END_REF].

There are several types of stochastic global optimization methods, which are mostly based on biological or physical phenomena [START_REF] Corne | New ideas in optimization[END_REF][START_REF] Fogel | Evolutionary computation: Toward a new philosophy of machine intelligence[END_REF]. Evolutionary algorithms (EAs) are stochastic search methods, which incorporate a random search principle existing in natural systems including biological evolution (e.g. GA inspired by mating and mutation), artificial evolution (if one does not deal with binary data), and social swarming behavior of living organisms. As an example for the latter algorithm, Particle Swarm Optimization is inspired by birds flocking and fish schooling.

In this study, we use the most popular optimization algorithms namely Levenberg-Marquardt (LM) algorithm and Hooke and Jeeves (HJ) algorithm selected from local search category, and Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic Algorithm (GA), and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) from stochastic global search methods. Furthermore, we use Metropolis-Hastings (MH) and Simulated Annealing (SA) as the popular sampling algorithm belonging to Monte Carlo Markov Chain (MCMC) methods. In addition, to confirm our results obtained by MH, we have used PyMC, which is a probabilistic programming language to perform Bayesian inference in Python [START_REF] Patil | Pymc: Bayesian stochastic modelling in python[END_REF]. The details of these algorithms are explained in Appendix A in Q2 Supplementary Material.

Identifiability Analysis

Once the model parameters have been estimated, it is necessary to determine the identifiability of the estimates, i.e., whether the model parameters can be uniquely determined by the given experimental data [START_REF] Raue | Addressing parameter identifiability by model-based experimentation[END_REF][START_REF] Raue | Structural and practical identifiability analysis of partially observable dynamical models by exploiting the profile likelihood[END_REF][START_REF] Quaiser | Systematic identifiability testing for nambiguous mechanistic modeling -application to JAK-STAT, MAP kinase, and NF-kB signaling pathway models[END_REF]. This task is referred to as practical identifiability of the estimates. Several approaches have been suggested to assess the reliability and accuracy of the estimated parameters. In what follows, we describe the most widely used metrics for assessing the accuracy of estimates.

Confidence Regions

A widely used method in statistical inference to assess the precision of estimated parameters is constructing the
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Neuroinform confidence regions [START_REF] Draper | Applied regression analysis[END_REF]Rawlings et al. 289 1998). A confidence region with the confidence level of

290

(1α)% is a region around the estimated parameter that contains the true parameter with a probability of (1α).

292

Since the sum of squares function is quadratic in linear 293 models, the confidence regions for linear problems with 294 Gaussian noise can be obtained exactly as the ellipsoid (Kay

295 1993) 296 (p * -p) C -1 lin (p * -p) ≤ N p F 1-α N P ,N y -N p . ( 6 
)
It is centered at the estimated parameter p * with principal axes directed along the eigenvectors of C to [START_REF] Seber | Non linear regression[END_REF][START_REF] Ljung | System identification: theory for the user[END_REF] 307

(p * -p) C -1 approx (p * -p) ≤ N p F 1-α N P ,N y -N p . ( 7 
)
Here C approx is an approximation of covariance matrix and 

C H = 2s 2 H (p) -1 , (10) 
where

H (p) = ∂ 2 E(p) ∂p∂p | p * .
Therefore, the confidence region based on Hessian matrix reads

(p * -p) H (p)(p * -p) ≤ 2N p E(p * ) N y -N p F 1-α N P ,N y -N p . ( 11 
)
It is important to note that if both approaches yield the same confidence ellipsoids, the estimation converges to the true parameters. Otherwise, any discrepancy between them indicates an inaccurate estimation [START_REF] Marsili-Libelli | Confidence regions of estimated parameters for ecological systems[END_REF]Rodriguez-Fernandez et al. 2006b).

Another way of constructing the confidence regions in non-linear models is known as the likelihood method. In this approach, an approximate confidence region is defined as all the parameter sets that satisfy [START_REF] Donaldson | Computational experience with confidence regions and confidence intervals for nonlinear least squares[END_REF])

E(p) ≤ E(p * ) 1 + N p N y -N p F 1-α N P ,N y -N p . ( 12 
)
In general, the confidence regions constructed by this approach do not have to be elliptical. Furthermore, since the (12) does not depend on the linearizion, the confidence regions obtained through the likelihood method are more precise than those computed through the approximate covariance matrix (Schmeink et al. 2011). Generating likelihood-based confidence regions requires a large number of function evaluations, which can be computationally expensive. Despite this fact, since minimizing an objective function with metaheuristic optimization algorithms like PSO is performed through function evaluations, using them is a suitable way to obtain the likelihood confidence regions [START_REF] Schwaab | Nonlinear parameter estimation through particle swarm 1311 optimization[END_REF]. In this work, we employ the PSO algorithm to compute the likelihood confidence regions which will be compared with those obtained through the covariance approximation.

Correlation Analysis

The correlation matrix quantifies the possible interrelationship among the model parameters, which can be obtained from the covariance matrix. The correlation coefficient between the i-th and j -th parameter is defined by

R ij = C ij C ii C jj (13)
where C ij is the covariance between the i-th and j -th parameter estimates (Rodriguez-Fernandez et al. 2006a).

By virtue of the conceptual definition of the correlation coefficient, the correlation among parameters leads to
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Neuroinform non-identifiability problems [START_REF] Li | Identification of parameter correlations for 1207 parameter estimation in dynamic biological models[END_REF]Rodriguez-Fernandez et al. 2006b). Thus, highly correlated parameters cannot be uniquely estimated, because the output modification due to small change in one of the correlated parameter can be compensated by an appropriate change in the other parameter.

Sensitivity Analysis

Sensitivity analysis is an appropriate way to identify which model parameters contribute most to variations in model output due to the changes in model input [START_REF] Rateitschak | Parameter identifiability and sensitivity analysis predict targets for enhancement of STAT1 activity in pancreatic cancer and stellate cells[END_REF]. A local sensitivity coefficient measures the influence of small changes in one model parameter on the model output, while the other parameters are held constant [START_REF] Ingalls | Sensitivity analysis: from model parameters to 1179 system behaviours[END_REF][START_REF] Zi | Sensitivity analysis approaches applied to systems biology models[END_REF]. The local sensitivity coefficients can be defined by [START_REF] Brun | Practical identifiability analysis of large environmental simulation models[END_REF])

(p j ) = D(J (p) W J (p)), (14) 
where D denotes the main diagonal elements of a matrix. In addition, the local sensitivity matrix can be determined by computing the curvature of the objective function through the Hessian matrix [START_REF] Bates | Relative curvature measures of 1077 nonlinearity[END_REF])

(p j ) = D(H (p)). (15) 
The sensitivity analysis can shed light on the identifiabil- 

Case Studies

Firstly, in order to illustrate the performance and capability of the parameter estimation method carried out in this work, we estimate the model parameters of two case studies:

Case Consider a damped harmonic oscillator driven by a random 410 stochastic force given by (Øksendal 2007)

411 d 2 x dt 2 + γ dx dt + ω 2 0 x = ξ(t), (16) 
where ω 0 is the intrinsic angular frequency of the oscillator, 412 and γ denotes the damping coefficient. The additive 413 Gaussian white noise ξ(t) obeys

414 ξ(t) = 0, ξ(t)ξ(t ) = 2κδ(t -t ), ( 17 
)
where κ is the intensity of the uncorrelated driving noise, 415 and . denotes the ensemble average (Risken 1984;1996). 416 Using the Wiener-Khinchin theorem, the power spectrum 417 of the stochastic differential equation ( 16) reads (Wang and 418 Uhlenbeck 1945;[START_REF] Masoliver | Harmonic oscillators driven by colored noise: crossovers, resonances, and spectra[END_REF] 419

P (ω) = 2κ √ 2π 1 (ω 2 -ω 2 0 ) 2 + γ 2 ω 2 , ( 18 
)
where ω = 2πf denotes the angular frequency. It can 420 be shown that the only maximum of P (ω) is located at 421

ω max = ω 2 0 -γ 2 /2
, where f 0 = ω 0 /2π is the resonant 422 frequency of the system. In this case study, the vector of 423 unknown parameters being estimated is p I = (κ, γ , f 0 ) 424 with the constraint κ, γ , f 0 > 0. 

where the noise ξ(t) obeys the properties given by Eq. 17. 429

The power spectrum of the corresponding solution is 430

P (ω) = 2κ √ 2π 1 (a + b cos(ωτ )) 2 + (ω + b sin(ωτ )) 2 , ( 20 
)
where κ is the intensity of the additive white Gaussian noise. 431 In this case study the vector of unknown parameters being 432 estimated is p I I = (κ, a, b, τ ), where κ > 0, τ > 0, and 433 a, b ∈ R. Case Study III aims to estimate the parameters of a 437 neural mass model by fitting the power spectrum of 438 the system to the recorded EEG data during awake and 439 anesthesia conditions. To this end, we consider a reduced 440 thalamo-cortical neuronal population model, which is able 441 to reproduce the characteristic spectral changes in EEG 442 rhythms observed experimentally during propofol-induced 443
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Neuroinform anesthesia [START_REF] Hashemi | Anesthetic action on extra-1152 synaptic receptors: effects in neural population models of EEG 1153 activity[END_REF]2015). In the following, the model equations are given, then we derive the analytical expression for EEG power spectrum which will be fitted to the empirical spectra.

Consider the thalamo-cortical system shown schemati- Following [START_REF] Hashemi | Anesthetic action on extra-1152 synaptic receptors: effects in neural population models of EEG 1153 activity[END_REF][START_REF] Hashemi | How the cortico-thalamic 1155 feedback affects the EEG power spectrum over frontal and 1156 occipital regions during propofol-induced sedation[END_REF], we denote the excitatory and inhibitory postsynaptic potentials (PSPs)

cally
in the model's neuronal populations by V c a , where a ∈ 469 {E, R, S} represents the pyramidal (E), relay (S), and 470 reticular (R) neurons, respectively, and c ∈ {e, i} indicates 471 the excitatory and inhibitory synapses, respectively. The 472 system dynamics are governed by the following set of 473 coupled delay differential equations

474 Le V e E (t) = K ES S S [V e S (t -τ ) -V i S (t -τ )], Le V e S (t) = K SE S E [V e E (t -τ )] + I (t), Li V i S (t) = K SR S R [V e R (t)], Le V e R (t) = K RE S E [V e E (t -τ )] + K RS S S [V e S (t) -V i S (t)] (21) 
where the parameters K ab are the synaptic connection stre-475 ngths in population a originating from population b and τ is 476 the transmission time delay between cortex and thalamus. 477

The additional activity I (t) introduces an external input to the 478 system considered as a non-specific input to relay neurons 479

I (t) = I 0 + ξ(t), ( 22 
)
where I 0 is the input mean value, and the noise ξ(t) obeys 480 the properties given by Eq. 17. According to previous 481 studies, we assume that the EEG can be described in a 482 good approximation by spatially constant neural population 483 activity (Robinson et al. 2001a(Robinson et al. , b, 2002)). Thus, under the 484 

α e + 1 β e ) ∂ ∂t + 1, Li (∂/∂t) = 1 α i β i ∂ 2 ∂t 2 + ( 1 α i + 1 β i ) ∂ ∂t + 1, (24) 
with α e > β e , and of the Green's function by [START_REF] Hutt | The anaesthetic propofol shifts the frequency of 1166 maximum spectral power in EEG during general anaesthesia: ana-1167 lytical insights from a linear model[END_REF][START_REF] Hashemi | How the cortico-thalamic 1155 feedback affects the EEG power spectrum over frontal and 1156 occipital regions during propofol-induced sedation[END_REF] 508

α i > β i ,
P E (ω) = 2κ √ 2π G1,2 (ω) 2 , (25) 
where

509 G1,2 (ω) = -K 1 Li e -iωτ Le ( Le Li + G srs ) + e -2iωτ (G esre -G ese Li ) , (26) 
with

G ese = K 1 K 2 , G srs = K 3 K 5 and G esre = K 1 K 3 K 4 , 510 and 511 Le = 1 + iω α e 1 + iω β e , Li = 1 + iω α i 1 + iω β i , K 1 = K ES dS S [V ] dV | V =(V * e S -V * i S ) , K 2 = K SE dS E [V ] dV | V =V * e E , K 3 = K SR dS R [V ] dV | V =V * e R , K 4 = K RE dS E [V ] dV | V =V * e E , K 5 = K RS dS S [V ] dV | V =(V * e S -V * i S )
.

In a reasonable approximation, we assume an instanta-512 neous rise of the synaptic response function followed by an exponential decay i.e., α e β e , and α i β i [START_REF] Hashemi | Anesthetic action 1159 on the transmission delay between cortex and thalamus explains 1160 the beta-buzz observed under propofol anesthesia[END_REF]. This approximation reduces the second-order temporal operators Le,i given by Eq. 24 to the first-order operators Le = 1 + iω/β e , and Li = 1 + iω/β i . Using this approximation, the sixth-order characteristic equation (the denominator of G1,2 given by Eq. 26) simplifies to a third-order equation, which is more analytically tractable.

In our previous study [START_REF] Hashemi | Anesthetic action 1159 on the transmission delay between cortex and thalamus explains 1160 the beta-buzz observed under propofol anesthesia[END_REF], we have shown that this simplification does not affect the spectral power in the delta and alpha ranges. Moreover, it is widely accepted that anesthetic agent propofol prolongs the temporal decay phase of inhibitory synapses while the rise rates remain unaffected [START_REF] Hutt | Effects of the anesthetic agent 1170 propofol on neural populations[END_REF][START_REF] Hutt | How to render 1173 neural fields more realistic[END_REF][START_REF] Hashemi | Anesthetic action on extra-1152 synaptic receptors: effects in neural population models of EEG 1153 activity[END_REF][START_REF] Hashemi | How the cortico-thalamic 1155 feedback affects the EEG power spectrum over frontal and 1156 occipital regions during propofol-induced sedation[END_REF].

Taken together, by fitting the power spectrum of EEG given by Eq. 25 to the empirical spectra, we aim to estimate seven model parameters, namely, the power normalization D = √ 2κK 1 , the excitatory and inhibitory synaptic decay rates β e , and β i , respectively, the axonal propagation delay τ , and the closed-loop gains G ese , G srs , and G esre . Thus, the vector of unknown parameters being estimated is p I I I = (D, τ, β e , β i , G ese , G srs , G esre ), where based on the physiological limits, all the parameters are restricted to be positive.

Furthermore, there are six inequality constraints on system parameters, which will be imposed over the chisquared error function in spectral fitting problem. The first constraint is related to the synaptic rise and decay rate constants. Since response functions for the excitatory synapses exhibit a longer characteristic rise and decay times than the inhibitory synapses, thus α e > α i , and β e > β i (Constraint I). Following the analytical approach described in [START_REF] Forde | Applications of sturm sequences to bifurcation analysis of delay differential equation models[END_REF] to obtain stability conditions for characteristic equation of DDEs, we have derived five analytical conditions for the stability of the considered thalamo-cortical system. According to this approach, we first investigate the conditions under which the system is stable in the absence of time delay (τ = 0). Then, by increasing the delay value (τ > 0), we seek to determine whether there exists a critical delay value for which the system becomes unstable. Since the power spectrum analysis is valid only if the system resting state is stable, we probe the conditions under which the introduction of time delay cannot cause a bifurcation. The following conditions guarantee that the system is stable when τ = 0, and increasing the delay value does not change the stability of the system (see [START_REF] Hashemi | Anesthetic action 1159 on the transmission delay between cortex and thalamus explains 1160 the beta-buzz observed under propofol anesthesia[END_REF] for the details):

β i (2 + G srs )+β e (1-G ese ) > 0, (Constraint II) 1+G esre +G srs -G ese > 0, (Constraint III) (2β e + β i ) 2 + G srs β e + 1-G ese β i -(1 + G esre + G srs -G ese ) > 0, (Constraint IV) (β 2 e β i ) 2 (1+G srs ) 2 -(G esre -G ese ) 2 > 0, (Constraint V) = 18ξ 2 ξ 1 ξ 0 -4ξ 3 2 ξ 0 + ξ 2 2 ξ 2 1 -4ξ 3 1 -27ξ 2 0 < 0. (Constraint VI) U N C O R R E C T E D P R O O F Neuroinform

Results

In the following, the results of model parameter estimation for the case studies described in the previous section are To this end, the power spectrum of the system is computed analytically by the aid of the Green's function to generate the true signal, i.e. the signal constructed by the nominal (true) parameters. In addition, the system spectral power is calculated numerically to acquire the measurement signal by applying the Welch method. Then, the model 579 parameters are estimated by fitting the experimental data to 580 the corresponding model power spectrum. In general, the 581 generated in silico data can be mathematically expressed 582 as = + noise, where and denote the noise-583 free observation (true signal) and the corresponding noisy 584 data (measured signal), respectively. Finally, in the main 585 Case Study III, the proposed parameter inference method 586 is applied to the real experimental data set to estimate the 587 parameters of a neural mass thalamo-cortical model (true 588 signal) from the EEG spectral power (measured signal). 2H (p * ) the covariance matrix approximated by the Fisher Information Matrix (cf. Eq. 9) and Hessian matrix (cf. Eq. 11) are equal. This yields identical elliptical confidence regions, cf. dashed red and green lines in Fig. 4a.

Considering the conceptual difference of Hessian and FIM approaches in the derivative terms, the exact coincidence of the ellipsoids obtained by these methods confirms that the accuracy in parameter estimations are well captured [START_REF] Marsili-Libelli | Confidence regions of estimated parameters for ecological systems[END_REF]. Moreover, comparing the likelihood confidence regions (calculated from Eq. 12) with the elliptical confidence regions indicates that high inference precision have been obtained by PSO algorithm. This demonstrates further the benefits of the PSO algorithm in estimating the model parameters combined with a simultaneous computation of the confidence estimates.

To further confirm the reliability of the obtained confidence regions, we have also computed the 95% confidence regions by PyMC package [START_REF] Patil | Pymc: Bayesian stochastic modelling in python[END_REF]. As presented in Fig. 4b, one observes very good agreement with the results illustrated in panel a.

An easy way to study the practical identifiability of an estimation is to plot the correlation matrix of the model parameters. Here, the local identifiability of the obtained estimations is evaluated based on the correlation analysis. For Case Study I, Fig. 5 displays the absolute value of the correlation coefficients obtained according to Eq. 13.

The figure shows low correlation values in non-diagonal elements. The lack of correlation between the estimated parameters indicates that all the parameters are identifiable. Furthermore, we have carried out the sensitivity analysis 

Case Study II

In Case Study II, the power spectrum of a linear SDDE is fit to a set of pseudo-experimental data. Note that this case study poses a multimodal objective function, which is a more challenging problem in finding the global minimum compared to Case Study I as an example of unimodal functions. Figure 7 illustrates the parameter inference of the SDDE from a noisy measurement. The estimated power spectrum shows a striking close match to the reference spectrum in Fig. 7a The estimated power spectrum (dashed green line), the corresponding noise-free spectrum (blue line) and the spectrum from noisy measured data (dashed red line). The grey shaded area encodes the 95% confidence interval. The true and estimated parameters are Finally, for this case study, we compare the performance of different algorithms used in this study. For the sake of fair comparison, the initial guesses in the MH and SA algorithms were created randomly within the parameter search space to have an identical strategy for starting condition with the EAs (i.e., PSO, DE, GA, CMA-ES). The parameter search space was limited in the range [0, 20] for each parameter. We have also applied the local algorithms LM and HJ, but nonlocal algorithms out-perform them clearly (LM and HJ algorithms failed to arrive at the global minimum). This is why we do not discuss their corresponding results in the following.

The results for 100 runs are reported in Fig. 11 and Table 1. We found that PSO, DE, GA, CMA-ES, SA, MH methods succeeded in finding the global minimum.

In addition, for each algorithm, the mean and minimum values of obtained fitness function, and the average of running time are listed in Table 1. Although EAs reveal a high computational cost, they show a very good performance in finding the global solution. According to these results, PSO delivers slightly better solutions than other EAs, although applied it to estimate model parameters optimally. Figure 12 782 shows a good prediction of the observed spectral power features in experimental data.

It is important to point out that, in most of the datasets, implementing a standard fitness function defined by the discrepancy between the models output and the measured data does not allow to fit well the spectral power peak in δand α-frequency ranges (cf. the inset in Fig. 12a). Since the δ-and α-peaks are important and informative signal features observed during anesthesia, we employed a biased chi-squared function given by Eq. 5 in order to fit the model with the spectral power peak within these frequency ranges. Taking a biased fitness function with more weight value in δ-and α-frequency bands, the model output is forced to improve the fit of the corresponding experimental spectral power peaks. For instance, in panel A, we set c 1 = 20, c 2 = 1, c 3 = 10, c 4 = 1 to capture the observed δ-and α- The best values of fitness function (minimum), the related counts, its mean value and the average of computational time (in second) for each algorithm are illustrated in the table 

peak. It is trivial that c 1 = c 2 = c 3 = c 4 = 1

Discussion

In a great variety of scientific fields, stochastic differential equations arise naturally in the modeling of systems due to random forcing or other noisy input [START_REF] Faisal | Noise in the nervous system[END_REF]. Numerical integration of differential equations is a major time consuming problem in the parameter estimation of nonlinear dynamics describing biological systems [START_REF] Liang | Stochastic methods in neuroscience[END_REF]. Furthermore, inferring the parameters of SDEs are more problematic due to the inherent noise in system equations.

Various previous methods attack the parameter inference problem. It has been shown that a decoupling strategy (slope approximation), that considers the derivative values of system state variables, avoids numerical integration altogether by fitting models to the slope of time-series data [START_REF] Almeida | Neural-network-based parameter 1064 estimation in s-system models of biological networks[END_REF][START_REF] Voit | Decoupling dynamical systems for pathway identification from metabolic profiles[END_REF]). However, this technique is not applicable in most inverse Fig. 12 Fitting a reduced thalamo-cortical model to the EEG power spectra in awake and anesthesia conditions. In each panel, the spectral power of recorded EEG data is shown as a dashed red line. The fit EEG power spectra using standard chi-squared function are illustrated by green lines, whereas those obtained through the biased chi-squared function are shown by blue lines. Panels a and b illustrate the EEG spectral power over the frontal head region in awake and anesthesia conditions, respectively. The occipital EEG spectral power in awake and anesthesia conditions are displayed in panels c and d, respectively 

857

In the last decade, there have been several studies on 858 fitting the neural population models to experimental data. In 859 neuroimaging literature, Dynamic Causal Modeling (DCM) has been used successfully to infer hidden neuronal states from measurements of brain activity [START_REF] Friston | Dynamic causal modelling[END_REF][START_REF] David | Dynamic causal modeling of evoked responses in eeg and meg[END_REF][START_REF] Pinotsis | Dynamic causal modeling with neural fields[END_REF]. It has been shown previously that characterizing neural fluctuations in terms of spectral densities leads to more accurate inference than stochastic scheme (Razi et al. 2015;[START_REF] Jirsa | The virtual epileptic patient: individualized 1183 whole-brain models of epilepsy spread[END_REF]). However, in most of the previous studies, a rigorous analytical approach to overcome the inference difficulties due to the additive noise has received relatively little attention [START_REF] Daunizeau | Stochastic dynamic causal modelling of fmri data: Should we care about neural noise?[END_REF][START_REF] Ostwald | A tutorial on variational bayes for latent linear stochastic time-series models[END_REF][START_REF] Ostwald | Probabilistic delay differential equation modeling of event-related potentials[END_REF]. In the technique presented in this study, we estimated the model parameters from the power spectrum derived analytically from the system equations. By the aid of the Green's function method, we can easily compute the power spectrum of a linear system whose dynamics are governed by a set of coupled stochastic ordinary or delay differential equations. By fitting the analytically computed spectral power to the spectral In recent years, many algorithms have been proposed to solve inverse problems (Rodriguez-Fernandez et al. 2006b;[START_REF] Kramer | Hamiltonian monte 1201 carlo methods for efficient parameter estimation in steady state 1202 dynamical systems[END_REF][START_REF] Kimura | Estimating cellular parameters through optimization 1196 procedures: elementary principles and applications[END_REF]. Notably, it is shown that both the choice of algorithm applied in the estimating problems and the formulation of the objective function plays a crucial role in reproducing the key features of the measured data [START_REF] Kimura | Inference of S-system models of genetic networks using 1192 a cooperative coevolutionary algorithm[END_REF]. This is confirmed by our study demonstrating that the specific choice of the fitness function, e.g. by weighting different signal elements, plays a decisive role in reproducing the key features of the measured data. We showed that using the standard least squares function the thalamo-cortical neural mass model fails to be fit to the spectral power peak observed in δ-and α-frequency ranges. This can be improved by adding more [START_REF] Bojak | Modeling the effects of anesthesia on the electroencephalogram[END_REF] 

  set of the unknown parameters. There-20 fore, parameter estimation is a very important component of 21 the model developing procedure. Broadly speaking, given 22 a set of experimental data and a particular mathemati-23 cal model, the aim of parameter estimation (also known 24 as model calibration) is to identify the unknown model 25 parameters from the measurements for which substituting direct local search method, in addition to Particle Swarm

  ity of model parameters. Making a small change in a very sensitive model parameter causes a strong response in the model output, which indicates that the parameter is more identifiable. On the contrary, a model parameter with low sensitivity is more difficult to being identified, because any modification in an insensitive parameter has no influence on the model output (Rodriguez-Fernandez et al. 2013).

  Study I) a stochastic damped harmonic oscillator, and Case Study II) a stochastic delayed oscillator. For each case we have generated in silico data, i.e., the measured data is generated artificially by adding noise to the model output obtained by simulating the model equations with a set of pre-chosen parameters referred to as the true values. Finally, in Case Study III) the parameters of a thalamo-ocortical model are inferred by fitting the model power spectrum to the EEG spectral power recorded under various experimental conditions. All the computations in the present work were implemented in Matlab (The Mathworks Inc., MA) on a Mac OS X machine with 2.5 GHz Intel Core i5 processor and 12 GB of 1333 MHz DDR3 memory. Case Study I: a Stochastic Damped Harmonic Oscillator 409

425

  Case Study II: a Stochastic Linear Delayed Oscillator 426 Consider a linear scalar delay differential equation in the 427 presence of additive white noise given by 428 dy(t) dt = ay(t) + by(tτ ) + ξ(t).

  in Fig. 1. The model consists of a network of three populations of neurons: cortical pyramidal neurons (E), thalamo-cortical relay neurons (S) which both are excitatory glutamatergic neurons, and thalamic reticular nucleus (R) which is a thin shell of GABAergic cells surrounding the thalamus. The cortical pyramidal neurons (E) receives excitatory input from thalamo-cortical relay neurons (S) and projects back to the same nucleus. This reciprocal long-range excitatory interaction would generates a positive feedback which is associated with a conduction delay τ . However, the incessant excitation in this loop is prevented by the interposed inhibition to thalamo-cortical relay neurons (S) which originates from thalamic reticular nucleus (R). The thalamic reticular nucleus (R) receive excitatory input from axon collaterals of the cortical pyramidal neurons (E) and thalamo-cortical relay neurons (S), which the former input is associated with a constant time delay τ (Robinson et al. 2001a; Victor et al. 2011).

Fig. 1

 1 Fig. 1 Schematic diagram of the reduced thalamo-cortical model. The excitatory connections (glutamatergic) are indicated with blue arrows, while the inhibitory connections (GABAergic) are represented by red lines with filled circle ends. The connections between cortical pyramidal neurons (E) and the thalamus consisting of thalamocortical relay neurons (S) and thalamic reticular nucleus (R) are associated with a constant time delay τ

  presented. The first two case studies aim to illustrate important features of the methods applied laying the ground for the analysis of recorded experimental data by a thalamocortical model. An outline of the parameter inference in this study is illustrated in Fig.2. In Case Study I and II, the unknown parameters of set of SDEs (stochastic ordinary and delay differential equation, respectively) are inferred from pseudo-experimental data. As can be observed from the schematic illustration, in order to estimate the unknown parameters of a set of SDE, we transform the observation from time-domain to frequency-domain data.

SDEFrequencyFig. 2 Fig. 3 Fig. 3 ,

 233 Fig.2Schematic illustration of parameter inference carried out in this work. In Case studies I and II, the true signal (analytical power spectrum, ) is fitted to the measured signal (numerical power spectrum,

Fig. 5

 5 Fig. 5 Correlation matrix for Case Study I. The figure shows the absolute value of the correlation coefficients indicating lack of correlation between the estimated model parameters κ, γ , and f 0

  . Here, the noise-free observations are generated by substituting the true parameters p I I = (κ, a, b, τ ) = (0.1 mV, -17.3, -21.32, 0.2) in Eq. 20. The fit based on PSO yields the optimal parameters p * I I = (κ, a, b, τ ) = (0.103 mV, -18.4, -21.49, 0.2), that is in very good agreement with the original model parameters. The corresponding estimation's fitness function value is E(p * I I ) = 33.19. Furthermore, the histograms of Markov Chains constructed by the MH algorithm for model parameters κ, a, b and τ are shown in Fig.7b-e, respectively. We observe that the estimates calculated by the MH (vertical red lines) are very close to those obtained by PSO algorithm.

Figure 8 Fig. 7

 87 Figure8displays the confidence regions for all possible pairs of the estimated parameters in Case Study II. Similar to Case Study I, the elliptical confidence regions are computed by covariance matrix estimation according to Eqs. 9, and 11, whereas the likelihood confidence regions are provided by PSO according to Eq. 12. One can see that the ellipsoids constructed with covariance matrix estimation

Fig. 8

 8 Fig. 8 Elliptical and likelihood confidence regions at 95% confidence level for each pair of estimated parameters in Case Study II. The ellipsoids are computed with the FIM information (in dashed red) and Hessian matrix (in green), whereas the likelihood confidence regions (in blue) are estimated by the PSO algorithm. The estimated parameters p * I I = (κ, a, b, τ ) = (0.103 mV, -18.4, -21.49, 0.201) are represented by filled red circles

Fig. 9 Fig. 10

 910 Fig. 9 Correlation matrix (absolute values) for Case Study II. a The estimated parameters are κ, a, b, and τ . From this panel, we observe that parameters a and b are highly correlated, which were causing identifiability problem. b Introducing the parameter according to Eq. 27 yields a model with three uncorrelated parameters: κ, , τ

Fig. 11

 11 Fig. 11 Comparing the performance of different algorithms through 100 independent runs in Case Study II. The red bars indicate the histogram of fitness function values (the number of counts of the best fitness value) obtaiend by PSO, DE, GA, CMA-ES, MH and SA algorithm

Fig. 13

 13 Fig. 13 Fitting a reduced thalamo-cortical model to EEG spectral power in pre-and post-incision anesthesia induced by propofol and desflurane. The recorded EEG data for eight patients are shown by dashed lines, whereas the corresponding fitted model are illustrated by solid lines. a The EEG power spectra recorded in pre-and b in post-incision condition induced by propofol are illustrated by dashed red and green lines, respectively. In addition, the solid blue and black lines depict the corresponding fitted thalamo-cortical model to experimental data. Panels c) and d show the the fitted mode against the spectral power of recorded EEG data during desflurane induced anesthesia in pre-and post-incision conditions, respectively

  the other side, many sampling algorithms and 896 probabilistic programming languages have been created to 897 perform Bayesian inference, especially for high dimen-898 sional and complex posterior distributions e.g., Carpenter 899 et al. (2017) and Patil et al. (2010). This maximum like-900 lihood approach provides us uncertainty information in 901 addition to the optimum value for each parameter. In the present work, we have used several optimization algorithms as well as classical sampling methods (MH) to benefit from and compare both classic and probabilistic inferences. We compared the performance of EAs including PSO, DE, GA, CMA-ES and the well-known sampling algorithms MH, and SA (Case Study I and Case Study II, cf.Figs. 6, and 11)). Our results show that in the case of a unimodal problem (single spectral peak), EAs outperform the sampling algorithms while they are computationally more expensive.

  fitness function in certain frequency bands than the others, cf. Fig 12.For each parameter estimation problem carried out in this study, we also employed the practical identifiability analysis to check the reliability of the estimates. The identifiability analysis in this work comprised the Fisher Information Matrix (FIM) to compute the sensitivity and the correlation matrices, in addition to plotting the confidence regions for estimated parameters. We illustrated that the identifiability analysis can be easily exploited by plotting the confidence regions according to the covariance approximation or by employing PSO and MH algorithms. For instance, the confidence regions obtained through Hessian and FIM approaches were compared in Figs. 4 and 10. By virtue of the conceptual difference between these approaches, the exact coincidence of the ellipsoids obtained based on Hessian and FIM information indicates that the estimated parameters are uniquely identifiable and we were able to obtain reliable estimates (Marsili-Libelli et al. 2003). To further confirm the reliability of the shown confidence regions, we have also compared the results obtained by the PSO and the MH algorithms. As presented in Figs. 4 and 10, we observed very good agreement with these approaches.Furthermore, by measuring the sensitivity values, it is possible to investigate how the system output will change in response to small modification in the model parameters(Rodriguez-Fernandez et al. 2006b[START_REF] Hutt | The anaesthetic propofol shifts the frequency of 1166 maximum spectral power in EEG during general anaesthesia: ana-1167 lytical insights from a linear model[END_REF]. This allows us to reveal which model parameters play a decisive role in the model behavior. A high sensitivity index for a parameter shows that the small changes on that parameter cause a strong response in model output.This indicates that the parameters with higher sensitivity values are more identifiable than those parameters with low sensitivity indices (cf. Appendix B in Supplementary Material). The correlation plots also provide information about the parameter identifiability. The lack of correlation among the estimated parameters reveals that the parameters are identifiable, as shown in Fig.5. On the contrary, the highly correlated parameters are not identifiable since there exist combinations of them yielding an identical fitness value, cf. Fig. 9. The high correlation between parameters can also cause a discrepancy between the elliptical and likelihood-based confidence regions, as illustrated in Fig. 8. To surmount this problem, the pairs of correlated parameters must be removed by introduction of new variables. Up to now, few studies have investigated the parameter estimation problems in the context of neural population modeling, which is well-established to reproduce the measured EEG data during different behavioral states. To our best knowledge, the present study is the first that fits a thalamo-cortical model to EEG spectral power peaks observed in both δ-and α-frequency ranges. A pioneer study by

  . In other words, 169 the MLE assesses the quality of estimated parameters by 170 maximizing the likelihood function (or equivalently the log-171 likelihood function which is easier to work mathematically). 172 The likelihood function is the probability of obtaining 173 the set of observed data, with a given set of parameter 174 values. The set of parameters that maximizes the likelihood 175 function is called the maximum likelihood estimator. On the 176 other hand, choosing LSE method (frequentist inference), 177 we search for the parameter values that minimize the 178 sum of squared error (SSE) between the measured and 179 the simulated data[START_REF] Ljung | System identification: theory for the user[END_REF][START_REF] Myung | Tutorial on maximum likelihood estimation[END_REF]. As it is 180 widely known, if we assume that the experimental errors are 181 independent and normally distributed and assuming that the 182 measurement noise is uncorrelated and obeys a Gaussian 183 distribution, the MLE is equivalent to LSE (Bates and Watts 184 1980; Ljung 1999):

  188 represents the corresponding model prediction at time point 189 t i , p is the parameter vector being estimated, σ i are 190 the measurement errors (the variance of the experimental 191 fluctuations), and N y is the number of sampling points 192 of the observed data. In addition, if we assume that all 193 variances σ 2 i are equal, Eq. 3 simplifies to the well-known 194 chi-squared error criterion

E(p) 

is the weighted least-squares fitness function, 187 Ŷi denotes the measured data in the i-th data point, Y i (t, p)

Table 1

 1 Comparing the results obtained by different search algorithms achieved from 100 independent runs in Case Study II

	Neuroinform				
	Algorithm	Min	Counts	Mean	Time(s)
	PSO	33.19	100	33.19	27.5
	DE	46.22	95	58.73	27.9
	GA	47.76	94	60.04	31.5
	CMA	107.03	54	699.59	67.03
	SA	112.09	52	825.90	116.3
	MH	114.52	44	850.69	117.3

  results in the Most parameters are stable over experimental conditions and subjects, such as the thalamo-cortical delay time τ . Conversely, the decay rates β e and β i are significantly different under desflurane and propofol anesthesia under the pre-incision condition (p < 0.05).

	Moreover, the noise strength is significantly different under
	desflurane and propofol anesthesia in both experimental
	conditions (p < 0.05). The detailed parameter statistics for
	each patient are reported in Appendix C in Supplementary
	Material.
	799
	standard chi-squared function.

800

The sensitivity analysis of the fitness function to the 801 estimated parameters for this case study is shown in all patients.

1022

  fitted a neural population model comprising excitatory and inhibitory cortical neurons 980 to a set of pseudo-experimental data. In another study, 981Rowe et al. (2004) have estimated the values of key 982 neurophysiological parameters by fitting the model's single-983 peak spectrum to EEG spectra in awake eyes-closed 984 and eyes-open states. Although they have achieved good 985 predictions of the measured data, their data do not exhibit a 986 second spectral power peak as in our data in δ-frequency 987 range. Moreover, they have used a local search method (LM 988 method) which requires an initial guess for the parameters. 989 In a similar approach, Van Albada et al. (2010) have fit a 990 neural mass model to eyes-closed EEG spectra of a large 991 number of subjects to probe the age-associated changes 992 in the physiological model's parameters. Their findings 993 suggest that the inverse modeling of EEG spectral power is 994 a reliable and non-invasive method for investigating large-995 scale dynamics, which allows us to extract physiological 996 information from EEG spectra. In line with these studies, 997 the data-driven approach presented in the current study 998 provides a proper guidance for fitting the thalamo-cortical 999 model to a large set of experimental recordings. This 1000 enables us to investigate the parameter changes during the 1001 transition from awake to anesthesia state, especially those 1002 parameters that cannot be measured directly. An important 1003 finding of our data-based analysis in fitting a thalamo-1004 cortical model to the EEG spectra is that the model is 1005 heavily sensitive to the delay transmission in the system 1006 (cf. Appendix B in Supplementary Material). This is in 1007 agreement with previous studies suggesting that the location 1008 of spectral power peaks especially in alpha frequency range 1009 heavily depends to the delay values in the thalamo-cortical 1010 circuits(Robinson et al. 2001a, b; Rowe et al. 2004). 1011 Hence the transmission delay can provide a basis for the 1012 reproduction of certain features in experimental data seen 1013 at high concentration of anesthetics. For instance, a recent 1014 study by[START_REF] Hashemi | Anesthetic action 1159 on the transmission delay between cortex and thalamus explains 1160 the beta-buzz observed under propofol anesthesia[END_REF] has considered the effect of 1015 anesthetics on the axonal transmission delay to reproduce 1016 the beta power surging observed in EEG power spectrum 1017 close to loss of consciousness. Inferring the parameter 1018 changes associated to the changes in brain activities from 1019 model fitting to a large data set remains to be investigated in 1020 future work.The results obtained in the present work reveal that given 1023 a set of stochastic ordinary or delay differential equations 1024 (SDEs) and a set of experimental data, we are able to fit 1025 the model power spectrum to the related data with a high 1026 accuracy and very low computational costs by the aid of 1027 the Green's function method and evolutionary algorithms. 1028 We demonstrated that using evolutionary algorithms, the 1029 Neuroinform proposed thalamo-cortical neural population model fits 1030 very well to the EEG spectral features within δ-and 1031 α-frequency ranges measured during general anesthesia. Moreover, we showed that in multimodal optimization 1033 problems, the use of a global optimization approach such as 1034 PSO or DE is required in order to accurately estimate the

	1035	
	1036	model parameters.
	1037	Our analysis indicates further that one can employ a data-
	1038	driven approach to provide new valuable insights into the
	1039	mechanisms underlying the behavior of complex systems.
	1040	This approach will provide an appropriate guidance in
	1041	future brain experiments to better understand different
	1042	behavioral activities. As a summary, this work can serve
	1043	as a basis for future studies revealing biomarkers from
		physiological signals.
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Consequently, by substituting (8) into (7), the confidence functions for neuronal populations a ∈ {E, S, R}, in which