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We consider the problem of maximal regularity for the semilinear non-autonomous fractional equations

Here, ∂ α i denotes the Riemann-Liouville fractional derivative of order α i ∈ (0, 1) w.r.t. time and the time dependent operators A(t) : V → V ′ are associated with (time dependent) sesquilinear forms on a Hilbert space H such that V is continuously and densely embedded into H. We prove maximal L p -regularity results and other regularity properties for the solutions of the above equation under minimal regularity assumptions on the forms, the initial data u 0 and the inhomogeneous term F.

Introduction

The present paper deals with maximal L p -regularity for non-autonomous evolution fractional equations. Before explaining our results we introduce some notations and assumptions. Let (H, (•, •), • ) be a Hilbert space over R or C. We consider another Hilbert space V which is densely and continuously embedded into H. We denote by V ′ the (anti-) dual space of V so that

V ֒→ d H ֒→ d V ′ .
We denote by , the duality V-V ′ and note that ψ, v = (ψ, v) if ψ, v ∈ H.

which solves the equation (1.1). In this result only measurability of t → a(t, ., .) with respect to the time variable is required to have a solution u ∈ L 2 (0, τ ; V) and the proof is based on the form method. Using a different approach, maximal L p -regularity was established in [START_REF] Achache | Non autonomous maximal regularity for the fractional evolution equations[END_REF] by the author, assuming that t → a(t, x, y) ∈ C α ([0, τ ]) for all x, y ∈ V, and some α > 0. We remark that L p (L q )-maximal regularity for non autonomous time fractional diffusion equations in R d has been proved recently in [START_REF] Donga | Lp-estimates for time fractional parabolic equations with coefficients measurable in time[END_REF], [START_REF] Kim | An L q (L p )-theory for the time fractional evolution equations with variable coefficients[END_REF] by PDE methods.

For L p -estimates for fractional equations in divergence form with measurable coefficients we refer the reader to [START_REF] Donga | Lp-estimates for time fractional parabolic equations in divergence form with measurable coefficients[END_REF]. We refer also to [START_REF] Kubica | Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients[END_REF] where the authors applied the approach of [START_REF] Zacher | Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces[END_REF] to establish the existence of strong solutions for non autonomous time fractional diffusion equations.

Noting that in the parabolic case (i.e. for the equation u ′ (t) + A(t)u(t) = f (t)) maximal L 2 -regularity result in the space V ′ is well known and is called Lions' theorem.

Our result is to extend the results in [START_REF] Zacher | Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces[END_REF] in two directions. The first direction is to deal with maximal L p -regularity, for all p ∈ (1, ∞). The second is to assume less regularity on initial data u 0 . We extend also the result in [START_REF] Achache | Non autonomous maximal regularity for the fractional evolution equations[END_REF] by assuming less regularity on u 0 and on the forms with respect to t, which is our main motivation.

Our main results can be summarized as follows (see Theorems 4.1, 4.4 and Propositions 4.2, 4.6 for more general and precise statements). Suppose that t → a(t, x, y) is continuous for all x, y ∈ V. Then the equation (1.1) has maximal L p -regularity in V ′ . Moreover, for γ ∈ [0, 1], we have

τ 0 u(t) p [V ′ ,V]γ
t p(1-γ)α dt < ∞. Assuming in addition that t → F (t, x), x ∈ V ′ satisfies F (., 0) ∈ L p (0, τ ; V ′ ) and the following continuity property: for any ε > 0 there exists a constant N ε,p > 0 such that F (., u) -F (., v) p L p (0,τ ;V ′ ) ≤ ε u -v p M R(α 1 ,p) + N ε,p u -v p L p (0,τ ;V ′ ) ,

for any u, v ∈ M R(α 1 , p). Here, u M R(α 1 ,p) = d dt [k α 1 * (u-u 0 )](.) L p (0,τ ;V") + A(.)u L p (0,τ ;V ′ ) . Then there exists a unique u ∈ M R(α 1 , p) which is the solution to the semilinear equation

n i=1 λ i d dt [k α i * (u -u 0 )](.) + A(.)u = F (., u), λ i ∈ C, λ 1 > 0.
Here, α i ∈ (0, 1), i = 1, ..., n. This work is structured as follows. In the second section we prove several key estimates and we develop the necessary tools for the proofs of the main results. In section 3, we show maximal L p -regularity for the autonomous problem (i.e. A(t) = A(m) for all t ∈ [0, τ ] and some m ∈ [0, τ ]), decay estimates of the solution and the invariance of closed convex subset and some other results, while in section 4, we study maximal L p -regularity for the non-autonomous and semilinear equations. Finally, we illustrate our abstract results by examples in section 5. Notation. We denote by L(E, F ) (or L(E)) the space of bounded linear operators from E to F (from E to E). The spaces L p (a, b; E) and W 

Preparatory lemmas

In this section we prove several estimates and lemmas which will play an important role in the proof of the main results.

The Mittag-Leffler function E α,β (α, β > 0) is defined by

E α,β (z) := ∞ k=0 z k Γ(αk + β) , z ∈ C,
where Γ is the gamma function.

Consider the function of Wright-type

Ψ α (z) := 1 π ∞ n=1 (-z) n (n -1)! Γ(nα) sin(nαπ), z ∈ C, with 0 < α < 1. Lemma 2.1. Let z ∈ C such that |z| < 1. Then |Ψ α (z)| ≤ C α |z| + 1 π |z| 1 -|z| , C α > 0.
Proof. Let a be the integer part of 1 α . We have

|Ψ α (z)| ≤ 1 π 2a n=1 |(-z) n | (n -1)! Γ(nα) + 1 π ∞ n=2a+1 |(-z) n | (n -1)! Γ(nα) ≤ (i) 2a sup β∈(α,3) Γ(β) π |z| + 1 π ∞ n=2a+1 |z| n (n -1)! Γ(n) = (ii) 2a sup β∈(α,3) Γ(β) π |z| + 1 π ∞ n=2a+1 |z| n ≤ 2a sup β∈(α,3) Γ(β) π |z| + 1 π |z| 2a+1 1 -|z| ≤ 2a sup β∈(α,3) Γ(β) π |z| + 1 π |z| 1 -|z| .
Where in (i) we used the non-decreasing of the function Γ on [3, ∞[ and Γ(n) = (n -1)! in (ii). This finishes the proof of the lemma.

From [START_REF] Zhou | Basic theory of fractional differential equations[END_REF][Property 4.60] we have the following lemma.

Lemma 2.2. For -1 < r < ∞ and λ > 0, the following results hold

1-Ψ α (t) ≥ 0, t > 0, 2-∞ 0 α t α+1 Ψ α ( 1 t α )e -λt dt = e -λ α , 3-∞ 0 Ψ α (t)t r dt = Γ(1+r) Γ(1+αr) . Let p ∈ (1, ∞).
We define the operator of derivation in X p := L p (0, τ ; V ′ ) by

D(∂) = W 1,p 0 (0, ∞; V ′ ) := {u ∈ W 1,p (0, ∞; V ′ ); u(0) = 0}, ∂ : D(∂) → X p , ∂u = u ′ , u ∂(B) = u ′ X p
and consider ∂ as a closed operator in X p . Theorem 2.3. We have

• R -∪ {0} ⊂ ρ(∂) and for all λ ≥ 0, (λ + ∂) -1 L(X p ) ≤ C 0 1+|λ| . • ∀s ∈ R, ∂ is ∈ L(X p ), moreover s → ∂ is is a strongly continuous group in L(X p ) with ∂ is L(X p ) ≤ C 1 (1 + s 2 )e π 2 |s| .
Theorem 2.3 is proved in [START_REF] Dore | On the closedness of the sum of two closed operators[END_REF][Theorem 3.1]. We note that ∂ is a positive operator, then by Balakrishman formula we have for α ∈ (0, 1) and f ∈ D(∂ α )

∂ α f := 1 Γ(α)Γ(1 -α) ∂ ∞ 0 ξ α-1 (ξ + ∂) -1 f dξ, where (ξ + ∂) -1 f (t) = t 0 e -(t-s)ξ f (s) ds, t ∈ [0, τ ], ξ ∈ [0, ∞).
Lemma 2.4. We have

• D(∂ α ) = (X p , D(∂)) α,p for all α ∈ (0, 1) and for t ∈ (0, τ ) (∂ α f )(t) = 1 Γ(1 -α) d dt t 0 1 (t -s) α f (s) ds
is the Riemann-Liouville fractional derivative operator.

• ∂ α is a sectorial operator of angle θ = α π 2 and has a bounded imaginary power with

(∂ α ) is L(X p ) ≤ C 1 (1 + α 2 s 2 )e απ 2 |s| , s ∈ R. • For λ ∈ Σ π-θ , f ∈ X p , (λ + ∂ α ) -1 f (t) = t 0 (t -s) α-1 E α,α (-λ(t -s) α )f (s) ds. • (∂ -α f )(t) = 1 Γ(α) t 0 (t -s) α-1 f (s) ds, and so ∂ -α L(X p ) ≤ τ α Γ(α + 1)
.

• For all u ∈ D(∂ α ), u L p (0,τ ;V ′ , dt t 2α ) ≤ C α,p u D(∂ α ) , where u p L p (0,τ ;V ′ , dt t pα ) = τ 0 u(t) p V ′ dt t pα .
Proof. For the assertions from 1 to 4 we refer to [START_REF] Achache | Non autonomous maximal regularity for the fractional evolution equations[END_REF][Proposition 2.2] and [START_REF] Bazhlekova | Fractional evolution equations in Banach spaces[END_REF][ Lemma 1.8].

Define now the spaces

F 0 := L p (0, τ ; V ′ , s p ds), F 1 := X p .
One has for every α ∈ (0, 1),

(F 0 , F 1 ) α;p = L p (0, τ ; V ′ , s p(1-α) ds),
(see [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF] [p. 130]). For u ∈ D(∂) we define

T (u)(s) := u(s) s .
Thus, T : D(∂) → F 1 is bounded. Indeed, by the Hardy inequality

T (u) p F 1 = τ 0 ( s 0 u ′ (l)dl V ′ ) p s p ds ≤ t 0 1 s s 0 u ′ (l) V ′ dl p ds ≤ C p τ 0 u ′ (l) p V ′ dl ≤ C p u p D(∂) . It follows immediately from the definition that T : L p (0, τ ; V ′ ) → F 0 is bounded with T (u) p F 0 = u p X p .
Therefore, by interpolation

T : (X p , D(∂)) α,p → (F 0 , F 1 ) α;p is a bounded operator with u L p (0,τ ;V ′ , ds s pα ) = T u L p (0,τ ;V ′ ,s p(1-α) ds) ≤ C α,p u D(∂ α ) . (2.1) Lemma 2.5. Let 0 < α 2 < α 1 < 1.
Then for all u ∈ D(∂ α 1 ) and ε > 0 there exists

K(ε, α 1 , α 2 , p) > 0 such that u D(∂ α 2 ) ≤ ε u D(∂ α 1 ) + K(ε, α 1 , α 2 , p) u X p .
Proof. The reiteration theorem for the real method [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF] [1.10.3, Theorem 2] or property of power of positive operator [22][Theorem 4.3.11] shows that

D(∂ α 2 ) = (X p , D(∂)) α 2 ,p = (X p , (X p , ∂) α 1 ,p ) α 2 α 1 ,p = (X p , D(∂ α 1 )) α 2 α 1 ,p . (2.2)
Let u ∈ D(∂ α 1 ). Then the interpolation inequality (see [START_REF] Lunardi | Interpolation theory. Second. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie[END_REF][Corollary 2.1.8]), Hölder's inequality and (2.2) gives

u D(∂ α 2 ) ≤ C(p) u 1- α 2 α 1 X p u α 2 α 1 D(∂ α 1 ) ≤ ε u D(∂ α 1 ) + K(ε, α 1 , α 2 , p) u X .
Where

K(ε, α 1 , α 2 , p) = C(α 1 , α 2 , p)ε α 2 -α 1 α 2
and C(α 1 , α 2 , p) is a positive constant depending only on α 1 and α 2 , p.

Let p ∈ (1, ∞), v ∈ L p (0, τ ; V ′ ) and α ∈ ( 1 p , 1). Set C α v = l α * v. From [1][Lemma 2
.9] we obtain the following lemma. Lemma 2.6. We have

• C α ∈ L(L p (0, τ ; V ′ ), C α-1 p ([0, τ ]; V ′ )) for α ∈ ( 1 p , 1
) and for α ∈ (0, 1 p ) we get

C α ∈ L(L p (0, τ ; V ′ ), L p 1-αp (0, τ ; V ′ )). • D(∂ α ) ֒→ C α-1 2 ([0, τ ]; V ′ ) for α ∈ ( 1 2 , 1) and for α ∈ (0, 1 2 ), D(∂ α ) ֒→ L 2 1-2α (0, τ ; V ′ ).
• For all u ∈ L p (0, τ ; V ′ ) such that ∂ α u ∈ L p (0, τ ; V ′ ) and t ∈ (0, τ ] we have

t 0 u(s) p V ′ ds ≤ K(α, τ, p) t 0 (t -s) α-1 s 0 ∂ α u(r) p V ′ dr ds, where K(α, τ, p) = τ α p 2 p-1 α p-1 Γ(α) p . We denote by S θ the open sector S θ = {z ∈ C * : |arg(z)| < θ} with vertex 0.
In the sequel we assume ν = 0. It is known that -A(t) is sectorial operator and generates a bounded holomorphic semigroup on H. The same is true for -A(t) on V ′ . From [START_REF] Haak | Maximal regularity for non-autonomous evolution equations[END_REF] [Proposition 2.1] and from the analyticity of the semigroup, we have the following lemma which point out that the constants involved in the estimates are uniform with respect to t.

Lemma 2.7. For any t ∈ [0, τ ], α ≥ 0, the operators -A(t) and -A(t) generate strongly continuous analytic semigroups of angle γ = π 2 -arctan( M δ ) on H and V ′ , respectively. In addition, there exist constants C and C θ , independent of t, such that

1-e -zA(t) L(H) ≤ 1 and e -zA(t) L(V ′ ) ≤ C for all z ∈ S γ . 2-A(t) α e -sA(t) L(H) ≤ C s α and A(t) α e -sA(t) L(V ′ ) ≤ C s α for all s ∈ R. 3-e -sA(t) L(H,V) ≤ C √ s . 4-(z -A(t)) -1 L(X) ≤ C |z| for all z / ∈ S θ with fixed θ > γ. 5-(z -A(t)) -1 L(H,V) ≤ C √ |z| and (z -A(t)) -1 L(V ′ ,H) ≤ C √ |z| for all z / ∈ S θ with fixed θ > γ.
Here,

X = H, V or V ′ .
Noting that for λ > 0 and x ∈ V ′ we obtain

(λ + A(t)) -1 x = L(e -.A(t) )(λ) := ∞ 0 e -λr e -rA(t) x dr. (2.3)
Here, L denotes the Laplace transform.

The next lemma shows the quadratic estimate for A(t) on X = V ′ , H or V with constant independent of t. This lemma was proved in [START_REF] Achache | Non-autonomous maximal regularity in weighted space[END_REF] or in [START_REF] Achache | Lions' maximal regularity problem with H 1 2 -regularity in time[END_REF]. Quadratic estimates are an important tool in harmonic analysis and we will use them at several places in the proofs of maximal L p -regularity.

Lemma 2.8. Let x ∈ X and t ∈ [0, τ ]. We infer that ∞ 0 A(t) 1 2 e -sA(t) x 2 X ds ≤ q x 2 X , (2.4)
where q is a positive constant independent of t.

All the estimates in Lemmas 2.7, 2.8 holds for the adjoint operator A(t) * .

Maximal regularity for autonomous fractional equation

For p ∈ (1, ∞) and m ∈ [0, τ ] we consider the fractional evolution equation

1 Γ(1 -α) d dt t 0 1 (t -s) α (u(s) -u 0 ) ds + A(m)u(t) = f (t), t -a.e, u(0) = u 0 , (3.1)
where f ∈ X p = L p (0, ∞; V ′ ) and u 0 ∈ V ′ . Definition 3.1. Let α ∈ (0, 1). We say that the fractional evolution equation 

(3.1) has maximal L p -regularity if for all f ∈ X p and u 0 ∈ V ′ α,p ⊆ V ′ there is a unique solution u ∈ L p (0, ∞; V) with ∂ α (u -u 0 ) ∈ L p (0, ∞; V ′ ).
, v = u 1 -u 2 satisfies 1 Γ(1 -α) d dt t 0 1 (t -s) α v(s) ds + A(m)v(t) = 0, which equivalent to v = -l α * A(m)v.
Applying Laplace transform to the previous equation we get for λ > 0 :

L(v)(λ) = -1 λ α A(m)L(v)(λ), it follows that (λ α + A(m))L(v)(λ) = 0. Since λ α ∈ ρ(-A(m)) we have L(v)(λ) = 0. Therefore v = 0. Proposition 3.3. Let f ∈ X p and u 0 ∈ V ′ . The solution of the problem (3.1) is giving by u(t) = (R α u 0 )(t) + (S α f )(t), where (R α u 0 )(t) := ∞ 0 Ψ α (r)e -t α rA(m) u 0 dr, (S α f )(t) := t 0 (t -s) α-1 K α (t -s)f (s) ds, such that K α (t) := ∞ 0 αrΨ α (r)e -t α rA(m) dr. Remark 3.4. • Note that for t ∈ [0, ∞) and X = V ′ or X = H we have (R α u 0 )(t) X ≤ M ∞ 0 Ψ α (r) dr u 0 X ≤ M u 0 X and (S α f )(t) X ≤ M α ∞ 0 rΨ α (r) dr t 0 (t -s) α-1 f (s) X ds = M Γ(α) t 0 (t -s) α-1 f (s) X ds. Then S α f L 2 (0,τ ;X) ≤ C α,τ,M f L 2 (0,τ ;X) and for α > 1 2 we get (S α f )(t) X ≤ C α,τ,M t 2α-1 f X . This gives u ∈ L ∞ (0, ∞; X) and by Lemma 2.6, u ∈ C([0, ∞); X). • R α u 0 : (0, ∞) → X is analytically extended to the sector Σ γ α . Moreover, (R α u 0 ) (m) (t) X ≤ M Cα,m t m u 0 X , for all t > 0 and m ∈ N. Proof. Let f ∈ X p , r ∈ [0, τ ] and u 0 ∈ V ′ . Note that, (3.1) is equivalent to d dt k α * u + A(m)u = f in X and u(.) -u 0 = -l α * A(m)u + l α * f. Then u(t) = u 0 - 1 Γ(α) t 0 1 (t -s) 1-α A(m)u(s) ds + 1 Γ(α) t 0 1 (t -s) 1-α f (s) ds. (3.2)
Applying the Laplace transform to the previous equation we get

L(u)(λ) = u 0 λ - 1 λ α A(m)L(u)(λ) + 1 λ α L(f )(λ). Then L(u)(λ) = λ α-1 (λ α + A(m)) -1 u 0 + (λ α + A(m)) -1 L(f )(λ).
On the other hand by Lemma 2.2 we obtain

λ α-1 (λ α + A(m)) -1 u 0 + (λ α + A(m)) -1 L(f )(λ) = (1) λ α-1 ∞ 0 e -λ α t e -tA(m) u 0 dt + ∞ 0 e -λ α t e -tA(m) L(f )(λ)dt = (2) ∞ 0 -1 t d dλ e -(λt) α e -t α A(m) u 0 dt + ∞ 0 ∞ 0 αt α-1 e -(λt) α e -t α A(m) f (s)e -sλ ds dt = (3) ∞ 0 ∞ 0 α r α Ψ α ( 1 r α )e -λtr e -t α A(m) u 0 dr dt + ∞ 0 ∞ 0 ∞ 0 α 2 t α-1 r α+1 e -λtr Ψ α ( 1 r α )e -t α A(m) f (s)e -sλ dr ds dt = (4) ∞ 0 ∞ 0 α r α+1 Ψ α ( 1 r α )e -λt e -( t r ) α A(m) u 0 dr dt + ∞ 0 ∞ 0 ∞ 0 α 2 t α-1 r 2α+1 e -λt Ψ α ( 1 r α )e -( t r ) α A(m) f (s)e -sλ dr ds dt = (5) ∞ 0 ∞ 0 Ψ α (r)e -λt e -t α rA(m) u 0 dr dt + ∞ 0 ∞ 0 ∞ 0 αrt α-1 Ψ α (r)e -λ(t+s) e -t α rA(m) e -λt f (s) dr ds dt = (6) ∞ 0 e -λt ∞ 0 Ψ α (r)e -t α rA(m) u 0 dr dt + ∞ 0 e -λt t 0 (t -s) α-1 ∞ 0 αrΨ α (r)e -(t-s) α rA(m) f (s) dr ds dt.
Where in (1) we used (2.3) and a change of variable in (2), ( 4) and ( 5), [START_REF] Arendt | Invariance of convex sets for non-autonomous evolution equations governed by forms[END_REF]. Therefore

L(u)(λ) = ∞ 0 e -λt ((R α u 0 )(t) + (S α f )(t)) dt.
Now using the injectivity of the Laplace transform, we deduce that

u(t) = (R α u 0 )(t) + (S α f )(t), t ∈ (0, ∞).
We define the space

T r p α =                  V ′ , for α < 1 p (V ′ , V) ε,2 , with ε > 0, for α = 1 p (V ′ , V) 1-1 pα ,p , for α ∈ ( 1 p , 1). (3.3) Proposition 3.5. For p ∈ (1, ∞) and α ∈ [ 1 p , 1) we obtain A(m)R α ∈ L(T r p α , L p (0, ∞; V ′ )). Moreover, for all u 0 ∈ T r p α , with α ∈ (0, 1) we have R α u 0 ∈ C([0, ∞), T r α ). Proof. Let u 0 ∈ D(A(m) ε ) = (V ′ , V) ε,2
, with ε > 0 and α = 1 p . The analyticity of the semigroup t → e -tA(m) gives

A(m)(R α u 0 )(t) V ′ ≤ ∞ 0 Ψ α (r) A(m)e -t 1 p rA(m) u 0 V ′ dr ≤ ∞ 0 Ψ α (r) A(m) 1-ε e -t 1 p rA(m) A(m) ε u 0 V ′ dr ≤ C ε ∞ 0 Ψ α (r)r ε-1 dr 1 t 1-ε p A(m) ε u 0 V ′ . Thus, A(m)(R 1 p u 0 ) L p (0,∞;V ′ ) ≤ C ′ ε τ ε p A(m) ε u 0 V ′ .
Now, since for all α ∈ (0, 1) and

u 0 ∈ T r α , (R α u 0 )(t) T r p α ≤ M ∞ 0 Ψ α (r) dr u 0 T r p α
and by the strong continuity of the semigroup (e -t α rA(m) ) t,r≥0 we have immediately that

R α u 0 ∈ C([0, ∞); T r p α ). Let now u 0 ∈ T r p α , α ∈ ( 1 p , 1
) and g ∈ L q (0, ∞; V), where q = p p-1 . We infer that

| A(m)R α u 0 , g L p (0,∞;V ′ )×L q (0,∞;V) | = | τ 0 ∞ 0 Ψ α (r)A(m)e -t α rA(m) u 0 dr, g(t) dt| = | ∞ 0 Ψ α (r) ∞ 0 A(m)e -t α rA(m) u 0 , g(t) dt dr| ≤ ∞ 0 Ψ α (r) ∞ 0 A(m)e -t α rA(m) u 0 p V ′ dt 1 p dr g L q (0,∞;V) ≤ ∞ 0 Ψ α (r)r -1 pα dr ∞ 0 A(m)e -lA(m) u 0 p V ′ l 1 α dl l 1 p g L q (0,∞;V) .
Due to [START_REF] Lunardi | Interpolation theory. Second. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie[END_REF][Proposition 5.1.1], we get

AR α u 0 L p (0,∞;V ′ ) ≤ C α ∞ 0 A(m)e -lA(m) u 0 p V ′ l 1 α dl l 1 p ≤ C α u 0 (V ′ ,V) 1-1 αp ,p .
Proposition 3.6. For all α ∈ (0, 1)

we have A(m)S α ∈ L(L 2 (0, ∞; V ′ )). Moreover, (S α f )(t) ∈ D(A(m) 2α-1 2α ) for all α ∈ ( 1 2 , 1), t ∈ [0, ∞) and f ∈ L 2 (0, ∞; V ′ ).
Proof. Let α ∈ (0, 1), f ∈ L 2 (0, ∞; V ′ ) and g ∈ L 2 (0, ∞; V). We obtain

| AS α f, g L 2 (0,∞;V ′ )×L 2 (0,∞;V) | = | ∞ 0 t 0 (t -s) α-1 ∞ 0 αrΨ α (r)A(m)e -(t-s) α rA(m) f (s) dr ds, g(t) dt| = | ∞ 0 αrΨ α (r) ∞ 0 t 0 A(m)e -(t-s) α rA(m) f (s), g(t) (t -s) α-1 ds dt dr| = | ∞ 0 αrΨ α (r) ∞ 0 t 0 A(m) 1 2 e -(t-s) α 2 rA(m) f (s), A(m) * 1 2 e -(t-s) α 2 rA(m) * g(t) (t -s) α-1 ds dt dr| ≤ ∞ 0 αrΨ α (r) ∞ 0 t 0 A(m) 1 2 e -(t-s) α 2 rA(m) f (s) 2 V ′ (t -s) α-1 ds dt 1 2 × ∞ 0 t 0 A(m) * 1 2 e -(t-s) α 2 rA(m) * g(t) 2 V (t -s) α-1 ds dt 1 2 dr ≤ 2 ∞ 0 Ψ α (r) dr ∞ 0 ∞ 0 A(m) 1 2 e -lA(m) f (s) 2 V ′ dl ds 1 2 × ∞ 0 ∞ 0 A(m) * 1 2 e -lA(m) * g(t) 2 V dl dt 1 2 ≤ 2q 2 f L 2 (0,∞;V ′ ) g L 2 (0,∞;V) ,
where in the last inequality we used Lemma 2.8. Therefore

AS α ∈ L(L 2 (0, ∞; V ′ )). Now, let f ∈ L 2 (0, ∞; V ′ ), x ∈ V and α ∈ ( 1 2 , 1). We obtain | A(m) 2α-1 2α (S α f )(t), x | = | ∞ 0 αrΨ α (r) t 0 f (s), A(m) * 2α-1 2α e -(t-s) α rA(m) * x (t -s) α-1 ds dr| ≤ ∞ 0 αrΨ α (r) t 0 A(m) * 2α-1 2α e -(t-s) α rA(m) * x 2 V (t -s) 2(α-1) ds 1 2 dr f L 2 (0,τ ;V ′ ) = ∞ 0 √ αr 1 2α Ψ α (r) dr ∞ 0 (lA(m)) * 2α-1 2α e -lA(m) * x 2 V dl l 1 2 f L 2 (0,∞;V ′ ) ≤ C α ∞ 0 (lA(m)) * 2α-1 2α -1 2 e -l 2 A(m) * 2 L(V) A(m) * 1 2 e -l 2 A(m) * x 2 V dl 1 2 f L 2 (0,∞;V ′ ) ≤ C α f L 2 (0,∞;V ′ ) x V .
Where we have used in the first inequality, the Cauchy-Schwarz inequality and in the last inequality, Lemma 2.8 and the analyticity of the semigroup (e -sA(m) * ) s≥0 . Then,

A(m) 2α-1 2α (S α f )(t) V ′ ≤ C α f L 2 (0,∞;V ′
) , and we get the desired result.

Theorem 3.7. Let u 0 ∈ T r 2 α and f ∈ L 2 (0, ∞; V ′ ). Then the problem (3.1) has maximal L 2 -regularity property and there exists a positive constant C α independent of u 0 , f and m such that

∂ α (u -u 0 ) L 2 (0,∞;V ′ ) + A(m)u L 2 (0,∞;V ′ ) ≤ C α ( u 0 T r 2 α + f L 2 (0,∞;V ′ ) )
. Moreover, for α > 1 2 we obtain

• u(t) ∈ D(A(m) 2α-1 2α ) = T r 2 α , for all t ∈ [0, ∞) and u is continuous for the norm of D(A(m) 2α-1 2α ) at least for t = 0. • u ∈ C α-1 2 ([0, ∞); V ′ ).
Proof. Firstly, we consider the case α ∈ [ 1 2 , 1). Let u 0 ∈ T r 2 α and f ∈ L 2 (0, ∞; V ′ ). Note that by Proposition 3.3, u is giving by u = R α u 0 + S α f and u ∈ L 2 (0, ∞; V ′ ). Using Propositions 3.5, 3.6 we have

A(m)u L 2 (0,∞;V ′ ) = A(m)R α u 0 + A(m)S α f L 2 (0,∞;V ′ ) ≤ A(m)R α u 0 L 2 (0,∞;V ′ ) + A(m)S α f L 2 (0,∞;V ′ ) ≤ C α ( u 0 T r 2 α + f L 2 (0,∞;V ′ ) ). Since ∂ α (u -u 0 ) = -Au + f, ∂ α (u -u 0 ) L 2 (0,∞;V ′ ) ≤ (C α + 1)( u 0 T r 2 α + f L 2 (0,∞;V ′ )
). We consider now the case α ∈ (0, 1 2 ). Let g ∈ L 2 (0, ∞; V ′ ) and assume that u 0 = 0. As in the previous case we have by Proposition 3.3 that u is giving by u = S α g, which gives u ∈ L 2 (0, ∞, V) by Proposition 3.6 and hence u ∈ D(∂ α ). Now, let u 0 ∈ V ′ and take

g = f + k α u 0 . It is clear that t → k α (t)u 0 ∈ L 2 (0, ∞; V ′ ) and u is the solution of the integro-differential equation u = -l α * A(m)u +l α * g = -l α * A(m)u +l α * f + (l α * k α )u 0 = -l α * A(m)u + l α * f + u 0 .
Then u is the unique solution to (3.1) for u 0 ∈ V ′ .

Next, we shall prove that u(t) ∈ D(A(m)

2α-1 2α ) for all t ∈ [0, ∞), α ∈ ( 1 2 , 1). Let 0 ≤ t ≤ τ and set β = 2α-1 2α . Propositions (3.3), (3.6) gives

A(m) β u(t) V ′ = A(m) β (R α u 0 )(t) + A(m) β (S α f )(t) V ′ ≤ A(m) β (R α u 0 )(t) V ′ + A(m) β (S α f )(t) V ′ ≤ C α ( A(m) β u 0 V ′ + f L 2 (0,t;V ′ ) ).
We have

A(m) β (u(t) -u 0 ) = (R α A(m) β u 0 )(t) -A(m) β u 0 + +A(m) β t 0 (t -l) α-1 K α (t -l)f (l) dl = [(R α A(m) β u 0 )(t) -(R α A(m) β u 0 )(0)] + A(m) β t 0 (t -l) α-1 K α (t -l)[1 (0,t) f (l)] dl := I 1 (t, s) + I 2 (t, s).
Therefore

u(t) -u 0 D(A(m) β ) = I 1 (t) + I 2 (t) V ′ ≤ I 1 (t) V ′ + I 2 (t) V ′ . Since t → (R α A(m) β u 0 )(t) ∈ C([0, ∞), V ′
) by strong continuity of the semigroup on V ′ , then I 1 (t) V ′ → 0, as t → 0. Thanks to Proposition 3.6, I 2 (t) V ′ ≤ C α f L 2 (0,t;V ′ ) . Therefore I 2 (t) → 0, as t → 0. This proves that u is continuous for the norm of

D(A(m) β ) at t = 0. It remains to prove that u ∈ C α-1 2 ([0, ∞); V ′ ) for α ∈ ( 1 2 , 1). Set v = k α * (u -u 0 ). Then v ∈ H 1 0 (0, ∞; V) ∩ L 2 (0, ∞; V) and u(t) = (l α * v ′ )(t) + u 0 . It follows by Lemma 2.6 u(t) -u(s) V ′ = (l α * v ′ )(t) -(l α * v ′ )(s) V ′ = (C α v ′ )(t) -(C α v ′ )(s) V ′ ≤ C α (t -s) α-1 2 v ′ L 2 (0,t;V ′ ) = C α (t -s) α-1 2 ∂ α (u -u 0 ) L 2 (0,t;V ′ ) .
Then we get the desired result.

the following proposition we prove optimal estimates for the decay in time of the solution to (3.1). Proposition 3.8. Let u be the solution of the problem (3.1) and 0

≤ β ≤ γ ≤ 1, t > 0. If f = 0 then there is C α,γ , C ′ α,γ , C β,γ > 0 such that A(m)u(t) V ′ = ∂ α (u -u 0 )(t) V ′ ≤ C α,γ t α(1-γ) u 0 [V ′ ,V]γ , u(t) ≤ C ′ α,γ t α 2 (1-γ) u 0 [V ′ ,H]γ , u(t) [H,V ] β ≤ C β,γ t α(1+β-γ) 2 u 0 [V ′ ,H]γ , u(t) [H,V ] β ≤ C β,γ t (β-γ) α 2 u 0 [H,V ]γ .
Proof. If f = 0 we obtain by Proposition 3.3 that u is giving by u(t) = (R α u 0 )(t). It follows that

A(m)u(t) = ∞ 0 Ψ α (r)A(m)e -t α rA(m) u 0 dr = 1 2 0 Ψ α (r)A(m)e -t α rA(m) u 0 dr + ∞ 1 2 Ψ α (r)A(m)e -t α rA(m) u 0 dr := (K 1 u 0 )(t) + (K 2 u 0 )(t).
Taking the norm in V ′ we get

(K 2 u 0 )(t) V ′ ≤ ∞ 1 2 Ψ α (r) A(m)e -t α rA(m) u 0 V ′ dr ≤ M t α ∞ 1 2 Ψ α (r) 1 r dr u 0 V ′ ≤ √ 2M t α ∞ 0 Ψ α (r) 1 r 1 2 dr u 0 V ′ ≤ M α t α u 0 V ′ .
For K 1 u 0 we infer that by Lemma 2.1

(K 1 u 0 )(t) V ′ = sup x =1 | 1 2 0 Ψ α (r) A(m)e -t α rA(m) u 0 , x dr| ≤ sup x =1 1 2 0 Ψ α (r) A(m) 1 2 e -t α r 2 A(m) u 0 V ′ A(m) * 1 2 e -t α r 2 A(m) * x V ′ dr ≤ sup r∈(0, 1 2 ) |Ψ α (r)| 1 2 0 A(m) 1 2 e -t α r 2 A(m) u 0 2 V ′ dr 1 2 sup x =1 1 2 0 A(m) * 1 2 e -t α r 2 A(m) * x 2 V ′ dr 1 2 ≤ L α t α u 0 V ′ . Therefore, A(m)u(t) V ′ = ∂ α (u -u 0 )(t) V ′ ≤ Cα t α u 0 V ′ , t > 0, where C α = L α + M α . Remark that for u 0 ∈ V, A(m)u(t) V ′ = ∂ α (u -u 0 )(t) V ′ ≤ C u 0 V , t > 0.
Then to show the first estimation, it is enough to use the interpolation. Noting that,

u(t) V ≤ M δ A(m)u(t) V ′ ≤ M C α δt α u 0 V ′ , t > 0, (3.4) 
Since, [V ′ , V]1

2

= H, we obtain by interpolation and (3.4)

u(t) ≤ u(t) 1 2
V u(t)

1 2 V ′ ≤ ( M C α δt α ) 1 2 u 0 V ′ .
Setting, C ′ α = M Cα δ and using the interpolation to get the second estimation. We prove the last two estimates similarly.

Let C be non-empty closed convex subset of H and denote by P the projection of H onto C. Recall that for every x ∈ H, P x ∈ C and satisfies x -P x = min y∈C x -y . Proposition 3.9. Assume that P (V) ⊆ V and ℜa(m, P v, v -P v) ≥ 0 for any v ∈ V. Then if u 0 ∈ C we have u(t) ∈ C for all t ∈ [0, τ ], where u is the unique solution of the equation (3.1) for f = 0.

Proof. Noting that by [START_REF] Ouhabaz | Analysis of Heat Equations on Domains[END_REF][Theorem 2.2] we have e -sA(m) u 0 ∈ C for all s ≥ 0, it follows that e -t α rA(m) u 0 ∈ C for all t ≥ 0 and r ≥ 0. Assume now for a contradiction that u(t) / ∈ C for some t > 0. By the Hahn-Banach theorem, there exists a constant γ ∈ R and a linear continuous functional φ on H such that ℜφ(u(t)) > γ ≥ ℜφ(g) for all g ∈ C. Applying this with g = e -t α rA(m) u 0 gives

ℜφ(u(t)) > γ = ∞ 0 Ψ α (r)γ dr ≥ ℜφ( ∞ 0 Ψ α (r)e -t α rA(m) u 0 dr) = ℜφ(u(t))
which is not possible.

For maximal L p -regularity we obtain the following result.

Theorem 3.10. Let p ∈ (1, ∞), f ∈ L p (0, ∞; V ′ ) and u 0 ∈ T r p α .
There exists a unique u ∈ L p (0, ∞; V) such that ∂ α (u -u 0 ) ∈ L p (0, ∞; V ′ ) solves (3.1). Moreover, there exists a positive constant C α,p independent of u 0 , f and m such that

∂ α (u -u 0 ) L p (0,∞;V ′ ) + A(m)u L p (0,∞;V ′ ) ≤ C α,p ( u 0 T r p α + f L p (0,∞;V ′ ) ). Proof. Since u is giving by u = R α u 0 + S α f then we have to prove that A(m)R α u 0 ∈ L p (0, ∞; V ′ ) and A(m)S α u 0 ∈ L p (0, ∞; V ′ ).
The operator A(m)R α is a singular integral operator with operator-valued kernel M α (t) = t α-1 A(m)K α (t). We prove that both M α and M * α are of weak type (1, 1) operators and we conclude by the Marcinkiewicz interpolation theorem together with Proposition 3.6 that A(m)R α is bounded on L p (0, ∞; V ′ ) for all p ∈ (1, ∞). It is known (see e.g. [START_REF] Rubio De Francia | Calderón-Zygmund theory for operator-valued kernels[END_REF]) that A(m)R α is of weak type (1, 1) if the corresponding kernel M α satisfies the Hörmander integral condition. This means that we have to verify

l≥2r M α (l) -M α (l -r) L(V ′ ) dl ≤ C, C ≥ 0. Note that M α (l) -M α (l -r) = A(m)l α-1 K α (l) -A(m)(l -r) α-1 K α (l -r) = r 0 d ds A(m)(l -s) α-1 K α (l -s) ds = r 0 (1 -α)A(m)(l -s) α-2 K α (l -s) ds + r 0 A(m) 2 (l -s) 2(α-1) ∞ 0 α 2 r 2 Ψ α (r)e -(l-s) α rA(m) dr ds.
By the analyticity of the semigroup we have

M α (l) -M α (l -r) L(V ′ ) ≤ C| 1 l -r - 1 l |. It follows that l≥2r M α (l) -M α (l -r) L(V ′ ) dl ≤ C| log( l l -r )| l=2r l=∞ = C log(2). Therefore A(m)R α ∈ L(L p (0, ∞; V ′ )). It remain to prove that A(m)S α u 0 ∈ L p (0, ∞; V ′ ).
By Proposition 3.5 we obtain AS α u 0 for α ∈ [ 1 p , 1). For α ∈ (0, 1 p ) we proceed similarly as the case α ∈ (0, 1 2 ) in Theorem 3.7. Next we mention the following easy corollary of Theorem 3.10.

Corollary 3.11. Let p ∈ (1, ∞), f ∈ L p (0, τ ; V ′ ) and u 0 ∈ T r p α .
There exists a unique u ∈ L p (0, τ ; V) such that ∂ α (u -u 0 ) ∈ L p (0, τ ; V ′ ) solves (3.1) on (0, τ ). Moreover, there exists a positive constant C α,p independent of u 0 , f and m, τ such that

∂ α (u -u 0 ) L p (0,τ ;V ′ ) + A(m)u L p (0,τ ;V ′ ) ≤ C α,p ( u 0 T r p α + f L p (0,τ ;V ′ ) ). (3.5) 
Proof. Let f ∈ L p (0, τ ; V ′ ) and set f (t) = f (t), t ∈ (0, τ ) and f (t) = 0, otherwise. Due to Theorem 3.10, (3.1) has a unique solution u ∈ L p (0, ∞; V) for f replacing by f . Moreover, there exists a positive constant C α,p independent of u 0 , f and m, τ such that

∂ α (u -u 0 ) L p (0,∞;V ′ ) + A(m)u L p (0,∞;V ′ ) ≤ C α,p ( u 0 T r p α + f L p (0,∞;V ′ ) ) = C α,p ( u 0 T r p α + f L p (0,τ ;V ′ )
). This finishes the proof. Proposition 3.12. For all f ∈ L p (0, τ ; V ′ ) there exists a unique v ∈ W 1,p 0 (0, τ ; V ′ ) ∩ L p (0, τ ; V) be the solution to the following problem

v ′ (t) + 1 Γ(α) A(m) d dt t 0 1 (t -s) 1-α v(s) ds = f (t), t -a.e. ( 3.6) 
Moreover, there exists C > 0 such that

v W 1,p (0,τ ;V ′ ) + A(m)∂ 1-α v L p (0,τ ;V ′ ) ≤ C f L p (0,τ ;V ′ ) .
Remark 3.13.

• We note that

(∂ 1-α v)(t) = 1 Γ(α) d dt t 0 1 (t -s) 1-α v(s) ds and since v ∈ W 1,p 0 (0, τ ; V ′ ),
then by a simple computation we find

(∂ 1-α v)(t) = 1 Γ(α) t 0 1 (t -s) 1-α v ′ (s) ds which is the Caputo fractional derivative. Proof. Let u ∈ D(∂ α )∩L p (0, τ ; V) be the unique solution to the problem ∂ α u+A(m)u = f in X p . Set v = k α * u. Then v ∈ W 1,p 0 (0, τ ; V ′ ) ∩ L p (0, τ ; V) and v ′ = ∂ α u = -A(m)u + f. Now, since v = k α * u, one has l α * v = l α * k α * u = 1 R + * u. Thus ∂ 1-α v = u and so v ′ + A(m)∂ 1-α v = f in X p .

Maximal regularity for non-autonomous fractional equations

Assume that t → a(t, ., .) is continuous. In this section we focus on the maximal regularity for the non-autonomous problem (which is our main aim), i.e. we prove the existence and the uniqueness of the solution to

∂ α (u -u 0 )(t) + A(t)u(t) = f (t), t-a.e. ( 4.1) 
For u 0 ∈ T r p α define the space

M R(α, p) := {u ∈ L p (0, τ ; V) : ∂ α (u -u 0 ) ∈ L p (0, τ ; V ′ )} endowed with norm u M R(α,p) := ∂ α (u -u 0 ) L p (0,τ ;V ′ ) + u L p (0,τ ;V) . Theorem 4.1. Let p ∈ (1, ∞), f ∈ L p (0, τ ; V ′ ) and u 0 ∈ T r p α .
There exists a unique u ∈ M R(α, p) solves (4.1). Moreover,

u M R(α,p) ≤ C 1 α,p ( u 0 T r p α + f L p (0,τ ;V ′ ) ). Here, C 1 α,p is a positive constant independent of u 0 , f
Proof. Denotes by ρ τ (s) the modulus of continuity of A(t), that is

ρ τ (s) := sup r,t∈[0,τ ],|r-t|≤s A(r) -A(t) L(V,V ′ ) .
Take T 0 > 0 such that ρ τ (T 0 ) ≤ δ 2Cα,p . For v ∈ L p (0, T 0 , V) we consider the equation

∂ α (u(.) -u)(t) + A(0)u(t) = f (t) + (A(0) -A(t))v(t). (4.2) 
Since the right-hand side is an element of L p (0, T 0 , V ′ ), we obtain by Corollary 3.11 that u ∈ L p (0, T 0 , V). Therefore, the mapping S : v → u maps L p (0, T 0 , V) into itself and we have

Sv 1 -Sv 2 L p (0,T 0 ,V) ≤ C α,p δ (A(0) -A(.))(v 1 -v 2 ) L p (0,T 0 ,V ′ ) ≤ C α,p δ sup t∈[0,T 0 ] A(0) -A(t) L(V,V ′ ) v 1 -v 2 L p (0,T 0 ,V) ≤ C α,p ρ τ (T 0 ) δ v 1 -v 2 L p (0,T 0 ,V) ≤ 1 2 v 1 -v 2 L p (0,T 0 ,V) .
Then, the mapping S is a contraction and there is unique fixed point. Then we get a solution of (4.1) on (0, T 0 ) and

u L p (0,T 0 ,V) = Su L p (0,T 0 ,V) = Su -S0 L p (0,T 0 ,V) + S0 L p (0,T 0 ,V) ≤ 1 2 u L p (0,T 0 ,V) + C α,p ( u 0 T r p α + f L p (0,T 0 ;V ′ ) ).
We deduce that

u L p (0,T 0 ,V) ≤ 2C α,p ( u 0 T r p α + f L p (0,T 0 ;V ′ )
). Let T 1 = min(τ, 2T 0 ) and define the set W = {w ∈ L p (0, T 1 , V) : w = u on (0, T 0 )}. Let w ∈ W and consider the equation

∂ α (v(.) -u 0 )(t) + A(T 0 )v(t) = f (t) + (A(T 0 ) -A(t))w(t). (4.3) 
We infer by Corollary 3.11 that u ∈ L p (0, T 1 , V). Remark that v -u satisfies on (0, T 0 )

∂ α (v -u)(t) + A(T 0 )(v -u)(t) = 0. (4.4) 
Hence, v = u on (0, T 0 ) and so v ∈ W. Denote the mapping S 1 : w → v. Using again Corollary 3.11 to obtain

S 1 w 1 -S 1 w 2 L p (0,T 1 ,V) ≤ C α,p δ (A(T 0 ) -A(.))(w 1 -w 2 ) L p (T 0 ,T 1 ,V ′ ) ≤ C α,p δ sup t∈[T 0 ,T 1 ] A(T 0 ) -A(t) L(V,V ′ ) w 1 -w 2 L p (0,T 1 ,V) ≤ C α,p ρ τ (T 0 ) δ w 1 -w 2 L p (0,T 1 ,V) ≤ 1 2 w 1 -w 2 L p (0,T 1 ,V) .
Then, the mapping S 1 is a contraction and there is unique fixed point. Then we get a solution of (4.1) on (0, T 1 ). Repeating the same procedure k time, where k = [ τ T 0 ] + 1, we find a solution to (4.1) on [0, τ ]. This finishes the proof.

Remarking that for u ∈ M R(α, 2), α ∈ (0, 1) and u 0 = 0, we obtain by [START_REF] Zacher | Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces[END_REF] 

τ 0 u(t) p [V ′ ,V]γ t p(1-γ)α dt ≤ C α,γ,p u p M R(α,p) .
As consequence,

τ 0 u(t) p t pα 2 dt ≤ C α,p u p M R(α,p) .
Proof. Let u ∈ M R(α, p) with u 0 = 0. By interpolation and Holder inequalities we have

τ 0 u(t) p [V ′ ,V]γ t p(1-γ)α dt ≤ τ 0 u(t) (1-γ)p V ′ u(t) γp V t p(1-γ)α dt ≤ C α,γ,p ( τ 0 u(t) p V ′ t pα dt + u p L p (0,τ ;V) )
Using now Lemma 2.4 to get the desired result.

Let F (t, x) : (0, τ ) × V ′ → V ′ and F 0 (t) = F (t, 0). Assume that F 0 ∈ L p (0, τ ; V ′ ) and (t, x) → F (t, x) satisfies the following continuity property: for any ε > 0 there exists a constant N ε,p > 0 such that

F (., u) -F (., v) p L p (0,τ ;V ′ ) ≤ ε u -v p M R(α,p) + N ε,p u -v p L p (0,τ ;V ′ ) , (4.5) 
for all u, v ∈ M R(α, p).

Example 4.3. If we assume that F (t, x) -F (t, y) V ′ ≤ K x -y , K > 0, x, y ∈ H and t ∈ (0, τ ) then the conditions (4.5) is satisfied. Indeed, let u, v ∈ M R(α, p) one has

F (., u) -F (., v) p L p (0,τ ;V ′ ) ≤ K p u -v p L p (0,τ ;H) = K p τ 0 ( u(t) -v(t) 2 ) p 2 dt ≤ K p τ 0 ( u(t) -v(t) V ′ u(t) -v(t) V ) p 2 dt ≤ K p τ 0 u(t) -v(t) p 2 V ′ u(t) -v(t) p 2 V dt ≤ ε u -v p M R(α,p) + N ε,p u -v p L p (0,τ ;V ′ ) , where N ε,p = K 2p ε . Let C : (0, τ ) × H → V ′ is a linear operator such that C(t)u V ′ ≤ K u , K > 0, u ∈ H and t ∈ (0, τ ).
Following [START_REF] Achache | Non autonomous maximal regularity for the fractional evolution equations[END_REF][Theorem 4.2], we have the next result for the non-autonomous semilinear equation. 

4.4. Let p ∈ (1, ∞), f ∈ L p (0, τ ; V ′ ) and u 0 ∈ T r p α . There exists a unique u ∈ M R(α, p) satisfies ∂ α (u -u 0 )(t) + A(t)u(t) + C(t)u(t) = F (t, u(t)), t-a.e.
Moreover, there exists a positive constant C α,p independent of u 0 , F 0 such that u M R(α,p) ≤ C α,p ( u 0 T r p α + F 0 L p (0,τ ;V ′ ) ). Remark 4.5. As consequence of the previous corollary, we can take ν = 0 in [H3] without loss a generality.

The proof of Theorem 4.4 is analogous to that of [START_REF] Achache | Non autonomous maximal regularity for the fractional evolution equations[END_REF][Theorem 4.2], just need to replace the spaces M R(α, p, τ ) and L p (0, τ ; H) by M R(α, p) and L p (0, τ ; V ′ ), respectively. Let α i ∈ (0, 1) and λ i ∈ C such that α i < α 1 for all i = 2...., n and λ

1 > 0. Let C : (0, τ ) × V → H is a linear operator such that C(t)u V ′ ≤ K u , K > 0, u ∈ H and t ∈ (0, τ ).
For the non-autonomous evolution equations with many fractional time derivatives we have

Proposition 4.6. Let p ∈ (1, ∞), f ∈ L p (0, τ ; V ′ ) and u 0 ∈ T r p α 1 . There exists a unique u ∈ M R(α 1 , p) satisfies n i=1 λ i ∂ α i (u -u 0 )(t) + A(t)u(t) + C(t)u(t) = F (t, u(t)), t-a.e. ( 4.6) 
Moreover, there exists a positive constant C independent of u 0 , F 0 such that

u M R(α 1 ,p) ≤ C( u 0 T r p α 1 + F 0 L p (0,τ ;V ′ ) ).

Remark 4.7. Our result stay true if we replace λ

i by B i (t) ∈ L(V ′ ) such that B i (t) L(V ′ ) ≤ C i , C i ≥ 0, i = 2, .., n. Proof. Set G(t, u) = F (t, u) -n i=2 λ i ∂ α i (u -u 0 )(t)
. Using Lemma 2.5 we get that G satisfies the condition (4.5). Indeed, let u, v ∈ M R( α 1 , p) and ε > 0 one has

G(., u) -G(., v) p L p (0,τ ;V ′ ) ≤ F (., u) -F (., v) p L p (0,τ ;V ′ ) + n i=2 |λ i | ∂ α i (u -v) p L p (0,τ ;V ′ ) ≤ ε n u -v p M R(α 1 ,p) + N ε n ,p u -v p L p (0,τ ;V ′ ) + n i=2 ε n ∂ α 1 (u -v) p L p (0,τ ;V ′ ) + n i=2 K(ε, p, n, |λ i |, α i ) u -v p L p (0,τ ;V ′ ) ≤ ε u -v p M R(α 1 ,p) + (N ε n ,p + n i=2 K(ε, p, n, |λ i |, α i )) u -v p L p (0,τ ;V ′ ) .
Hence, a direct application of Theorem 4.4 shows that the equation

λ 1 ∂ α 1 (u -u 0 )(t) + A(t)u(t) + C(t)u(t) = G(t, u(t)), t-a.e.
has maximal L p -regularity. Therefore, u satisfies (4.6).

Applications

This section is devoted to application of our results on the existence and maximal regularity of the sections 3, 4 to concrete evolution equations. We show how they can be applied to both autonomous and non-autonomous evolution equations.

Let Ω be a bounded Lipschitz domain of R d and α ∈ (0, 1). We set H := L 2 (Ω) and V = H Here δ > 0 is a constant independent of t.

It easy to check that a(t, ., .) is H 1 0 (Ω)-bounded and quasi-coercive. Set A(t, x) = (a kj (t, x)) k,j , (t, x) ∈ [0, τ ] × Ω and consider the problem

    
∂ α (u(.) -u 0 )(t) -div(A(t, x)∇u(t)) + d j=1 b j (t, x)∂ j u(t) + c(t, x)u(t) = f (t) u = 0, on ∂Ω.

(5.1)

The weak formulation of (5.1) reads, ∂ α (u(.) -u 0 )(t), v + a(t, u(t), v) = f (t), v , v ∈ V, t -a.e.

(5.2)

Here, f ∈ L p (0, τ, V ′ ) and u 0 ∈ T r p α . Note that, if d ≥ 3 we obtain that L 2d d+2 (Ω) ⊂ V ′ . Then we may take f ∈ L p (0, τ, L 2d d+2 (Ω)) and for α < 1 p , u 0 ∈ L 2d d+2 (Ω). Assume that t → a(t, v, w) is continuous for all v, w ∈ V. We apply Theorem 4.1 to obtain that (5.1) has a weak solution u ∈ L p (0, τ, V) such that ∂ α (u(.) -u 0 ) ∈ L p (0, τ, V ′ ) in the sens that (5.2) is satisfied. Remark 5.1. Assume that A(t, x) = A(0, x) for all (t, x) ∈ (0, τ )×Ω. Following [START_REF] Arendt | Invariance of convex sets for non-autonomous evolution equations governed by forms[END_REF][Proposition 4.1] and using Proposition 3.9, if f = 0 and u 0 ≤ λ, λ ∈ R we have u(t) ≤ λ for all t ∈ [0, τ ].

Consider now the autonomous equation ∂ α (u(.) -u 0 )(t) + Au(t) = 0.

(5.3)

From Proposition 3.8 we have the following result for the decay estimates in time of the solution.

Proposition 5.2. For A = -∆ in (5.3) with domain D(A) = H 2 (R d ), d ∈ N * we infer that for f = 0 and α ∈ (0, 1)

1-(L p -L q estimate) for all 1 ≤ q ≤ p ≤ ∞, such that ( 1 q -1 p ) < 2 d , u 0 ∈ L q (R d ), 

u ∈ C([0, ∞), L q (R d )) ∩ C ∞ ((0, ∞), L p (R d )), u(t) L p (R d ) ≤ Ct -α d 2 ( 1 q -1 p ) u 0 L q (R d ) , t > 0. ( 5 
u 0 H s ′ (R d ) .
3-for q ∈ [1, 2], such that q > 2d d+2 and u 0 ∈ L q (R d ),

∇u(t) L 2 (R d ) ≤ Ct -α 2 -α d 2 ( 1 q -1
2 ) u 0 L q (R d ) , t > 0.

(5.5)

In the case, q = 2d d+2 such that d ≥ 3 we obtain ∇u(t) L 2 (R d ) ≤ Ct -α u 0 L q (R d ) , t > 0. 

Proposition 3 . 2 .

 32 The solution of the problem (3.1) is unique.Proof. Assume that there are two solutions u 1 , u 2 to (3.1). Obviously

2 t

 2 α dt < ∞.For the space M R(α, p), p ∈ (1, ∞) we have the following result.

Proposition 4 . 2 .

 42 Let u ∈ M R(α, p) with u 0 = 0. We obtain for all γ ∈ [0, 1]
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 1 (Ω) and we define the sesquilinear formsa(t, u, v) = d k,j=1 Ω a kj (t, x)∂ k u∂ j v dx+ d j=1 Ω b j (t, x)∂ j uv dx+ Ω c(t, x)uv dx, u, v ∈ H 1 0 (Ω).We assume that a kj , b j , c : [0, τ ] × Ω → C such that:a kj , b j , c ∈ L ∞ ([0, τ ] × Ω) for 1 ≤ k, j ≤ d,andℜ d k,j=1a kj (t, x)ξ k ξj ≥ δ|ξ| 2 for all ξ ∈ C d and a.e. (t, x) ∈ [0, τ ] × Ω.

(5. 6 ) 4 - 2 ( 1 r - 1 ) 1 2

 642111 if A = -∆ D is the Direchlet Laplacien in a regular domain Ω ⊂ R d with domain D(A) = H 2 (Ω) ∩ H 1 0 (Ω), then all the previous estimates holds for R d replaced by Ω.Proof. For 1 it is enough to use Young's inequality and the well-known estimation of fundamental solution G(t, .) of the Laplacien in R d (Ω),G(t, .) L r (R d ) ≤ (4πt) d , r ∈ [1, ∞].(5.7)However, 2 is a direct application of Proposition 3.8. Using now the fact that ∇A is bounded on L 2 (R d )(L 2 (Ω)) and (5.7) to get 3.
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