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Abstract 34 

Moutain snow cover is highly variable both spatially and temporally and has a tremendous 35 

impact on ecosystems and human activities. Numerical models provide continuous estimates of 36 

the variability of snow cover properties in time and space. However, they suffer from large 37 

uncertainties, for instance originating from errors in the meteorological inputs. Here, we show 38 

that the snow depth variability at 250 m spatial resolution can be well simulated by assimilating 39 

snow depth maps from satellite photogrammetry in a detailed snowpack model. The assimilation 40 

of a single snow depth map per snow season using a particle filter is sufficient to improve the 41 

simulated snow depth and its spatial variability, originally poorly represented due to missing 42 

physical processes and errors in the precipitation inputs. Assimilation of snow depth only is 43 

nevertheless not sufficient for both compensating for strong bias in precipitation and for 44 

selecting the most appropriate representation of the physical processes in the snow model. 45 

Combined assimilation of snow depths maps and other snow observations is thus a promising 46 

avenue for accurate simulations of mountain snow cover. 47 

 48 

Plain language summary 49 

Snow in mountains is critical as it controls water availability for ecosystems and human 50 

societies, when it is most needed. In the mountains the snow depth is both hard to map due to its 51 

spatial variability and crucial to estimate water resources. Nowadays, the best estimations of the 52 

snow depth distribution combine models and spatially distributed snow depth measurements. In 53 

this work, we build upon this approach by combining a recently developed snow depth mapping 54 

method with a state-of-the-art model through assimilation. The assimilation of snow depth maps 55 

derived from satellite photogrammetry corrects bias in the precipitation and improves the spatial 56 

variability of the simulated snow depth. The workflow presented can be transferred to any 57 

mountain range, showing a promising way to study water resources in remote areas. 58 

 59 

1 Introduction 60 

The seasonal snowpack in mountain regions controls the seasonality of streamflow, vegetation 61 

growth, soil and river temperature (Bard et al., 2015; Choler, 2018; Dedieu et al., 2016; Luce et 62 

al., 2014). Accurate knowledge of the spatial distribution of the snowpack properties is necessary 63 

to describe the timing and extent of these effects (Freudiger et al., 2017; Hedrick et al., 2018; 64 
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Margulis et al., 2019; Revuelto et al., 2016). However, a major challenge is the lack of a direct 65 

method to estimate the spatial distribution of snow water equivalent (SWE) in mountain regions 66 

(Dozier et al., 2016). Modeling is often used but is limited by the availability of accurate gridded 67 

meteorological forcing (Raleigh et al., 2015). The spatial interpolation of meteorological 68 

variables (e.g., air temperature, precipitation quantity and phase, and wind) is hampered by the 69 

absence of meteorological stations at high elevations (Rasmussen et al., 2012) and by the high 70 

spatial variability of meteorological processes in mountain environments due to the complex 71 

topography (Barry, 2008). Snowpack models are also prone to errors due to uncertainties in 72 

parameter values, the form of parameterizations and the lack of some physical processes 73 

(Ménard et al., 2021). Assimilation of gridded data in a snowpack model is key to overcoming 74 

these challenges (Girotto et al., 2020; Largeron et al., 2020). It enables taking advantage of the 75 

profusion of remotely sensed data, especially satellite data, and improving model outputs by a 76 

balanced combination of model states and observations as a function of their estimated 77 

uncertainties. Maps of the snow cover area (SCA) are widely available and therefore have been 78 

predominantly assimilated to improve the simulation of SWE and snowmelt runoff (e.g., 79 

Andreadis & Lettenmaier, 2006; Rodell & Houser, 2004; Thirel et al., 2011; Margulis et al., 80 

2015; Baba et al., 2018). Other gridded products were assimilated, such as SWE maps derived 81 

from passive microwave images (Andreadis & Lettenmaier, 2006) or surface reflectance maps 82 

(Dumont et al., 2012). But the SCA is only indirectly related to SWE and the low spatial 83 

resolution of passive microwave images is limiting, fostering the need for assimilation of other 84 

types of data. 85 

HS is a key snowpack variable for hydrological applications, as it can be combined with bulk 86 

density to obtain the SWE. Recently, the development of new methods to retrieve snow depth 87 

(height of snow, HS) based on lidar or photogrammetric measurements from airborne, drone or 88 

satellite platforms has presented new opportunities to better constrain snowpack models.  Vögeli 89 

et al. (2016) and Brauchli et al. (2017) used an HS map to distribute solid precipitation in a Swiss 90 

Alps catchment. They corrected an initial field of precipitation with a multiplicative factor per 91 

point based on the ratio of the HS at the point and the average HS of the area. The HS was 92 

extracted from a single map measured close to the date of peak SWE by airborne 93 

photogrammetry. This computationally simple method increased the spatial variability of the 94 

simulated HS and improved the simulated discharge of the basin. Another simple method to 95 
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benefit from HS maps is the direct insertion of the HS map in the model. Revuelto et al. (2016) 96 

showed that direct insertion of HS maps derived from terrestrial laser scans improved the spatial 97 

distribution of modeled HS and the timing of snow melt in a Spanish Pyrenees catchment. 98 

However, the area covered with terrestrial laser scans is at best a few square kilometers and was 99 

less than 1 km² in that study (Deems et al., 2013). Shaw et al., (2020) used an HS map derived 100 

from satellite stereo-imagery to initialize a hydrological model of a 102 km² high-Andean 101 

catchment. This improved the simulation of the runoff compared with initialization with a 102 

modeled HS map. Lidar measurements of the Airborne Snow Observatory (ASO, Painter et al., 103 

2015) campaigns enabled experiments of direct insertion of HS maps on a larger scale in a 104 

mountainous environment (>1000 km²) (Hedrick et al., 2018). Insertion of a dozen HS maps 105 

from approximately 1st April and throughout the melt season improved the spatial distribution of 106 

modeled HS in several catchments in the western USA (Hedrick et al., 2018). However, the 107 

direct insertion of any observed variable can lead to an unrealistic state of the snowpack 108 

variables that are not observed (e.g., density and temperature), resulting in a rapid loss of its 109 

added value (Viallon-galinier et al., 2020). In addition, grid cells where the model predicts no 110 

snow, although the observation indicates that snow is present, require the estimation of the 111 

vertical profile of all snow physical properties (e.g. density, temperature). More generally, direct 112 

insertion assumes that observations are perfect, which is unrealistic. To avoid this assumption, 113 

other methods consider and balance the uncertainties of the observation and of the model. For 114 

instance, the particle batch smoother method is applied to ensemble simulations by weighting the 115 

ensemble members (the particles) based on their distance to the observation. With the same data 116 

as Hedrick et al. (2018), this approach improved the HS spatial distribution up to 75 days after 117 

assimilation of a single HS map (Margulis et al., 2019). The particle filter method is similar to 118 

the particle batch smoother but can easily be combined with a forecast system. It is well adapted 119 

to nonlinear detailed snow models with variable numbers of layers (Cluzet et al., 2021). A 120 

particle filter assimilation scheme has been used for point simulations of snowpack either with 121 

synthetic (Charrois et al., 2016; Cluzet et al., 2021) or real data (Magnusson et al., 2017; Smyth 122 

et al., 2019; Smyth et al., 2020) but, to our knowledge, has never been used with gridded data.  123 

These studies are promising and show how HS maps can improve the simulation of the spatial 124 

distribution of snowpack properties. Except for Shaw et al. (2020), these studies relied on highly 125 

accurate airborne and terrestrial measurements with standard errors smaller than 0.2 m. This 126 
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level of accuracy can only be reached by ground, drone or airborne measurements, which require 127 

direct access to, or close to, the field. However, the assimilation of data artificially degraded to 128 

lower accuracy still improved point simulation of the snowpack (Smyth et al., 2020). Very high-129 

resolution stereoscopic satellites such as Pléiades or Worldview provide HS maps with a lower130 

accuracy (~0.7 m) than ground, drone or airborne methods but with less logistical constraints and 131 

less cost for the end user (Marti et al., 2016; Shaw et al., 2020; Deschamps-Berger et al., 2020; 132 

Eberhard et al., 2021). With this method, HS maps are calculated by differencing two digital 133 

elevation models derived from stereoscopic images with and without snow. The typical footprint 134 

of a single image (20 km x 20 km for Pléiades) is larger than ground and drone products but 135 

smaller than airborne products. Pairs or triplets of stereoscopic images are acquired on-demand 136 

contrary to optical satellites with a fixed revisit time (e.g. MODIS, Landsat, Sentinel). 137 

Multiannual time series of HS maps from satellite photogrammetry have never been used to date 138 

for assimilation in a snowpack model.  139 

In this work, we investigate if satellite photogrammetric HS maps can be used to improve snow 140 

cover simulations. To this aim, we ran ensemble simulations of the SAFRAN-Crocus snowpack 141 

modeling chain (Vernay et al., 2021) in a pilot catchment in the Pyrenees Mountains (France) for 142 

five hydrological years at a 250 m spatial resolution. Several processes directly influence the HS 143 

such as the amount of precipitation, the density of the fresh snow and the compaction of the 144 

snowpack. The uncertainties of these processes are accounted for by using an ensemble of 145 

meteorological forcings (e.g. uncertainty of the precipitation) and a multiphysical model (e.g. 146 

density of the fresh snow, compaction). A multiphysical model is an ensemble modelling 147 

framework in which ensemble members are calculated with different physical parameterizations 148 

of most uncertain processes represented in the model (Essery et al., 2013; Lafaysse et al., 2017). 149 

We calculated a multiannual time series of six HS maps from stereoscopic images from the 150 

Pléiades satellites and assimilated one HS map per year with a particle filter scheme (Cluzet et 151 

al., 2021). 152 

Therefore, we tackle two main questions: 153 

1. Is the accuracy of satellite photogrammetric HS maps sufficient to improve the spatial 154 

distribution of the HS in a detailed model? 155 
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2. In case of improvement, does assimilation of the HS correct errors in the meteorological 156 

forcings, in the physical parameterizations of the model, or both? 157 

The impact of assimilation was evaluated with various independent data: a Pléiades HS map not 158 

assimilated, Sentinel-2 and Landsat 8 snow melt-out date (SMOD), MODIS SCA and in situ HS 159 

from an automatic meteorological station (Question 1). The impact of the assimilation is also 160 

evaluated by comparing the meteorological forcings and the physical parameterization associated 161 

with the ensemble members selected by the filter (Question 2). 162 

 163 

2 Study area 164 

The study site is a 100 km² mountainous area in the Upper Vicdessos Valley in the Pyrenees 165 

(Figures 1 and 2), where elevation ranges between 1000 m a.s.l. and 2700 m a.s.l. (Szczypta et 166 

al., 2015; Marti et al., 2016). The vegetation is subalpine pine and beech forest and alpine 167 

grassland above the tree line at approximately 1800 m a.s.l. (Figure 3 of  Vacquie et al., 2016). 168 

Small portions of the area contain human infrastructures with a small city (Auzat, <0.5 km²) and 169 

a few roads. Ponds and two man-made reservoirs for hydropower production cover 170 

approximately 0.3 km². Seasonal snowpack typically sets in November-December and melts 171 

between April and June. The study period encompasses five water years (1 September to 31 172 

August, WY) from WY 2014-2015 to WY 2018-2019. This period provides various snow 173 

conditions as shown by the winter precipitation of the nearby automatic weather statin (AWS) 174 

between 2000 and 2019. WY 2018-2019 and WY 2016-2017 had among the lowest winter 175 

precipitation (rank number 19 and 17 respectively) while WY 2017-2018 had high winter 176 

precipitation (rank number 3). WY 2014-2015 and WY 2015-2016 were close to the median 177 

winter precipitation with rank 7 and 11. 178 

  179 
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 180 

Figure 1. The simulation area in the Upper Vicdessos valley, Pyrenees. The coloured map shows 181 

the surface elevation at the resolution of the simulation grid (250 m). The background image is a 182 

hillshade view of the topography at high-resolution (3 m). 183 

 184 

 185 

Figure 2. Photographs taken from Col de la Serrette near the geographic center of the study area 186 

(left: 26 October 2014, right: 11 March 2015). 187 

 188 

3 Data and methods 189 

3.1. Model and assimilation scheme 190 
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The Crocus model simulates snowpack as a stack of 3 to 50 snow layers that exchange mass and 191 

energy between them and at their upper and lower boundaries. Here, the model was used in a 192 

distributed geometry in a regular grid (Revuelto et al., 2018). There was no energy or mass 193 

transfer between the points, which indicates that wind drift, horizontal heat transfer and 194 

avalanches were not modeled. However, shading due to topography was considered in the 195 

incident shortwave radiation. We used the multiphysics version ESCROC-E1, which is an 196 

ensemble of 575 sets of parameterizations of eight physical processes implemented in the model 197 

(Lafaysse et al., 2017). The parameterization of the density of the new snow and of the 198 

compaction rate are expected to have the largest impact on HS. As in Cluzet et al. (2021), a set of 199 

120 parameterizations was randomly drawn once and used for all WY and experiments. 200 

The density and mass of each layer are prognostic variables in the model. Thus, assimilating HS 201 

can result in modifying the SWE, the density or both. The SMOD was defined as the end of the 202 

longest period with continuous snow cover. At each time step and for each grid point, the 203 

modeled median HS map was converted to an SCA map with a threshold determining the 204 

presence or lack of snow. The optimum HS threshold was chosen among six values in the 0.02 205 

m-0.50 m range so that it minimizes the mean and standard deviation of the SMOD residual 206 

(SMOD Crocus minus SMOD Sentinel-2/Landsat 8). Based on these criteria, the optimal 207 

threshold was 0.20 m (Figure S1), which is close to the threshold of 0.15 m that maximizes the 208 

agreement between MODIS SCA (500 m resolution) and in situ HS in the Pyrenees (Gascoin et 209 

al., 2015). 210 

The snowpack was simulated over five WY (WY 2014-2015 to WY 2018-2019) on a regular 211 

grid of points separated by 250 m with a 15 min time step (Figure 1). An ensemble of 120 212 

simulations was obtained by stochastic perturbations of the SAFRAN reanalysis and the use of 213 

different physical parameterizations of the Crocus model (Lafaysse et al., 2017) (Figure 3). Once 214 

per hydrological year, an HS map was assimilated with the particle filter of the data assimilation 215 

scheme CrocO (Cluzet et al., 2021). The filter was applied independently to each grid point 216 

where observations were available using only the observation at that grid point, following the 217 

rlocal approach (Cluzet et al., 2021). The particle filter works in two steps. First, the ensemble 218 

members (i.e. particles) are assigned a weight which is proportional to their distance to the 219 

observation and is relative to the observation error. The observation error is assumed to be 220 
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normally distributed with a defined standard deviation. Then, the particles are resampled (i.e. 221 

eliminated or duplicated) based on their weight following Kitagawa (1996). Each particle results 222 

from a meteorological forcing and a parameterization of the model. The particle filter only 223 

resamples state vectors and has no influence on the forcing-model couples before or after the 224 

assimilation. Nevertheless, we compare the meteorological forcings and the model 225 

parameterizations associated with the particles selected by the filter (i.e. with assimilation) with 226 

the one of the ensemble without assimilation.  227 

 228 

3.2. Simulation grid and boundary conditions 229 

The topography of the simulation grid was the snow-free digital elevation model (DEM) 230 

calculated from the October 2014 Pléiades images. It was aggregated from its initial horizontal 231 

resolution (3 m) to the simulation grid resolution (250 m) with an average block filter. The soil 232 

and vegetation conditions were extracted at each grid point from the Harmonized World Soil 233 

Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012) and Ecoclimap-2 data sets (Faroux et al., 234 

2013), respectively. The interaction between snowpack and forest was not accounted for because 235 

the implementation of this complex coupling in SURFEX-Crocus is still in progress and not 236 

sufficiently mature at the moment (Vincent et al., 2018) and because HS cannot be retrieved in 237 

forest with satellite photogrammetry. The soil state (temperature and water/ice content) was 238 

initialized with ten iterations of a one-year spin-up simulation with the meteorological conditions 239 

of WY 2014-2015. All grid points were snow free on the last day of the spin-up simulations. 240 

 241 
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 242 

Figure 3. General setup of the assimilation experiments. Pléiades HS maps (pink box) are 243 

assimilated with a particle filter in Crocus ensemble simulation (purple box). The ensemble 244 

results from perturbation of the meteorological forcings and different physical parameterizations 245 

of the Crocus model (purple boxes left). The assimilation run (green box) is evaluated by 246 

comparison with the run without assimilation (grey box) and with independent dataset (blue 247 

boxes). 248 

 249 

3.3. Satellite photogrammetric snow depth maps 250 

A time series of seven triplets of stereoscopic images (i.e. three almost synchronous images of 251 

the study area from different points of view) was acquired by the Pléiades satellites between 252 

October 2014 and March 2019 (Gleyzes et al., 2012) (Table 1). The terrain was snow free in253 

October 2014, which provided a reference snow-off observation. The other acquisitions occurred 254 

once every winter in March or April (snow-on) close to the date of peak SWE. During winter 255 

2017-2018, two acquisitions were taken in February and May. Each acquisition provided a triplet 256 

(front, nadir, and back) of panchromatic images at a resolution of 0.5 m and a triplet of 257 

multispectral images (red, green, blue, and near-infrared) at a resolution of 2 m. The images were 258 

processed using a workflow that calculates a DEM from the panchromatic images and a land-259 
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cover map from the multispectral images for each acquisition (Deschamps-Berger et al., 2020). 260 

The difference between a snow-on and snow-off DEM provided an elevation difference map for 261 

each snow-on acquisition. The land-cover map was labeled with the following classes: snow, 262 

snow in shade, stable terrain, stable terrain in shade, forest, forest in shade and lakes. The stable 263 

terrain is the area where no elevation changes are expected between the acquisitions (i.e., free of 264 

snow) and where the elevation is constant in the DEM (i.e., free of forest). The HS map was 265 

calculated by taking the elevation difference of snow-covered pixels and setting the HS to zero 266 

over stable terrain pixels. The HS maps had an initial horizontal resolution of 3 m and were 267 

aggregated using an average block filter of 250 m by 250 m centered on the simulation grid 268 

points. HS were set to no-data if more than 90% of the pixels were no-data. This means that 269 

more than 103 m² of HS are averaged, decreasing the error by a factor of two (Figure 10 in 270 

Deschamps-Berger et al. (2020)). No-data pixels correspond to portions of the panchromatic 271 

images that were saturated, covered with forest or with clouds. HS maps were also filtered to 272 

exclude HS values out of the [-0.5 m; 30 m] range, which can occur due to local artifacts in 273 

DEMs in shaded or forested areas in the snow-off DEM. 274 

We defined a unique standard error for the measured HS, which is considered in the particle 275 

filter. The standard error of the HS at a resolution of 250 m is lower than the standard error at a 276 

resolution of 3 m due to the decrease in the random spatially-correlated error. A random error of 277 

0.3 m was measured for a 250 m x 250 m averaging area at a mountainous site in California 278 

(Figure 10 in Deschamps-Berger et al., 2020). A systematic error of 0.2 m was also typically 279 

observed with similar data in several other studies (Table 4 in Deschamps-Berger et al., 2020). 280 

We added these two error estimates to consider the uncertainty of how error can be transferred 281 

from one site to another. Thus, the standard error of the HS at 250 m is 0.5 m. 282 

 283 

3.4. Meteorological forcings 284 

The meteorological variables needed as inputs in Crocus are air temperature, solid and liquid 285 

precipitation, near-surface specific humidity, direct and diffuse shortwave radiation, longwave 286 

radiation, and wind speed. The meteorological forcings were provided by the SAFRAN 287 

reanalysis (Vernay et al., 2021) at an hourly resolution. SAFRAN provides meteorological data 288 
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for different elevation levels at a 300 m resolution within predefined regions of homogeneous 289 

climate of approximately 1000 km², the so-called “Couserans massif” in this study. The forcings 290 

were interpolated on the simulation grid according to their elevation (Revuelto et al., 2018). 291 

Solar radiation was projected according to local slopes and shading effects computed in 292 

dedicated routines of the SURFEX platform as in Revuelto et al. (2018). 293 

The initial gridded forcing was perturbed stochastically to produce ensembles of 120 forcings. 294 

Perturbation of the forcings aims to generate an ensemble of forcings with a dispersion among 295 

the forcings matching their uncertainty. The stochastic perturbation was spatially constant and 296 

temporally correlated following an updated version of the Charrois et al. (2016) method (see 297 

Text S1). Perturbation of each meteorological variable was defined by two parameters, its 298 

amplitude and its temporal correlation. All variables were perturbed with the parameters defined 299 

in Charrois et al. (2016) at the Col de Porte site (Alps), except for precipitation because we found 300 

that the uncertainty of annual cumulative precipitation was severely underestimated by Charrois 301 

et al. (2016). Therefore, the temporal correlation of precipitation was increased from 15 hours to 302 

1500 hours. This increases the dispersion of the annual cumulative precipitation among the 303 

forcings and of the resulting average HS among the simulations in a magnitude more 304 

representative of the typical known errors for both variables. In addition, three different sets of 305 

forcings were calculated with three spatially and temporally uniform precipitation scaling factors 306 

(PSF) to emulate precipitation biases that are typically observed in global reanalyses (Beck et al., 307 

2019). The reference experiment was run with a PSF of 1.0 (referred to as PSF-1.0) and was 308 

compared with experiments in which precipitation was halved (PSF-0.5) or doubled (PSF-2.0). 309 

 310 

3.5. Evaluation products and metrics 311 

First, the impact of assimilation on the modeled snowpack was observed on the HS, SWE, bulk 312 

density and runoff by comparison of the simulation with assimilation and the simulation without 313 

assimilation. Then, the benefits of assimilation was measured by comparing the modeled HS314 

with the following independent observations: 315 

- for WY 2017-2018 with a Pléiades HS map in May 2018, which was not assimilated 316 
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- a time series of HS at the Bernadouze AWS 317 

- a time series of SCA derived from MODIS images 318 

- a time series of SMOD maps calculated from Sentinel-2 and Landsat 8 images. 319 

Note that we do not have observations of SWE or runoff on this area. 320 

For each variable, X, describing the snowpack (i.e., HS, SWE, density, and runoff), a simulated 321 

ensemble was characterized by its mean, the first and third quartiles and its dispersion. These 322 

metrics were calculated for each time step (t) and each point of the grid (i,j). The mean is: 323 

𝑋(𝑖, 𝑗, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑁
∑ 𝑋(𝑖, 𝑗, 𝑡,𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑁
𝑛=1  (1) 324 

where N is the size of the ensemble (N=120). The spread of the ensemble is 325 

𝜎(𝑖, 𝑗, 𝑡) = √
1

𝑁
∑ (𝑋(𝑖, 𝑗, 𝑡,𝑛) − 𝑋(𝑖, 𝑗, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )²𝑁
𝑛=1            (2) 326 

The mean is used to make a point-by-point comparison of the simulated ensemble with a 327 

reference map (HS and SMOD). It is used to compute the absolute bias between the ensemble 328 

and observation at a given point. However, it is not adapted to characterize the complete 329 

distribution of the ensemble. The continuous ranked probability score (CRPS) is a probabilistic 330 

score measuring the distance between the ensemble and observations (Hersbach, 2000). It 331 

compares the cumulative distribution function of the ensemble, Fens, with the observation, Fobs: 332 

𝐶𝑅𝑃𝑆(𝑖, 𝑗, 𝑡) = ∫ [𝐹𝑒𝑛𝑠(𝑖, 𝑗, 𝑡, 𝑥) − 𝐹𝑜𝑏𝑠(𝑖, 𝑗, 𝑡, 𝑥)]²
+∞

−∞
𝑑𝑥           (3) 333 

where Fobs is a step function defined by the observation value Xobs: 334 

𝐹𝑜𝑏𝑠(𝑖, 𝑗, 𝑥) = 1  𝑖𝑓𝑥 > 𝑋𝑜𝑏𝑠 ;  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The higher the CRPS, the more the modeled ensemble is different from the observation. Thus, 335 

the assimilation aims at reducing the CRPS of the model compared to independent observations. 336 

If not specified, the metrics were spatially averaged over grid points where observations were337 

available. For the MODIS SCA and Bernadouze HS time series, the RMSE was calculated 338 
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between the modeled and observed variables from the assimilation date to the end of the WY. 339 

The spatial variability of the modeled and observed HS maps was measured with semivariance 340 

(Blöschl, 1999; Deems et al., 2006). 341 

3.7. Snow melt-out date from Sentinel-2 and Landsat 8 images 342 

We obtained every snow cover product available from the remote sensing products distribution 343 

platform Theia between September 2016 and September 2019 (Gascoin et al., 2019). These snow 344 

cover products were derived from Sentinel-2 and Landsat 8 images and provide a classification 345 

of the surface as snow, no snow or cloud (including cloud shadow) at 20 m (Sentinel-2) or 30 m 346 

(Landsat 8). Landsat 8 data were resampled to the Sentinel-2 20 m resolution grid by using 347 

nearest neighbor interpolation. When Sentinel-2 and Landsat 8 data were available on the same 348 

day, both products were merged by giving priority to Sentinel-2 on a pixel basis, i.e., Landsat 8 349 

observations were used only if the Sentinel-2 pixel was classified as cloud. This time series was 350 

linearly interpolated along the time dimension to produce a daily, gap-free time series of snow 351 

absence and presence at a 20 m resolution between 1 September 2016 and 1 September 2019. 352 

Maps of the SMOD were calculated from the snow cover time series following the same 353 

definition as the simulated SMOD. The SMOD maps were aggregated with an average block354 

filter of 250 m by 250 m centered on the simulation grid points. The SMOD was set to no-data if 355 

more than 90% of the initial pixel was covered with forest. The standard error of the SMOD 356 

measurement was estimated at 6 days based on the revisit time between successive acquisitions 357 

(~2.5 days) and the possible confusion with clouds. 358 

3.8. Snow cover maps from MODIS 359 

We used a collection of six Terra MODIS snow products (MOD10A1.006) to compute the SCA 360 

of the model domain. The snow cover fraction (SCF) of each MODIS pixel (approximately 500 361 

m) was derived from the “Snow cover NDSI” field using the formulae of Salomonson and Appel362 

(2004). Prior to computing the SCF, the missing values (approximately 50% of the data, mostly 363 

due to cloud cover) were linearly interpolated to generate a gap-free, daily time series as above 364 

with the Theia snow cover products. For every day between 1 September 2015 and 1 September 365 

2019, a daily continuous SCA time series was thus obtained by summing the area-weighted 366 

average of the SCF of each pixel within the study domain. 367 
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3.9. Bernadouze meteorological station 368 

The Bernadouze automatic meteorological station is located in a clearing at 1420 m a.s.l. north of 369 

the study area (42.80°N, 1.42°E, Figure 1). HS is measured bihourly with an acoustic sensor with 370 

a centimetric accuracy (Gascoin & Fanise, 2018). 371 

Table 1. Summary of the data used in this study.  372 

 373 

Type Source Date 
Horizontal 
resolution 

Digital elevation 
model 

Satellite photogrammetry 
(Pléiades) 

2014-10-01 3 m 

Snow depth 
map 

Satellite photogrammetry 
(Pléiades) 

2015-03-11 3 m 

  2016-04-11 3 m 

  2017-03-15 3 m 

  2018-02-15 3 m 

  2018-05-11 3 m 

  2019-03-26 3 m 

Snow melt-out 
date 

Sentinel-2/Landsat 8 
images 

WY 2016-2017 
WY 2017-2018 
WY 2018-2019 

20 m 

Snow cover area MODIS all WY 500 m 

Snow depth Bernadouze AWS all WY  

  374 
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 375 

4 Results 376 

4.1. Impact of the assimilation on the simulated snow depth on the assimilation date 377 

Figure 4 shows the maps of the difference between the mean modeled HS and Pléiades HS 378 

observations on all assimilation dates, for the different Precipitation Scaling Factor values (PSF). 379 

Assimilation increased, on average, the modeled HS (PSF-0.5 and PSF-1.0) or decreased the 380 

modeled HS (PSF-2.0) (Figure 4, Table S1). In all experiments and for all assimilation dates, 381 

assimilation increased the similarity between the spatial distribution of the modeled and observed 382 

HS, as expected. The semivariogram analysis indicates that the spatial variability of the modeled 383 

HS was increased by the particle filter (Figure 5). The differences between the ensemble without 384 

assimilation and the Pléiades observations were larger at high elevations for PSF-0.5 and PSF-385 

1.0 and rather homogeneous at all elevations for PSF-2.0 (Figure 6 and S2). The modeled HS 386 

was largely inferior to observed HS in the southern part of the area prior to assimilation, 387 

independent of the elevation for PSF-0.5 and PSF-1.0 (WY 2014-2015, WY 2016-2017, Figure 388 

6). This difference was even observed in PSF-2.0 despite the HS being increased by the doubling 389 

of precipitation. The mismatch between observed and modeled HS in WY 2018-2019 could be 390 

related to spatially structured errors in the Pléiades HS map (see 5.5). 391 

Figure 7 presents the evolution of the spatial average of the mean absolute difference between 392 

the observations and the model, the ensemble spread, the CRPS and the Pearson correlation for 393 

assimilated Pléiades observations (solid line). As expected, the distance between the assimilated394 

observations and the model, shown by the CRPS and the mean absolute difference, is always 395 

reduced by the particle filter compared to the runs without assimilation. The CRPS and the mean 396 

absolute bias reduction were larger for PSF-0.5 and PSF-2.0 without assimilation than for PSF-397 

1.0, but the values were reduced by the assimilation and close to each other for all experiments. 398 

For all years and experiments, the Pearson correlation between the modeled and observed HS 399 

increased to ~0.99 after assimilation. 400 

4.2. Impact of the assimilation on the simulated SWE, density, and runoff 401 
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On the date of the assimilation, the assimilation of the HS maps had different impacts on the 402 

modeled bulk density and the SWE depending on the experiment (Figure 8). The increase (PSF-403 

0.5 and PSF-1.0) and decrease (PSF-2.0) in HS were associated with similar modifications of the 404 

SWE. Density was also modified to a lesser extent, typically +- 25 kg m3. Density was 405 

diminished for PSF-0.5 and some WY of PSF-1.0. Conversely, density was increased for PSF-406 

2.0.  407 

The change in SWE on the date of the assimilation also resulted in modification of the melt 408 

runoff amplitude and duration throughout the end of the snow season (Figure S4). Total melt 409 

runoff increased from 20% to 30% for PSF-0.5, by 10% or less for PSF-1.0 and decreased by 410 

10% or less for PSF-2.0. The end of the melt period was extended by up to 10 days for PSF-0.5 411 

and not modified for PSF-2.0. 412 

 413 

4.3 Selection of the particles based on their meteorological forcing and their model 414 

physical parameterization 415 

The HS of ensemble members that are selected by the particle filter may be more appropriate due 416 

to their meteorological forcing, their physical version of the Crocus model, or both. Figure 9 417 

shows the mean precipitation until the assimilation date of WY 2014-2015 associated with all the 418 

particles of the ensemble (gray) and associated with the particles selected by the filter (green). 419 

Particles with higher precipitation rates were selected for PSF-0.5 and PSF-1.0 in agreement with 420 

the observed increase in SWE due to assimilation for these two experiments. Particles with lower 421 

precipitation rates were selected for PSF-2.0, again in agreement with the associated SWE 422 

reduction. Distribution of the other meteorological variables was not modified by assimilation.  423 

Figure 10 shows the versions of the compaction modeling in Crocus associated with all the 424 

particles of the ensemble with and without assimilation. No version of the compaction was 425 

excluded by the assimilation, but some were preferentially selected. The compaction version 426 

from Anderson (1976) was preferred at the expense of the version from Teufelsbauer (2011) in 427 

the PSF-0.5. The opposite preferential selection occurred in PSF-2.0. No clear impact of 428 
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assimilation was observed for PSF-1.0 or for other physical laws impacting snowpack density 429 

(i.e., density of fresh snow and snow grain metamorphism). 430 

431 
Figure 4. Differences of snow depth maps (Crocus minus Pléiades) without assimilation (left 432 

column for a given PSF) and with assimilation (right column for a given PSF). The rows show 433 
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the different acquisition dates. The differences are always smaller in the assimilation run, even 434 

on 11 May 2018, 85 days after the assimilation date. 435 

 436 

 437 

Figure 5. Semi-variogram of the snow depth modeled without assimilation (grey), with 438 

assimilation (green) and in the Pléiades snow depth maps. The thick solid lines show the 15 439 

February 2018 semi-variance (assimilation date) and the thick dashed lines show the 11 May 440 

2018 semi-variance (evaluation date). The assimilation increased the spatial variability of the 441 

modeled HS at the assimilation date. This improvement remains 85 days after the assimilation on 442 

11 May 2018. 443 
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 444 

Figure 6. Envelopes of the snow depth ensemble without assimilation (grey) and with 445 

assimilation (green) as a function of elevation. The envelope shows the first and third quartile of 446 

the ensemble distribution. The rows show the three precipitation scaling experiments, from top to 447 

bottom: PSF-0.5, PSF-1.0, PSF-2.0. The snow depth measured with Pléiades (red) is identical in 448 

all plots.     449 

 450 

 451 

 452 

 453 
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 454 

455 
Figure 7. Impact of the assimilation on the modeled snow depth at the assimilation date (solid 456 

line) and on the evaluation date (dashed line) compared to Pléiades snow depth maps. Left plot 457 

shows the ensemble spread and the mean absolute error. Right plot shows the CRPS and the458 

Pearson correlation. Each arrow shows the statistic for a single date with the metrics without 459 

assimilation at the base of the arrow and the metrics with assimilation at the head of the arrow. 460 

February and May 2018 arrows are in full colors while other dates are slightly transparent. The 461 

arrow color shows the precipitation scaling factor. The assimilation reduced the spread of the 462 

ensemble, the bias between the modeled HS and the observation, the mean CRPS and increased 463 

the correlation between the modeled HS and the observation. This is expected at the assimilation 464 

date but the fact that it subsists on 11 May 2018 shows the long-lasting benefit of the 465 

assimilation. 466 
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 467 

Figure 8. Impact of the particle filter on snow depth (left), SWE (middle) and density (right) on 468 

11 March 2015 (assimilation date). Each dot represents the mean value of a simulation grid point 469 

with the color showing the elevation of the point. The rows show the different precipitation 470 

scaling experiments, from top to bottom: PSF-0.5, PSF-1.0, PSF-2.0. 471 

 472 
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 473 

Figure 9. Solid precipitation rate per elevation between 1 September 2014 and 11 March 2015 474 

(assimilation date). Green envelope shows the precipitation of the particles selected by the 475 

assimilation (the first and third quartile). Grey envelope shows the precipitation of all the 476 

particles (i.e. no assimilation). The assimilation selected members with mean precipitations 477 

compensating the bias introduced by PSF-0.5 and PSF-2.0. 478 
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 479 

Figure 10. Distribution of the physical parameterizations of the snowpack compaction of all the 480 

particles (i.e. no assimilation, left bar) or of the particles selected by the assimilation (right bar). 481 

Each column shows the distribution for a WY and each row shows the distribution for the 482 

precipitation scaling experiments, from top to bottom: PSF-0.5, PSF-1.0, PSF-2.0. The 483 

assimilation selected and eliminated preferentially some physical parameterizations of the PSF-484 

0.5 and PSF-2.0 experiments. 485 

4.4. Independent evaluation of the impact of assimilation 486 

A Pléiades HS observation is available on 11 May 2018, 85 days after the assimilation date of 15 487 

February 2018, enabling us to assess the impact of the assimilation on the modeled snowpack 488 

with independent data. The mean bias and spread of the ensemble were reduced in the 489 

assimilation run on this date (dashed arrows in Figure 7). The mean CRPS was smaller in May in 490 

the assimilation run than without assimilation for all elevation levels (Figure 11). The spatial 491 

variability introduced by assimilation was also conserved in May (dashed line in Figure 5). 492 
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HS measured at the Bernadouze AWS was 1.17 m and 0.82 m on the assimilation dates of WY 493 

2014-2015 and WY 2017-2018, respectively (Figure S5). It was null or close to null (i.e., <0.3 494 

m) on all other assimilation dates both in Pléiades and at the AWS. HS at the closest grid point 495 

was improved (i.e., decreased) from ~0.3 m to 0.5 m by assimilation for PSF-2.0. It was slightly 496 

improved by ~0.1 m (i.e., increased) for PSF-0.5 for WY 2014-2015 and WY 2017-2018, which 497 

were WY with the thickest snowpack during the study period. The impact was null or weak for 498 

other assimilation dates of PSF-0.5 and PSF-1.0 due to the lack of snow or good agreement 499 

between the model and Pléiades observation prior to assimilation. 500 

After assimilation, the modeled SMOD was delayed by typically 15 days for PSF-0.5 compared 501 

with the modeled SMOD without assimilation. This improved the modeled SMOD by the same 502 

duration, as shown by the map of the difference between modeled and SMOD observed by 503 

Sentinel-2/Landsat 8 (Figure 12). Conversely, the modeled SMOD was advanced and generally 504 

improved by approximately 5 days for PSF-2.0. However, assimilation locally degraded the 505 

modeled SMOD in the southern part of the zone in WY 2017-2018 and WY 2018-2019. The 506 

impact of assimilation on the SMOD was null on average for PSF-1.0. The modeled SCA was 507 

improved by assimilation compared with MODIS SCA (Figure S6). The RMSE of SCA was508 

reduced by ~20% for PSF-1.0 and PSF-2.0, and ~30% for PSF-0.5 (not shown). 509 

 510 

Figure 11. Distribution of the snow depth CRPS against elevation on 15 February 2018 511 

(assimilation date) and 85 days later on 11 May 2018 (evaluation date). The CRPS is calculated 512 

from the modeled snow depth without assimilation (grey), with assimilation (green) and a 513 
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Pléiades snow depth map. Reduction of the CRPS is visible at both the assimilation date and, to a 514 

smaller extent, at the evaluation date. 515 

 516 
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Figure 12. Impact of the assimilation on the modeled SMOD in days. Blue areas show 517 

improvement of the modeled SMOD while red areas show worsening of the modeled SMOD by 518 

the assimilation. Modeled SMOD in the yellow areas was not modified by the assimilation. 519 

SMOD was improved by the assimilation in PSF-0.5 and to a lesser extent in PSF-2.0. 520 

5 Discussion 521 

5.1. Correction of errors in the meteorological forcings 522 

The mean precipitation of the particle selected by the particle filter differed from the mean 523 

precipitation of all particles (Figure 9). This was observed in PSF-0.5 and PSF-2.0 which 524 

emulate bias in precipitation observed in global reanalyses (Beck et al., 2019) and also in PSF-525 

1.0 which provides a reference run to compare HS observations from Pléiades with those from 526 

the SAFRAN-Crocus chain. HS was underestimated in PSF-1.0 without assimilation of snow 527 

observations, especially at elevations above 2000 m a.s.l. The discrepancy was typically 10% to 528 

20%. This bias had the same sign and similar magnitude than those previously reported by 529 

comparing SAFRAN-Crocus simulations with HS measurements in this part of the Pyrenees 530 

(Quéno et al., 2016). The strong precipitation gradient with elevation is difficult to reproduce for 531 

an analysis system without any observation at high elevation, explaining the increasing bias of 532 

HS with elevation (Vionnet et al., 2019). As the assimilation improved the modeled HS (Figure 533 

4, 7, and 11), SMOD (Figure 12), and SCA (Figure S5) in PSF-0.5 and PSF-2.0, we conclude 534 

that errors in precipitation can be reduced by the assimilation of Pléiades HS in case of large 535 

bias. In case of smaller bias (e.g. PSF-1.0), we conclude that the assimilation of Pléiades HS map 536 

benefits by improving the modeled spatial variability of HS (Figure 5).  537 

The assimilation had no clear impact on the other meteorological variables. This likely results 538 

from the short correlation time of the applied perturbation, which did not sufficiently539 

differentiate the particles. A short correlation time of the perturbation (i.e., 15 h) results in an 540 

ensemble of forcings with a random distribution at each time step but a similar yearly mean. 541 

Smyth et al. (2019) found that the perturbation of radiative forcing and of precipitation produced 542 

assimilation results similar to those of the perturbation of precipitation only. Increasing the 543 

correlation time of the perturbation of the temperature could be relevant in evaluating the impact 544 
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of a large bias in temperature, as it controls the precipitation phase partition during precipitation 545 

events. 546 

 547 

 548 

5.2 Correction of errors in the physical parameterization 549 

Density of the snowpack was also modified by assimilation. Density could be modified as a 550 

consequence of SWE modification; more SWE due to more precipitation should lead to more 551 

compaction and denser snowpack on average. However, the sign of density modification was not 552 

consistent with this hypothesis (e.g. PSF-0.5 in Figure 8). The densification law from Anderson 553 

(1976) favored in PSF-0.5 leads to slower densification than the law from Teufelsbauer (2011), 554 

depreciated by the assimilation. This indicates that the increase in HS for PSF-0.5 also resulted 555 

from a slower densification and the decrease in HS for PSF-2.0, resulted from a faster 556 

densification. This is not necessarily a good reason, as the bias of the HS is related to 557 

precipitation errors by construction in the PSF-0.5 and PSF-2.0 experiments.  558 

The same phenomenon was observed when assimilating synthetic punctual HS in a two-layer 559 

model (Smyth et al., 2019). While Smyth et al. (2019) concluded that the modeled density was 560 

improved by assimilation thanks to SWE and HS measurements, we lack in situ measurements to 561 

perform similar evaluations. Our experiments suggest that assimilation can compensate for 562 

meteorological errors by the selection of different physical parameterizations. As a result, an 563 

improvement of the simulated SWE can not be systematically guaranteed through HS 564 

assimilation. Including different observed variables in the assimilation scheme should help avoid 565 

these equifinality issues in the future. 566 

 567 

5.3. Evolution of the snowpack after the assimilation date 568 

Satellite-based data (Pléiades, MODIS, Sentinel-2, and Landsat 8) provided independent spatial 569 

information to evaluate assimilation performance (Figure 4, 5, 7, 11, and 12). Impact of 570 

assimilation on the SMOD was only evident for PSF-0.5 and PSF-2.0 because the modeled 571 
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SMOD was largely degraded before the assimilation and the HS increment due to assimilation 572 

was large. No positive impact of assimilation in PSF-1.0 was visible in the SMOD comparison, 573 

probably because the limited HS assimilation increments likely resulted in SMOD changes that 574 

were too small to be captured by the daily to biweekly resolution of the Sentinel-2/Landsat 8 575 

SMOD products. In addition, several physical processes shaping the snowpack between the 576 

assimilation date and SMOD are not taken into account in this version of Crocus (e.g., wind drift, 577 

avalanche deposits, multiple reflections from surrounding surfaces, and light-absorbing 578 

particles). For instance, the impact of light-absorbing particles was considered through the 579 

decrease in visible albedo with snow age, and the parameterization was calibrated at the Col de 580 

Porte site in the Alps (Brun et al., 1992). This does not represent the spatial and temporal 581 

variability of the light-absorbing particles present in the modeled snowpack. The TARTES 582 

module, which explicitly represents the impact of the light-absorbing particles, was not used 583 

because it requires many more computational resources and additional forcing data (Tuzet et al., 584 

2017). The explicit modeling of the light-absorbing particles leads to faster melting and a ~6-day 585 

advance of the SMOD in this region compared with the Crocus version used here (Réveillet et 586 

al., in review). The impact is larger at high elevations and could partially explain the local 587 

worsening of the modeled SMOD at high elevations in PSF-1.0 and PSF-2.0. In this area, 588 

assimilation increased the HS, which delayed the SMOD, but the SMOD was already 589 

overestimated without assimilation. 590 

 591 

5.4. Perspective on the assimilation scheme 592 

Ensemble simulations provide an estimate of the uncertainty of the modeled variables of 593 

interest (e.g. SWE, density) by the way of the ensemble spread. In theory, assimilation should 594 

reduce the spread to the magnitude of observation error but should not underestimate the residual 595 

uncertainty by a too selective particle filter leading to ensemble collapse (i.e., selection of a 596 

single particle). Here, assimilation reduced the spread of the ensemble of modeled HS in the 597 

range to the observation error (Figure 7). This suggests that the spread of the ensemble of HS 598 

prior to assimilation, the bias between the ensemble prior to assimilation and observation, and 599 

the observation error were consistent. However, assimilation did not modify the ensemble for 600 
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points at low elevation for PSF-0.5, where all members of the ensemble had no snow. The 601 

multiplicative perturbation of precipitation used here cannot produce an ensemble of the HS with 602 

a sufficiently large spread where snow falls are low and snowpack is thin. A way to address this 603 

issue would be to introduce a spatially variable perturbation of precipitation and to increase the 604 

perturbation amplitude in areas of thin snowpacks (i.e., low elevation and strong wind erosion) 605 

or to use additive perturbation of the precipitation (Magnusson et al., 2017). 606 

5.5. Snow depth mapping methods 607 

Higher resolution and more accurate products can be generated from airborne surveys (Brauchli 608 

et al., 2017; Hedrick et al., 2018). The higher accuracy reached with airborne lidar or 609 

photogrammetry reduces the need to aggregate HS maps and allows higher resolution 610 

simulations. In particular, satellite photogrammetry DEM can suffer from errors in the estimation 611 

of the satellite attitude which results in erroneous undulations in the HS maps, so called “jitter”612 

(Deschamps-Berger et al., 2020). The magnitude and the spatial distribution of the difference 613 

between modeled and observed HS on 26 March 2019 suggest that the corresponding winter 614 

DEM is affected by jitter. The jitter is a spatially structured error whose magnitude depends on 615 

the image and varies within an image. The largest negative anomaly of modeled HS in the south 616 

of the study site on 26 March 2019 is likely due to an undulation of large amplitude. To our 617 

knowledge, there is no way to correct for jitter without significant areas of stable terrain which is 618 

the case here. Despite this error in the assimilated HS, assimilation improved the modeled 619 

SMOD for PSF-0.5 but notably degraded the modeled SMOD in the south for PSF-2.0, where 620 

the error due to jitter is believed to be the largest. Despite these errors, the strong asset of satellite 621 

photogrammetry is the ability to acquire images in any place of the globe. The typical coverage 622 

of a Pleiades image (20 km by 20 km) is too small to cover a whole mountain range like airborne 623 

methods could do (Painter et al., 2015). It remains much larger than UAV or terrestrial based 624 

methods (Eberhardt et al., 2020). 625 

 626 

5.6. Comparison to existing studies 627 
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Our results are in line with previous studies which concluded on the improvement of the 628 

modeled spatial distribution of the HS through assimilation of a single HS map, with other 629 

assimilation method, data source, data frequency and snowpack model (e.g. Revuelto et al., 630 

2016; Brauchli et al, 2017; Hedrick et al., 2018; Margulis et al., 2019; Shaw et al., 2020). The 631 

observed improvement 85 days after the assimilation date in WY 2017-2018 is consistent with 632 

the persistence of reduced error up to 100 days after the assimilation date in simulations 633 

weighted with a particle batch smoother (Margulis et al., 2019). Our study confirms the 634 

experimental results of Smyth et al. (2020) who found that HS measurements with uncertainty of 635 

~0.5 m, typical of satellite photogrammetry, are sufficient to significantly improve snowpack 636 

simulations in mountainous regions.  637 

The assimilation date of a single HS map is often found to be optimal close to peak SWE for 638 

SWE estimation during the melt period (Brauchli et al., 2017; Hedrick et al., 2018; Margulis et 639 

al., 2019). The assimilation of an HS map acquired 50 days after peak SWE was less beneficial 640 

(Margulis et al., 2019). Here, the assimilation date was close to the basin peak SWE for WY 641 

2014-2015, WY 2015-2016, and WY 2016-2017 but was ~40 days prior to the peak in WY 642 

2017-2018 and ~50 days after the peak in WY 2018-2019. A third of the peak SWE mass 643 

accumulated after the assimilation date for WY 2017-2018, and a quarter was lost before the 644 

assimilation date for WY 2018-2019. However, the impact of assimilation on the SMOD (Figure 645 

12) was similar for all WYs despite variable assimilation dates. This suggests that assimilation 646 

can be beneficial even with a single observation more than a month before or after the peak 647 

SWE.  648 

6 Conclusion 649 

Assimilation of a single HS map each year measured with satellite photogrammetry improved 650 

simulation of the snowpack based on comparison of the modeled HS with an independent HS 651 

map, independent satellite-derived maps of the SMOD and SCA. Assimilation corrected 652 

erroneous precipitation gradients and partially compensated for processes lacking in the model 653 

(e.g., wind redistribution) which improved the spatial distribution of modeled HS. The relatively654 

high standard error of the HS measurements (~0.70 m at a 3 m resolution) compared with other 655 

remote sensing methods (e.g., drone or airborne) was reduced by aggregating the HS map at a 656 
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250 m resolution. Further work may evaluate the impact of assimilating HS maps from satellite 657 

photogrammetry at higher resolutions (<250 m) to represent smaller-scale variability. Cross 658 

validation dataset (airborne or terrestrial laser scan) would ease the measurement of the impact of 659 

assimilation of satellite snow depth maps. The use of satellite photogrammetry is currently 660 

limited by the footprint of the images (20 km x 20 km for Pléiades) and jitter errors. Variants of 661 

the particle filter, could partly overcome these limitation by propagating information into 662 

surrounding areas or erroneous areas by following correlation patterns in the ensemble (Cluzet et 663 

al., 2021). Although it may be better constrained in the future by complementary assimilation 664 

variables, the point-by-point particle filter used in this study already proved to be efficient and 665 

should be easily transferable to other study sites. These results and the possibility of using the 666 

particle filter several times per season when a new observation is available (sequential particle 667 

filter) combined with meteorological forecasts suggest that this scheme is well suited to 668 

operational applications (avalanche or flood forecasting). Assimilation had the largest impact on 669 

simulations with degraded meteorological forcings, which are representative of global reanalyses 670 

products. Combining satellite-derived snow depth observations, snowpack modeling and 671 

globally available forcings may especially allow an improved estimation of the snow cover 672 

properties in unmonitored mountain catchments (e.g., the Himalayas, Andes, and polar mountain 673 

ranges). 674 
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