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Abstract—Security has become a critical issue for Industry
4.0 due to different emerging cyber-security threats. Recently,
many Deep Learning (DL) approaches have focused on intrusion
detection. However, such approaches often require sending data
to a central entity. This in turn raises concerns related to privacy,
efficiency, and latency. Despite the huge amount of data generated
by the Internet of Things (IoT) devices in Industry 4.0, it is
difficult to get labeled data, because data labeling is costly and
time-consuming. This poses many challenges for several DL
approaches, which require labeled data. In order to deal with
these issues, new approaches should be adopted. This paper
proposes a novel federated semi-supervised learning scheme, that
takes advantage of both unlabeled and labeled data in a federated
way. First, an AutoEncoder (AE) is trained on each device
(using unlabeled local/private data) to learn the representative
and low-dimensional features. Then, a cloud server aggregates
these models into a global AE using Federated Learning (FL).
Finally, the cloud server composes a supervised neural network,
by adding fully connected layers (FCN) to the global encoder
(the first part of the global AE) and trains the resulting model
using publicly available labeled data. Extensive case studies on
two real-world industrial datasets demonstrate that our model:
(a) ensures that no local private data is exchanged; (b) detects
attacks with high classification performance, (c) works even when
only a few amounts of labeled data are available; (d) has low
communication overhead.

Index Terms—Data privacy, federated learning, machine learn-
ing, deep learning, semi-supervised learning, intrusion detection.

I. INTRODUCTION

Recent advances in communication and Internet of Things
(IoT) technology enable the realization of the Industrial In-
ternet of Things (IIoT). IIoT refers to the networking and
connection of production equipment, instruments, products,
and sensors, with the industrial and manufacturing applica-
tions [1]. In IIoT, a large number of smart devices and sensors
act in the background to collect the environment and user
data. However, these devices are vulnerable to several cyber-
attacks [2] where the attackers can intercept and analyze some
sensitive data [3]. As a consequence, there is an urgent need
to design efficient attack detection mechanisms. As a counter
measure, more intelligent methods need to be designed and
deployed in the network. Recently, Machine/Deep Learning
(ML/DL) models have shown potential due to their ability to
analyze the traffic and extract knowledge out of it. ML/DL
models can automatically diagnose and detect attacks using

flow and packet-based features. In fact, building DL models
consists of three steps: i) data capture and labeling; ii) data
pre-processing, and iii) model training. The first step requires
that data are manually labeled after being captured, which is
a highly expensive and time-consuming process. The second
and third steps require the data owners to send their private
data to a central entity for pre-processing and model training.
This raises privacy issues as confidential data might need to
be shared in the process.

Data labeling and unsupervised learning. Semi-
supervised learning can exploit abundant unlabeled data in
combination with a small amount of labeled data, thus has
received a lot of attention recently to solve the problem of
labeling data. The unsupervised learning captures the most
relevant features from the unlabeled data in order to provide a
better representation of the data than the initial raw data (i.e.,
input data) itself. After capturing these features, the supervised
training uses the labeled data to fine-tune model parameters
and constructs the final model. The final model can then be
used for example to classify the traffic as either benign or an
attack.

Data privacy and Federated Learning (FL). In the
Industry 4.0 environment, the datasets are distributed across
the IIoT devices, where the data of each device is limited
in diversity and quantity. Moreover, due to privacy concerns,
the devices may not be willing to share their data with a
central entity. Besides, privacy concerns, collecting the data
to a central entity could lead to significant communication
overhead as well as introduce network congestion [1]. All
this makes it impractical to collect raw data from different
IIoT devices. Solving the above issues requires a collaborative
approach where the intrusion detection system is built while
leaving the data at the location of its production. Federated
Learning solves exactly this problem. FL does not need to
move the data to a central entity. It is an iterative learning
process where the model performance can be improved during
each communication round [4]. More specifically, the IIoT
devices (e.g., industrial machines or robots) using FL can train
a model locally. Then, they can just send the model parameters
instead of the raw data to a central entity, which can aggregate
the different received models.

In our work, we address both the problems of data labeling
and privacy at the same time, by combining semi-supervised
learning with FL. This allows the IIoT devices to participate



2

in the training process without labeling and sending their
data to a central entity and in turn increase the scalability
and robustness of IIoT applications as well as overcome data
limitation problems and privacy concerns.

A. Related work
In this section, we first present some representative solutions

of recently proposed approaches for intrusion detection based
on conventional ML/DL models (Section I-A1). Then, we
present the recent achievements of state-of-the-art approaches
that proposed intrusion detection systems using FL-based
architecture (Section I-A2).

1) Conventional Machine/Deep Learning models: ML/DL
models offer a way to detect attacks efficiently, as they can
find useful patterns in data in a reasonable time. This ability
to generalize from examples also enables them to better adapt
to new kinds of attacks than handcrafted Intrusion Detection
Systems (IDS). In this context, Ge et al. [5] proposed a
novel intrusion detection approach for IoT systems using a
DL model. Specifically, a feed-forward neural network (FNN)
has been used for binary and multi-class classification for
four categories of attacks, which are reconnaissance, DoS,
DDoS, and information theft attacks. The experimental results
demonstrated that the proposed method outperforms Support
Vector Machine (SVM) in terms of accuracy and training time.

At the same time, several IDS based on the distributed
architecture of fog computing nodes and ML/DL models were
proposed, for example, Kumar et al. [6] proposed a novel
ensemble learning for intrusion detection using fog nodes. It
is composed of two levels. In the first level, three supervised
models are trained on the initial data. Then, in the second level,
Random Forests (RF) have been used to combine the output
of the first level and provide the final classification (”attack”
or ”benign”).

However, as new types of attacks emerge every day, this
brings new challenges that need to be tackled. In fact, labeling
data is often difficult and time-consuming. Therefore, the
researchers started to use a semi-supervised learning model
where they can exploit both labeled and unlabeled data. In
this context, Aamir et al. [7] proposed a semi-supervised
model for DDoS attack detection. In the first step, principal
component analysis (PCA) was used for data reduction and
feature extraction. In the second step, a clustering algorithm
was used to label the data based on their cluster. Finally, after
label assignment, several supervised models are applied for
training and attack detection. The experimental results show
that the RF model is more accurate than K-Nearest Neighbors
(KNN) and SVM. In the same context, Hara et al. [8] proposed
an IDS system using a semi-supervised learning model. They
used an adversarial auto-encoder (AAE) to extract the rele-
vant features. The experimental results demonstrate that the
proposed model can achieve high accuracy with a minimal
number of labeled data as compared to deep neural networks.
To evaluate the performance of their solution, the authors used
NSL-KDD dataset, which is quite an old dataset and can miss
modern network behaviors.

All the above works are based on the centralized training
system where data are collected and processed in a single

TABLE I: Summary of existing works.

Schemes

Characteristics

Federated
learning

Semi-
supervised
learning

Communication
overhead
minimisation

[9] Ensemble FL-based attacks
detection (GRUs, RF)

3

[10] MV-FLID: ensemble
FL-based intrusion detection
(FNN, RF)

3

[8] Semi-supervised model-
based intrusion detection
(AAE)

3

[11] Ensemble FL based at-
tacks detection (CNN, GRUs)

3

[12] DL-based intrusion detec-
tion (GRUs)

3

[13] Federated transfer learn-
ing based intrusion detection
(CNN)

3

[7] Semi-supervised DDoS at-
tack detection (PCA, K-means,
RF)

3

[14] FL-based attacks detec-
tion (DNN)

3 3

[15] FL-based attacks detec-
tion (DNN, CNN, RNN)

3

[16] FL-based attacks detec-
tion (DNN)

3

[17] FL-based Android mal-
ware detection (GAN)

3

Our model (Federated semi-
supervised attacks detection
(AE, FCN))

3 3 3

central server. This type of solution can be computationally
expensive, time-consuming, prone to threats, and problems of
information security and can cause leakage of confidential
data. In contrast, through the use of FL, our model tries
to detect attacks without breaching data privacy as well as
reducing the communication and storage overhead as much as
possible by sending only model parameters to a central server
instead of the raw private data.
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2) Federated Learning: FL was proposed to ensure data
privacy during ML/DL model training. For instance, Nguyen
et al. [12] introduced an FL system for detecting compromised
IoT devices, called DÏoT. Gated Recurrent Units (GRUs) have
been used as a DL model. This is the first system that deployed
FL for IDS. It consists of two components, which are security
gateways and IoT security services. Security Gateways use the
local data to train the local models and IoT security service
aggregates the local models into a global model.

Taheri et al. [17] introduced an FL approach to detect
Android malware in IIoT, called Fed-IIoT. Specifically,
Fed-IIoT uses two generative adversarial networks (GAN)
models to generate adversarial data and inject them into the
dataset. The server uses a GAN in order to detect a malicious
model and to delete the poisoned data. Fed-IIoT has been
tested on three IoT datasets and the results confirm the higher
attack detection performance of their approach.

Mothukuri et al. [9] proposed an ensemble FL-based attack
detection and classification in IoT networks. The authors
combine RF and GRUs models to construct their ensemble. In
other words, they used RF in order to combine the predictions
from the GRUs model to further improve the classification
performance of the FL approach. The experimental results
demonstrate a minimized error rate in predicting attacks and
a reduced number of false alarms in comparison to the
centralized ML approaches.

Similarly, Attota et al. [10] proposed an ensemble FL-
based intrusion detection, called MV-FLID. Specifically, the
authors have developed three FNN models for three views
(i.e., Biflow View, Packet View, and Uniflow View), and the
outcomes of these models are sent to an ensembler model
(RF), which combines the predictions of these models and
classifies the instances. The results show that the FL approach
can outperform the Non-FL one. Li et al. [11] proposed a
federated DL scheme in cyber-physical systems (CPS), called
DeepFed. A combination of Convolutional Neural Networks
(CNN) and GRUs has been used for intrusion detection. The
experimental results on a real industrial dataset demonstrate
the high accuracy of DeepFed as compared to some other FL
approaches. Popoola et al. [14] proposed FL model for zero-
day attack detection in IoT edge devices. The experimental
results demonstrate that FL outperforms the state-of-the-art
methods in terms of data privacy, communication overhead,
and memory storage space as well as the attack detection
accuracy. In the same direction, Fan et al. [13] proposed
another model for IDS in 5G IoT network using federated
transfer learning, called IoTDefender. They use FL to ag-
gregate information without data sharing and transfer learning
to ensure a personalized model for each IoT network. In
addition, Ferrag et al. [15] presented a comprehensive survey
including experimental analysis of FL approaches for cyber-
security, in the IoT domain, using several datasets. Finally,
Sarhan et al. [16] proposed a collaborative FL approach for
IDS using a DL-based model. Their results demonstrated that
FL achieved similar performance with that of the centralized
approach in the binary and multi-classification scenarios.

The summary of the above works demonstrates the effec-
tiveness of FL for IDS however as shown in Table I none

of the existing works exploits the unlabeled data during the
FL training process. The integration of both FL and semi-
supervised learning for intrusion detection is what currently
lacks in the state of the art and that our model addresses.

B. Motivations and Key Contributions
The motivations behind the use of the federated semi-

supervised learning model are as follows. Although semi-
supervised learning has been used in the literature for IDS, it is
often limited by the scale and hence can not generalize very
well. Secondly, user data protection is recently accentuated
by several international regulatory policies, which restrict data
access and protect medical data privacy. For example, the Gen-
eral Data Protection Regulation in European Union (GDPR)1

completely redefines the data management policy. Thirdly,
labeling data can be costly and time-consuming, whereas using
unlabeled data can also provide valuable information for the
model and in turn boost the model classification performance.
Therefore, the integration of FL and semi-supervised learning
for the attack detection task is a promising direction. However,
the large body of literature presented above has not explored
the combination of FL and semi-supervised learning for attack
detection.

To address these limitations, we propose an FL-based semi-
supervised model for ensuring privacy as well as for taking
advantage of the unlabeled and labeled data in the IIoT
environment. More specifically, we train a model using only
a small amount of labeled data combined with more abundant
unlabeled data. Additionally, our proposal can enhance the
model performance through the collaboration of data sources
which are the distributed IIoT devices. The main contributions
of our research are as follows:
• We propose a federated semi-supervised approach for in-

trusion detection, by integrating FL and semi-supervised
learning in one model which is used by the distributed
IIoT devices.

• We use the AE as the unsupervised model at the IIoT
devices in order to reduce the size of local models and
to decrease the communication overhead.

• We use the cloud server as follows. It first generates
the global AE using FL. Next, the cloud server adds
additional layers to the global encoder block and trains
the resulting neural network further using supervised
learning with publicly available labeled data.

• We further deploy a joint-announcement protocol [18],
which uses clients’ random selection in order to decrease
the communication overhead.

• We perform an extensive simulation using two industrial
datasets, which are benchmark datasets, as well as we
compare our approach against some state-of-the-art ap-
proaches.

C. Paper Structure
The rest of this paper is organized as follows. Section II-A,

firstly presents essential background, then Section II-B intro-
duces our FL-based semi-supervised algorithm for intrusion

1https://gdpr-info.eu/issues/data-protection-officer/
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and attack classification. Experimental settings and results as
well as the dataset are presented in Section III. Discussion and
analysis of the results and the future directions are provided
in Section IV. Finally, the conclusion is given in Section V.

II. PROPOSED SOLUTION

This section presents the main components of our system
as well as the architecture of the FL-based semi-supervised
learning.

A. Components

1) AutoEncoder: AE is an unsupervised neural network
model. It consists of two blocks, (i) encoder and (ii) de-
coder. The encoder takes input data and maps it to a hidden
representation (latent representation), called code. Then, the
decoder uses the hidden representation to reconstruct the input.
The main purpose of the AE is dimensionality reduction of
the input data by extracting important features as the latent
variable vector. For more details about AE, please refer to [19].

AE structure with single hidden layer is formulated as:
encoder : Z = f(W1X + b1) (1)

decoder : X ′ = f(W2Z + b2) (2)

where X = (x1, x2, . . . , xn) is the input vector, and Z =
(z1, z2, . . . , zm) is the vector known as latent space which in
turn is extracted from the input X , X ′ = (x′1, x

′
2, . . . , x

′
n)

is the output reconstruction of the input X , where n is the
dimension of the input vector and m is the number of code
units. W1 and b1 are the weight matrix and bias between the
input layer and the second layer (i.e., code). W2 and b2 are
the weight matrix and bias between the second and the output
layer; f(.) is the activation function.

The difference between X and X ′ is usually called the
reconstruction error RE, which is represented in the form
of a cost function that the model tries to reduce during the
training process. The cost function of the AE is computed
using Equation 3, where the parameter set is denoted by
θ = {W1, b1,W2, b2}.

J(θ) =

n∑
i=1

RE(xi, x
′
i) (3)

2) Federated Learning: FL attempts to answer the follow-
ing main question: Can we train the model without the need
to transfer data over to a central location? Within the FL
concept, the data is maintained where it is generated and no
raw data gets exchanged. In other words, FL is a distributed
machine learning framework where the data entities/clients
collaborate to jointly learn a global model (e.g. intrusion
detection) without sacrificing the privacy of the end-users
as much as possible. Given K clients {C1, . . . , CK} and
their respective local data {D1, . . . , DK}, the FL framework
builds a model through the collaboration of several clients
n ≤ K without exposing their data to others. First, the central
server specifies the hyperparameters of the global model and
the training process. Then, it disseminates the initial global

model to several clients. Based on this model, each client
updates the global model locally for a selected number of
epochs using its own data. Once the local training is finished,
these clients send their own model updates to the central
server that aggregates these updates and computes the global
model without exchanging data. These steps are repeated
until the global model achieves satisfactory accuracy. The aim
of the global aggregation is to aggregate the local models
of different clients. For this task, the Federated Averaging
(FedAvg) algorithm [4] is the most simple and frequently used
one; hence, it will be used with our model. By making devices
exchange model parameters rather than their raw local private
data, the FL process limits the communication and storage
overhead.

B. Methodology

Our objective is to train a semi-supervised model using only
a small amount of labeled data while preserving data privacy.
Figure 1 and Algorithm 1 present the architecture and the
main idea of our model. Table II presents the notations used
in Algorithm 1.

Our model consists of two parts: the clients’ side and
the server-side. The clients perform the model pre-training
using their unlabeled data and the server fine-tunes the global
parameters using its limited labeled data (Figure 1 (a)). In
step 1 in Figure 1 (b), the server selects a random subset of
clients, n ≤ K, that will participate in the learning process
and send them the initial AE model. Then, on the clients’ side
(IIoT devices), the AE model is trained for a selected number
of epochs using the clients’ unlabeled data with the objective
of reducing the reconstruction error (step 2). Here, the total
unlabeled data are randomly distributed across the clients. In
an IIoT context, clients are often far from human reach, thus
accessing them to label their data is a difficult and impractical
task. Thus, to be more realistic, in this work we consider
that the client data are fully unlabeled. Then, the clients send
their local models to the cloud server for global aggregation
using the FedAvg algorithm (step 3). On the server-side, the
AE is aggregated (step 4), then the decoder is removed and
a Fully Connected Network (FCN) layer is attached to the
encoder layers in order to fine-tune the model parameters for
the supervised learning using a limited labeled data located
on the server (step 5 and 6). Specifically, the server uses its
limited labeled data for supervised learning, and thus unlike
the classical FL, in our case, the server is not only used
for the model aggregation but also for supervised learning.
Finally, the server sends back the global AE to the clients for
a further update as well as the trained supervised model for
inference (classification of the attacks) on the network data of
the devices (step 7). It is important to note that (i) no raw data
is exchanged between the clients and the central server, and
(ii) the supervised model is trained through domain-specific
public datasets or laboratory data located on the server without
privacy concerns.

In our federated semi-supervised learning model, the com-
putational complexity is related to the computations at each
IIoT device or client (which performs the unsupervised learn-
ing) and at the FL server (supervised learning), plus their com-
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Fig. 1: The network architecture and communication process of our Federated semi-supervised proposal for IIoT.

Algorithm 1: Learning procedure.

1: Input: Public labeled Dataset Dl = {xi, yi}
(i = 1, 2, . . . , n; xi ∈ X; yi ∈ Y ); Private unlabeled
dataset Du

k = {xi} (k = 1, 2, . . . ,K; xi ∈ Xk), R, Ec,
Es, K, rk
/* --- Server side --- */

2: Send initial global model θ = θ0 to clients
3: for i = 1 to R do
4: n= rk * K
5: for j = 1 to n do in parallel
/* --- Client side --- */

6: for ec = 1 to Ec do
7: Update local AE parameters θj using Du

j

8: end for
9: Send updated θj to the Server

10: end for
/* --- Server side --- */

11: Aggregate {θ}j=1...n with FedAvg into θ
12: Extract encoder
13: Concatenate encoder and FCNLayer into H
14: for es = 1 to Es do
15: Train H using Dl

16: end for
17: Send models θ and H to the clients
18: end for

munications. The global aggregation results in insignificant
computational costs. Thus, here we focus on analyzing the
computational complexity related to learning at each device
and the FL server. We assume that LAE and LH are the
number of layers of the AE model and supervised model,

TABLE II: List of notations used in our model.

Notation Meaning
K Total number of clients
rk fraction of the clients randomly selected from K
n The number of clients selected at each round
Ec Local clients epochs
Es Local server epochs
R Total number of rounds
H Supervised model
θ0 Initial AE parameters

respectively. For simplicity, we assume that each layer has
N neurons. The computational complexity comes from back-
propagation algorithm. To calculate new weights for each
layer, we require matrix multiplications for applying gradients,
which is the most complex part of the process. Assuming
simplest matrix multiplication algorithm, the complexity of
multiplying two matrices (with N rows and size(Du

k ) columns
into size(Du

k ) columns and N rows) is O(N×size(Du
k )×N).

Considering the training epochs and the number of layers, the
computational complexity of the AE at each client becomes
O(size(Du

k ) × Ec × LAE × N2). Similarly, the complexity
of the supervised learning on the FL server is O(size(Dl)×
Es × LH ×N2).

III. EXPERIMENTS AND PERFORMANCE
EVALUATIONS

In this section, we evaluate the performance of our model
through extensive experiments and discuss the results.

A. Data Description

To validate the effectiveness of our proposition, we used a
gas pipeline SCADA system dataset, which is a benchmark
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dataset for security research [20]. It was released by the
Mississippi State University in 2014. This dataset consists of
26 features and 1 label, the label contains eight possible values,
benign and seven different types of attacks. The possible
values for the label are presented in Table III. In addition,
as this dataset consists of different features with values in
different scales, we have standardized our data.

TABLE III: Dataset description.

Label Description # Total observations
Benign Normal traffic 61,156
NMRI Naive malicious response injection 2,763
CMRI Complex malicious response injection 15,466
MSCI Malicious state command injection 782
MPCI Malicious parameter command injection 7,637
MFCI Malicious function command injection 573
DoS Denial of service 1,837
Rec Reconnaissance 6,805

B. Experimental Setup

In this study, we split the dataset into two subsets: train
(80%) and test (20%). We use Python as a programming lan-
guage and Scikit-learn for the conventional models and
PyTorch for DL models. All experiments are run on a four-
core Intel® Core™ i7-6700 CPU@3.40GHz processor, and
32GB of RAM. Table IV summarizes the model parameters
and their selected settings in our simulations. The simulation
of a partially-labeled dataset from this fully labeled data has
been done by randomly selecting rows from the training set
and removing their labels. It is important to note that during
this experiment, we fixed the amount of labeled data and
vary only the amount of unlabeled data. As the dataset is
imbalanced (there are much more examples of some types of
attacks than others), we use the F1-score (i.e., the harmonic
mean of precision and recall) as an evaluation metric, together
with the accurracy). In addition, in our experiments, we
compute the average of the evaluation metric from five runs.

TABLE IV: Implementation parameters.

Deep Learning
Deep learning tool PyTorch
DL algorithms Autoencoder (AE)

Fully Connected Layer (FCN)
AE hidden layers 8
encoder neurons [Input, 20, 15, 10]
FCN layers 1
Activation functions ReLu (AE), Softmax (FCN)
Optimizer Adam
Learning rate 0.001
Batch size 64
Dropout 0.01
Federated Learning
FL server 1
Nb clients 100
Clients used in federated updates 10%
AE epochs (client) 20
FCN epochs (server) 100
Communication round 18

C. Performance under different factors

In this section, we study the performance (in terms of
accuracy, F1-score, and communication overhead) of the pro-
posed model under different factors, which are: fraction of
the selected clients rk, local client epochs Ec, communication
rounds R, and amount of unlabeled data.

1) Impact of the number of selected clients: Here, we
explore the impact of different numbers of clients on the clas-
sification performance of our model, while holding K fixed
(K= 100). Before training, we distribute the unlabeled data
into equally one hundred parts, meaning that each client gets
nb rows(Du)/K observations randomly. Since in real-time
situations, the probability of client failures is significant [21]
we use the Joint-Announcement Protocol (JAP) to avoid the
problem of client failure and communication overhead. Given
the ratio of clients (rk), JAP selects randomly the clients that
participate in the ith training round [18]. As shown in Table V
we evaluate the performance of our classifier under different
number of client n, where n ∈ {10, 30, 100}.

With n = 100 (i.e., the total number of clients) the
classification performance of our model degrades little. Our
model gets the best results when n = 10. This may be
attributed to the fact that a large number of clients can increase
the diversity of the AE model across the clients and degrade
the classification performance.

TABLE V: F1-score for various numbers of clients.

Ck 10 30 100
F1-score 88.14% ±0.16 88.07% ± 0.07 87.91% ± 0.24

Further, we compare the communication overhead with and
without JAP. Here we set the number of clients to n = 10 using
JAP and n = 100 without JAP. As present in figure 2, we can
notice that using JAP can reduce the communication overhead.
Specifically, in every communication round, JAP with n = 10
reduces the overhead by 90%. This demonstrates the critical
impact of the clients’ number on the FL system.

Fig. 2: Overhead of the proposed model without/with JAP.

2) Impact of the local epochs: In this subsection, we
study the performance of our model in terms of F1-score
and communication overhead using different values for the
clients’ local epochs Ec, used during the AE training (client
level). As shown in Table VI, increasing the number of
Ec = 20 improves the performance of our model. This may
be attributed to the fact that increasing the local epoch of the
AE helps to find more relevant features which, in turn, boosts
the performance of the supervised model. However, increasing
this parameter also increases the training time.

Moreover, as seen from Figure 3 the local epoch does not
only impact the classification performance of the model but
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TABLE VI: F1-score for various numbers of epochs on the
client-side.

Ec 20 5 1
F1-score 88.14% ± 0.16 88.01% ± 0.18 87% ± 0.17

also the communication overhead. Specifically, here we show
the communication overhead of our model under different
frequency updates. It can be seen that increasing the number
of local epochs in our model can decrease the communication
overhead of the FL model. For example, when Ec = 20, the
clients send only 1 time their model to the sever. However,
with Ec = 5, and Ec = 1, they send their model to the server 4
and 20 times, respectively. Therefore, since the sensors in IIoT
systems generate large volumes of data, increasing the local
epochs improves the attack classification task at the same time
it decreases the communication overhead; hence, improving
the network overall performance.

Fig. 3: Comparison in terms of communication overhead.

3) Impact of communication rounds: Here, we evaluate
the classification performance (accuracy and F1-score) of
our model under the different numbers of communication
rounds R. As presented in Figure 4, the performance of
the model increases with more interaction/round between the
server and the clients. Also, it can be seen that the model
converges quickly and its accuracy starts to be stable after 2
rounds. This may be attributed to the fact that the AE trained
on the clients provide some pre-trained layers, which capture
relevant features. However, we can see that increasing the
number of rounds does not always lead to better performance.
This is because the model can overfit with large R.

4) Impact of the unlabeled data available on the clients:
To evaluate the impact of the quantity of unlabeled data on
the model performance, we further fix the amount of labeled
data and change only the quantity of unlabeled data distributed
to the clients. To do so, we trained our model using different
ratios of unlabeled samples Ru:

Ru =
nb rows(Du)

nb rows(Dl)
(4)

Where nb rows(Dl) (resp. nb rows(Du)) represents the
amount labeled (resp. unlabeled) data.

It can be seen from Figure 5 that increasing the size of
unlabeled data improves the performance of the whole model.

Fig. 4: Classification performance under different communi-
cation rounds

These results are attributed to the fact that accessing more
(diverse) unlabeled data provides informative characteristics
to find a more discriminatory latent space and, in turn, our
model benefits from these data and boosts its performance to
classify unseen observations. Consequently, our model can fit
very well the Industry 4.0 context where unlabeled data is
often abundant and easily available.

Fig. 5: F1-score with various Ru.

D. Performance against other models

In order to further validate the effectiveness of our model,
we compare its performance against the Non-FL semi-
supervised model, different supervised models as well as some
state-of-the-art models.

1) Comparison with Non-FL model: Evaluation results of
our proposed model in comparison to the non-FL model
are presented in Table VII. With the non-FL model, the
clients/devices need to send their data to a central server
in order to train the AE and the supervised models. The
below formulas give the training process of our model and the
non-FL model where R = 18 (total communication rounds),
Ec = 20 (client AE epochs) and Es = 100 (server supervised
learning epochs). TFL (resp. TnFL) is the training process
of our FL model (resp. the equivalent non-FL version of our
model).

TFL = R× (Ec + Es) (5)
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TnFL = Ec + Es (6)

In comparison with the non-FL model, our model has the
best results in terms of accuracy and F1-score. This is because
the communication rounds help our model to improve the AE
model and in turn extract more relevant features that have been
used during the supervised model training.

TABLE VII: Performance of the proposed model against the
Non-FL model.

Metric Non-FL model Proposed model
Accuracy 95.4% ±0.34 95.84% ±0.02
F1-score 86.7% ± 0.44 88.14% ±0.16

Further, since the communication overhead is a critical
factor in the IIoT environment, we compare our model against
the Non-FL model in a such factor. Specifically, the commu-
nication overhead of both models are calculated as follows
(CFL – resp. CnFL – is the communication overhead of our
model – resp. the non-FL version of our model):

CFL = n×R× (2× size(AE) + size(H)) (7)

CnFL = size(Du) (8)

where size(Du) is the size of the private unlabeled data
exchanged between the server and the clients in the Non-
FL training, size(AE) is the size of the model located on
the client and exchanged between the client and the server in
each communication round, n is the number of the selected
clients, and R is the total communication rounds, size(H) is
the size of the supervised model distributed by the server to
client for traffic classification. It can be seen from Figure 6
that centralized learning is always expensive and thanks to
the FL, the communication overhead is reduced by 50%.
This is because the clients need to upload their unlabeled
data to constitute a central database (Equation 8) while with
our model, the clients and cloud server exchange only the
models’ parameters. In addition, since the AE compresses the
client local data this can reduce the size of the parameters
communicated with the FL server.

Fig. 6: Comparison in terms of communication overhead.

2) Comparison with supervised models: In order to eval-
uate the effectiveness of the proposed model, we compare
its performance to several supervised ML methods. It can be
seen from Table VIII that our model has a good performance
in detecting benign network traffic and the different attacks.
This is thanks to the use of deep architecture, which covers
benign and attacks patterns. Specifically, the F1-score of
benign of our model is 6%, 20%, 21%, 21%, 27% better than
AdaBoost, LightGBM, EXTree, RF, and DT, respectively. This
demonstrates that our model is more practical in the Industry
4.0 context as it will trigger fewer false alarms. On the other
hand, it achieves a greater F1-score for the classification of
the attack, except the DoS and especially with NMRI attack
and this is because the observations amount of this attack is
relatively low in the labeled set. From these experiments, we
can conclude that our model is better at covering all the attacks
at once. Also, using unlabeled data, which is often abundant
and easily available improves the classification performance.

3) Performance against state-of-the-art models: To validate
the effectiveness of the proposed model, we also compare its
performance against some state-of-the-art schemes using the
gas pipeline dataset. The experimental results of these schemes
are presented in Table IX and they include a simple model with
fully labeled data [22], DL-based ensemble model using fully
labeled data [23], a semi-supervised model without FL [24],
and a supervised ensemble FL scheme [11]. Note that we
have selected these works because of their variety. Anton et
al. [22] used SVM for intrusion detection. Huda et al. [23]
proposed an ensemble Deep Belief Network (DBN) model
for attack classification. In particular, different structures of
DBN are combined to construct an ensemble of DBNs and
the final classification is decided based on a majority voting
scheme. Also, Chang et al. [24] proposed an ensemble semi-
supervised model using the k-means and convolutional au-
toencoder (CAE) methods. Using this ensemble, the test data
is predicted as normal only if the predicted outputs of k-means
and CAE methods are normal. Recently, Li et al. [11] proposed
a novel FL model, called DeepFed. DeepFed is an ensemble
model that trains CNN and GRU in a federated way to detect
the attacks.

We can observe from Table IX that the intrusion detection
model based on FL including our model and DeepFed
scheme [11] incur the best results. This is due to the com-
munication round that improves the performance of traffic
classification to some extent. More specifically, although our
model uses a few amounts (only 25%) of labeled data during
the training task, it still achieves a competitive accuracy as
compared with DeepFed. Moreover, with our approach, the
clients only train the AE model, which in turn is a less complex
model as compared to the CNN-GRU models used with the
DeepFed scheme. Note that a fair comparison for our model
will be to compare it with only semi-supervised schemes.
Nonetheless, we include some fully supervised schemes in our
comparison for reference.

4) Experiments on the second dataset: We have also tested
our model against its non-FL version on the second dataset,
which is also an open dataset and has been released by
Mississippi State University’s lab in 2014 [20]. The traffic
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TABLE VIII: F1-score comparison of our model vs. supervised models for the identification of normal vs. attack traffic.

Model Benign NMRI CMRI MSCI MPCI MFCI DoS Rec
DT 0.70 0.32 0.94 0.94 0.97 0.98 0.98 1
RF 0.76 0.38 0.96 0.95 0.97 0.98 0.98 1
EXTree 0.76 0.49 0.92 0.95 0.95 0.97 0.87 1
AdaBoost 0.91 0.89 0.92 0.93 0.95 0.97 0.96 1
LightGBM 0.77 0.50 0.96 0.96 0.97 0.99 0.95 1
Proposed model 0.97 0.20 0.96 0.97 0.98 0.99 0.97 1

TABLE IX: Overall performance analysis of the proposed
model with existing schemes.

Type Ref. FL Accuracy Precision Recall

Supervised
[22] 92.5 78.2 93.6

[23] 95.6 85.36 85.53

[11] 3 99.20 98.85 97.45

Semi-supervised
[24] 95.53 95.43 83.52

Our model 3 95.84 97.89 87.15

in this dataset corresponds to the water storage tank control
system and consists of 23 features. The label contains eight
possible values, benign and seven different types of attacks,
same as the gas pipeline dataset.

From the simulation results presented in Table X and
Figure 7, we can see that our model performs better than
the non-FL model in terms of accuracy, F1-score as well as
communication overhead.

TABLE X: Performance of the proposed model against the
Non-FL model.

Metric Non-FL model Proposed model
Accuracy 90.41 ±0.24 90.73 ±0.08
F1-score 85.99 ±0.34 86.41 ±0.09

Specifically, the improvement in terms of communication
overhead becomes more significant with this dataset (reduction
by almost 75%), as it contains more traffic than the gas
pipeline system and hence sending row data to the central
entity becomes more expansive. This shows that our model is
suitable for a real IIoT scenario because industrial machines
and robots can generate tremendous amounts of traffic.IV. DISCUSSION

In this study, a semi-supervised FL model is proposed for
attack and intrusion detection for the Industry 4.0 environ-
ment that makes use of both unlabeled and labeled data.
We have analyzed the impact of the different parameters on
the performance of the proposed model. First, the evaluation
demonstrates that this model performs well even with a limited
amount of labels. It automatically provides feature extraction
without human intervention and avoids time-wasting for la-
beling data as maximum as possible. Second, communication
overhead, storage requirements have been reduced thanks to
the use of FL. Also, we have demonstrated that the local
epochs and the clients’ selection process play a critical role in
communication overhead improvement. Third, using joint an-
nouncement protocol addresses the problem of communication

Fig. 7: Comparison in terms of communication overhead.

overhead and the failure of some clients as well as alleviates
the out-of-sync issue. Therefore, the communication overhead
can be reduced by reducing the number of the selected clients
n, reducing the frequency model update using a large number
of local client epochs Ec. In addition, taking the advantage of
FL our model solves the dilemma of data sharing.

Last but not least, to show the features of our model, we
have compared our model against its Non-FL setting, some
state-of-the-art models including, simple, ensemble, semi-
supervised, and FL models. Also, we applied our model on
a second dataset and evaluated its performance in terms of ac-
curacy, F1-score, and communication overhead. The presented
results show that our model achieves higher classification
with less communication overhead as well as without privacy
concerns.

Limitations of proposed scheme
Although our model uses the joint-announcement protocol,

the random client selection can increase the training time
and communication cost due to the clients who become
stragglers. To handle these issues, more intelligent client
selection algorithms are needed. One idea could be to use
reinforcement learning, which can be a promising solution,
to learn client selection based on the learning performance.
Also, as our model still need labels in future research, we
can investigate the fully unsupervised FL model by looking at
the AE reconstruction error. Finally, to ensure a secure model
transmission, we can use some mechanisms such as differential
privacy [25] or blockchain [26].

V. CONCLUSION

In this paper, a federated semi-supervised learning model
has been proposed. This model uses a limited amount of
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labeled data and a huge amount of unlabeled data without
privacy concerns. Also, unlike the classical FL model, with our
model, the server is not only used for the model aggregation
task, but also for supervised learning. The proposed model has
been evaluated in terms of its ability to identify the network
traffic and different attacks. Moreover, we have analyzed the
performance of our model while varying different factors.
Using two real datasets, the experimental results demonstrate
that the support of unlabeled data for the training process
can enhance the performance of the learned model as well
as decrease the communication overhead. Also, our numer-
ical simulations showed that the proposed federated semi-
supervised model with only 25% labeled data can achieve
competitive results, compared to the state-of-the-art schemes.
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