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ct

aper reports a numerical study of the sensitivity and applicability of the Nonlinear Coda Wave Interfero
I) method in a heterogeneous material with a localized microcracked zone. We model the influence of a
wave on the localized microcracked zone as a small average increase in the length of each crack. F
g of this microcracked zone with a multiply scattered ultrasonic wave induces small changes to the cod
which are quantified with coda wave interferometry. A parametric sensitivity study of the CWI obser
spect to the changes in crack length is established via numerical simulations of the problem using a 2D sp
t method (SEM2D). The stretching of the signal, proportional to the relative variation in effective veloc
to be linearly proportional to the global change in crack length, while the other CWI parameter, the re
lation coefficient, is found to be quadratically proportional to the crack length change. The NCWI met
to be relevant for the detection of different damaged material states in complex solids. The reported num
are especially significant in the context of quantitative nondestructive evaluation of micro-damage leve
eneous materials using nonlinear ultrasound signals.

rds: Nonlinear Coda Wave Interferometry (NCWI), Numerical modeling, Nonlinear acoustics, Spectral
t Method (SEM)

oduction

nlinear ultrasonic testing methods are known to exhibit a high sensitivity to the presence of microcrack
amage detection in complex materials [1, 2, 3, 4, 5], whereas conventional linear ultrasonic methods are
ss sensitive but sometimes more quantitative, such as with single cracks in homogeneous samples. Sign

classical nonlinearity, in particular, are very promising for nondestructive testing (NDT) in different dom
osciences [6, 7] and medical imaging [8, 9]. The elastic behavior of highly heterogeneous materials su

te, rock, sand, and soil exhibit strong nonlinearities, particularly nonclassical ones in the form of tappin
oustic nonlinearities [10, 11, 12, 13, 14], hysteresis in the stress–strain relation [15, 16, 17, 18], slow dyna
crete memory [2, 6, 19, 20]. Such nonclassical nonlinearities are closely related to the presence of in
ontacts which might result from material damage, such as microcracks [21, 22, 23, 24].
its advantageous sensitivity in detecting early stage damages and micro-damages, nonlinear ultrasonic
s have been actively studied and reported in the last decades, e.g. harmonic generation [25, 26], non

nce method [27, 6, 28], nonlinear modulation, acousto-elasticity, and dynamic acousto-elasticity metho
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32]. It’s then pointed out that, when these methods are utilized to analyze nonlinear phenomenon that
stemming from the classical potential atomic nonlinearity leading to a quadratic or cubic stress–strain rel
ey exhibits a particular sensitivity to mesoscopic features of the propagation medium such as micro-cra

contatcs [33]. Compared with the effects from such nonclassical nonlinearity, ones that are from the backg
al nonlinearity can be even neglected, leaving only the effects caused by the presence of microdamage/d
bserved, which is undoubtedly of great interest for nondestructive testing applications.
this study, using numerical simulations, we advance the understanding of how the results of a specific non
nic method depend on the presence and features of localized cracks in a highly heterogeneous medium
, called Nonlinear Coda Wave Interferometry (NCWI), is a combination of the nonlinear modulation m
studied in the context of characterizing and detecting material damage [34, 6], and the coda wave interf

5, 36], which is suitable for monitoring multiple scattered waves in complex media. A generated ultr
s multiply scattered in a heterogeneous solid, repeatedly probes a whole region of space, and is then detec
lasting signal corresponding to the summed contributions of wave trans resulting from many scattering
iving from many different propagation paths, a so-called coda signal. This type of complex signal is very
small changes in the propagation medium [37, 38, 39] and can be efficiently analyzed via cross-correlatio
ence signal (the basis of coda wave interferometry, or CWI) [40, 41]. By further applying a lower freque
dium at various amplitudes (pump wave), one can monitor the induced changes to the coda signals, pha
rm in particular, and deduce the level of related elastic nonlinearity, leading to NCWI.

is method, first applied to cracked glass samples [42], has been tested in various configurations, such as cr
samples [43] and damaged concrete samples.[44] Numerical simulations in configurations related t
have also been carried out with the spectral element method[45] in a 2D configuration, where the

ters of a zone of the reverberating (or multiple-scattering) domain were slightly changed in order to e
sequent effects on the NCWI observables [46]. More recently, we numerically explored some of the

I regarding the elasticity change assumed to be generated by a pump wave, the distributed damage, a
ing role of a collection of cracks [47].
the present article, we report results on the influence of small changes applied to a collection of crack
e how these changes are manifested in the NCWI observables. Localized random arrangements of c
cally modeled as thin segments exhibiting stress-free boundary conditions, are assumed to be modifie
e, due to the pump wave action: the effective length of each crack is changed by a given amount for a given
mplitude. Simple dependencies of crack length change with respect to the NCWI observables are iden
se are of potential interest for a more quantitative nondestructive evaluation of complex materials by ultra
.

deling and numerical simulation

our previous study [46], the corresponding nonclassical nonlinear phenomena was modeled in an eff

r: the influence of a strong pump wave on a localized damage was modeled by a change in the elastic prop
the Young’s modulus and the attenuation coefficient, which were chosen to be homogeneous over an eff

ed zone (EDZ). To further advance our understanding, a considerably more realistic model is utilized
t study: the localized damage in a heterogeneous propagation medium is materialized with a cluster of

individually modeled as high-aspect-ratio inclusions characterized by stress-free boundary conditions.
depicted in Figure 1, our 2D propagation medium is a 200 mm × 200 mm matrix. In a circular area ce
mm, 140 mm) (top-right corner), identical cracks are placed within at random, i.e. at random location
orientations, to simulate the material damage. In this sample medium, linear heterogeneity is introduc

empty holes to the matrix [48]: a given number of inclusions (circular voids with a diameter of 10 mm
ly placed in the matrix leaving a surface filling ratio of about 12.8%. The cracks are modeled using h

i with a fixed size of 10 mm × 0.01 mm, the corresponding aspect ratio (103) being in line with that of
ed in rock materials [49]. The propagation medium is made of glass, of which mechanical properti
d in Table 1. The area surrounding the propagation medium, including the inside of the cracks, is conside
to maximize the contrast of acoustic impedance, and hence the reflection coefficient, at all boundary sur

mage degree is modeled by the number of cracks Ncrack: six values ranging from 1–20 are considered
as shown in Figure 1. Five configurations of disorder are created for each damage degree with the same
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Figure 1 ). Each
model c 0 mm ×
0.01 mm

Journal Pre-proof
(a) 1 crack (b) 4 cracks (c) 8 cracks

(d) 12 cracks (e) 16 cracks (f) 20 cracks

: Numerical configurations of damaged material with random cracks localized in a circular EDZ, centered at (155 mm, 140 mm
ontains a different number of cracks, ranging from 1–20. The matrix size is 200 mm × 200 mm. The crack size is initially set to 1

and their orientation is random. The source position is at (50 mm, 200 mm).
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ck, i.e. all Ncrack cracks are relocated and repositioned randomly. For simplification purpose, no inter
n inclusions is assumed, i.e., linear or nonlinear, inclusions do not overlap.

Glass - properties
Young’s

modulus (E)
[GPa]

Poisson’s
ratio (ν)

Mass density
(ρ) [Kg.m−3]

P-wave
velocity (vP)

[m.s−1]

S-wave
velocity (vS )

[m.s−1]
69 0.25 2500 5755 3323

Table 1: Numerical model properties used in the simulations.

merical simulations of probe wave propagation were performed using the 2D spectral element method (SE
ch wave fields are expressed in terms of high-degree Lagrangian interpolations and integral calculatio
on the Gauss–Lobatto–Legendre quadrature. The propagation medium is meshed with quadrangle cells

SH software [50]. Taking into account the complexity of quad meshing, the calculation costs, and the
in the working frequency range, the maximum cell size was set to be 5 mm outside the damaged zone
ed zone was meshed with refined cells to adapt to the size of the cracks. No meshing was applied in the
the inclusions and cracks, as these are considered to be voids. A mesh example for a propagation m
ing 20 cracks is shown in Figure 2.

S

R

(a) (b) (c)

: An example mesh for a heterogeneous model with 20 cracks of random orientations. Each crack is modeled by one void cell, and
acks is 10 mm×0.01 mm. The blue lines represent the contour of the matrix, the EDZ, and the cracks. The matrix size is 200 mm×2
circular EDZ center is located at (155 mm, 140 mm). The source position is (50 mm, 200 mm). (a) Mesh of the global configurat
d view of the meshed EDZ; (c) Magnified view of one crack corresponding to the square in (b).

simulate the application of NCWI to the modeled propagation medium, both pump waves and probe wav
ciple, required. The propagation of the ultrasonic probe wave was simulated directly by sending a 0.2-m
ignal with a frequency band of [200 kHz, 800 kHz] through an acoustic point source placed at (50 mm, 20
-a) on the border of the domain. Synchronized with this emission, the displacement at (200 mm, 20 mm) (F
the subsequent 2.5 ms was extracted as the recorded probe signal. The presence of pump waves was acco
s straightforwardly, through its known impact on cracks: a small effective increase in the crack length.
ing a potential NDT method, NCWI aims for detecting damages at an early stage, which is often form
micro-cracks that are closed or partially closed [43, 44]. Assuming an elastic material and a symm
wave signal, the local stress generated is then symmetrical, i.e. the compressional and tensile stress
mplitude shifts periodically. In the case of an open crack, although such stress fluctuation will have its
ntinuously, but on average, its effective length over many pump wave periods remains unchanged. O
and, a closed crack will only respond to the tensile stress, which leads to an increase in its effective l
partially closed is considered as the combination of the two, its effective length will be increased unde

wave excitation. Therefore, due to the asymmetry in the response of cracks (closed or partially clos
p wave, which could be further aggravated in the case of a certain material (e.g. concrete, whose eff
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s in traction is only 1/3 of that in compression), its average effect will be a slight increase of crack’s eff

Assuming that the pump wave energy is homogeneously distributed over the damaged zone [51], the ch
k’s effective length ∆Lcrack/Lcrack were considered to be identical for all cracks. Relative to the reference
∆Lcrack/Lcrack = 0 due to the absence of the pump wave, four nonzero pump wave levels were consi
onding to ∆Lcrack/Lcrack values of 0.4%, 0.8%, 1.2%, and 1.6%, i.e. relatively small changes in crack len
be signals recorded in medium containing four cracks and 20 cracks are shown in Figures 3-a and 3
ely. These signals exhibit typical features shared by multiple scattered waves, and are highly similar to
d experimentally from reverberating medium [42, 52, 53]. The blue signals correspond to the reference
h the pump wave is absent (∆Lcrack/Lcrack = 0), while the green signals correspond to the state with the

pump wave level (∆Lcrack/Lcrack = +1.6%). Magnified views of the same signals are presented in the
, providing details of the signals within two narrow time windows. Note that the overall change of propa

(geometric length of the cracks) triggered by the pump wave has only a slight effect, as no differenc
ally distinguished in the earlier time window (zoom-1). In the later time window (zoom-2), which a
vely contains coda waves that have been multiply scattered, the differences become more distinguishabl
difference can be more clearly observed in Figure 3-b, which illustrates a more severe damage degree. T
ement with previous experimental results [51].

(a) (b)

: Examples of temporal signals for the model with (a) four random cracks and (b) 20 random cracks. The blue lines correspon
e model with no change in the crack length (∆Lcrack/Lcrack = 0), whereas the green lines correspond to the model with an effective
lengths (∆Lcrack/Lcrack = +1.6%), assumed to originate from the pump wave action.

WI results

different damage degrees, indicated by the crack number Ncrack ∈ [1, 4, 8, 12, 16, 20], were studied
ing five different disorder arrangements. In total, 30 different material configurations were numerically
. For each material configuration, five increasing ∆Lcrack values were considered (assumed to be equi
pump wave amplitudes), and the CWI analyses were performed using the stretching method. By com
obtained with the effect of pump waves (∆Lcrack > 0) to those obtained in the reference state (∆Lcrack

a given time window, CWI results were obtained as the effective velocity variation θcoda and the remnant
coefficient Kd. The time window for CWI analysis should be carefully selected, the sensitivity kernel o

within should be stable and able to cover the probing area effectively[54]. Choosing a compromise be
lysis robustness and the calculation costs, the time window [1.5 ms, 2 ms] was selected [46].
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e obtained CWI results are plotted against ∆Lcrack/Lcrack in Figure 4, where the average values and sta
on were obtained from the five different disorder arrangements. In Figure 4-a, from top to bottom, w
ith increasing ∆Lcrack/Lcrack obtained for six progressively increasing damage degrees. Each circle repr
rage of five θcoda values obtained from five material configurations at the same damage degree and for a
/Lcrack. The corresponding standard deviation is shown with error bars. The dashed line in Figure 4-a
t-fit linear regression, with the fitting quality estimated by the coefficient of determination R2. As the
ence is clear and R2 > 0.9 for all cases, the linear relation connecting θcoda with ∆Lcrack/Lcrack can be w
ws, with the slope denoted by αL

θ :

θcoda = αL
θ ·

(
∆Lcrack

Lcrack

)
.

sults for Kd are plotted in Figure 4-b in a similar manner, the only difference being that the dashed li
the best-fit of a quadratic regression. With the fitting quality remaining highly satisfactory, Kd is rela
/Lcrack with a quadratic relation (Eq. (2)) in which the quadratic coefficient is denoted by αL

Kd:

Kd = αL
Kd ·

(
∆Lcrack

Lcrack

)2

.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
L/L(%)

-0.015

-0.01

-0.005

0

 (
%

)

N
crack

=01;R2=0.93

N
crack

=04;R2=0.96

N
crack

=08;R2=0.99

N
crack

=12;R2=0.99

N
crack

=16;R2=0.99

N
crack

=20;R2=1.00

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
L/L(%)

0

2

4

6

8

10

12

14

kd
 (

%
)

N
crack

=01;R2=0.93

N
crack

=04;R2=0.92

N
crack

=08;R2=0.95

N
crack

=12;R2=0.97

N
crack

=16;R2=0.99

N
crack

=20;R2=0.97

(b)

: CWI observables versus changes in the crack length (∆Lcrack/Lcrack). For each fixed number of random cracks (N
2, 16, 20]), five numerical models were used. (a) Relative variation in velocity θcoda versus ∆Lcrack/Lcrack; (b) Remnant decor
nt Kd versus ∆Lcrack/Lcrack .

shown in Figure 4-b, the standard deviation of Kd increases significantly as the crack density rises,
that slightly different CWI observables are obtained from different configurations of crack disorder, an
alues differ more from one configuration to another at larger crack densities. This observation may arise
t that the scattering mean free path is shorter for the configurations with large crack density. The correspo
are consequently subjected to more scattering events, leading to a higher influence of the disorder-sp
ration. Regardless, the influence of the crack disorder configuration is much less important than the
on these results.

e parameters αL
θ and αL

Kd are related to the elastic nonlinearity of the propagation medium, or, in other w
susceptibility of the material to a pump wave. As the elastic nonlinearity stems from the presence of c
are assumed to be identical in this study, it is interesting to plot αL

θ and αL
Kd versus the number of cracks

5 illustrates the dependence of these parameters on the damage degree Ncrack. As shown in Figure 5, a
tionality between αL

θ and Ncrack (dashed line) has a very high fitting quality. This is consistent with pre
ental results: applying NCWI to mortar samples at different damage levels, the nonlinear parameter rela

orted to be linearly correlated to the damage level characterized by the size (volume) of a single penet
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N

crack

0
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L kd
-0.01

-0.008

-0.006

-0.004

-0.002

0

L

L
kd
L

R2=0.996

R2=0.997

: Slopes of CWI observables with crack length changes versus crack density Ncrack . For each fixed number of random cracks (N
2, 16, 20]), five numerical models were used. For each group of models, five crack disorder arrangements were considered i

late the mean value of αL
Kd (red pentagram) and αL

θ (blue square), their slopes versus crack density Ncrack are obtained with lin
c regression and illustrated with dash-dot line and dashed line, respectively.

rack [43].

θcoda = α
∑

L
θ ×


∑

Ncrack

∆Lcrack

Lcrack



= α
∑

L
θ ×

(
∆Lcrack

Lcrack
× Ncrack

)
.

m this empirically obtained linear dependence, the linear relationship between the effective velocity a
ength is expressed by Eq. (3). Similarly, according to Figure 5, a quadratic dependence between αL

Kd a
ensity Ncrack can be observed as the dash-dot line, providing a relation between the remnant decorre

ient Kd and the total change in crack length:

Kd = α
∑

L
Kd ×


∑

Ncrack

∆Lcrack

Lcrack


2

= α
∑

L
Kd ×

(
∆Lcrack

Lcrack
× Ncrack

)2

.

en an incident wave impinges on an obstacle in a propagation medium, it is forced to deviate from its c
ation trajectory and redistributes its energy in different directions. Such an obstacle is referred to as a sca
ability to modify the incident wave is generally quantified by its elastic scattering cross-section σ [55].
the maximum variation of crack length was 1.6% for an initial length of 10 mm, i.e. a maximum variat
. For such small relative variations, a linear relationship between the scattering cross-section and the
can be assumed.
homogeneous and linear viscoelastic equivalent effective medium, the inverse quality factor Q−1 is deter
average scattering cross-section 〈σ?〉 and the density of defects N [56]: Q−1 ∝ N × 〈σ?〉. Becaus
ted to the average scattering cross-section, the inverse quality factor should be linearly related to the
variations in the damaged material: Q−1 ∝ ∑

∆Lcrack/Lcrack. A quadratic relation between Kd and the c
ffective attenuation coefficient ∆Q−1 was reported in our previous numerical study [46]. As such, the re
lation coefficient Kd should vary quadratically with the length variations ∆Lcrack/Lcrack. This assump
ed numerically by Eq. (4), where Kd ∝ (

∑
∆Lcrack/Lcrack)2. Note that this dependency also match

t interpretations in this field, invoking quadratic hysteresis, as in the experiment of Zhang et al.[42]: ind
tic relation between Kd and the pump wave amplitude has been observed (Kd ∝ A2

pump).
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e of a reverberating medium

complete this study on the sensitivity of crack length using the NCWI method, the same parametric inve
NCWI for crack length change was established for a homogeneous matrix with six cracking levels.

e general trends of the observables (θ,Kd, αL
θ , α

L
Kd) in this homogeneous reverberating medium (Fig. 6 a

same as for the highly heterogeneous medium (Figs. 4 and 5). The relations between the CWI obser
and the global crack length (Eqs. (3) and (4)) are thus validated for a multiple scattering medium as w
verberating medium. The scattering events mainly occur at the reflection with the medium boundaries
rating case: the scattering mean free path is therefore larger than in the previous case of multiple scatter
ted heterogeneities. As a consequence, and considering that the same time window is analyzed in each
I observable values are smaller in the reverberating case. The addition of disorder improves the sens

method. Overall, the proposed method is rather robust to the medium configuration, be it a homoge
rating material or a heterogeneous material.
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: CWI observables versus changes in crack length (∆Lcrack/Lcrack) for the reverberating medium. For each fixed number of
Ncrack ∈ [1, 4, 8, 12, 16, 20]), six numerical models were used: (a) Relative variation in velocity θcoda versus ∆Lcrack/Lcrack; (b) R
ation coefficient Kd versus ∆Lcrack/Lcrack .
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N. Eiras, Q. A. Vu, M. Lott, J. Payá, V. Garnier, C. Payan, Dynamic acousto-elastic test using conti

robe wave and transient vibration to investigate material nonlinearity, Ultrasonics 69 (2016) 29–37.
. A. Guyer, P. A. Johnson, Nonlinear Mesoscopic Elasticity, Wiley-VCH, 2009.
. Buck, W. L. Morris, J. M. Richardson, Acoustic harmonic generation at unbonded interfaces and f

racks, Appl. Phys. Lett. 33 (5) (1978) 371–373.
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