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Abstract:   1 

 2 

While the grape has been classified as a non-climacteric fruit whose ripening is 3 

thought to be ethylene independent, we show here that a transient increase of endogenous 4 

ethylene production occurs just before veraison (i.e. inception of ripening). We observed that 5 

ethylene perception, at this time, is required for at least the increase of berry diameter,  the 6 

decrease of berry acidity and  anthocyanin accumulation in the ripening berries; these latter 7 

experiments were performed with 1-methylcyclopropene, a specific inhibitor of ethylene 8 

receptors. The potential roles of ethylene in berry development and ripening are discussed.  9 

 10 

Keywords:  grapes, Vitis vinifera, ethylene, ripening, non-climacteric 11 

 12 

Abbreviations:  1-MCP,  1-methylcyclopropene;  ACC, 1-aminocyclopropane-1-carboxylic 13 
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1.  Introduction 1 

 2 

Three facts led us to check the influence of endogenous ethylene and active receptors 3 

in development and ripening phases of grape berries: (i) earlier observations showing that 4 

grape ripening can be either inhibited or promoted by exogenous ethylene, depending on the 5 

application time over the berry development period (Hale et al. 1970); (ii) the observation of a 6 

peak of ethylene production around veraison (Alleweldt and Koch, 1977), and (iii) the 7 

availability of 1-methylcyclopropene (1-MCP), a specific inhibitor of ethylene receptors 8 

(Blankenshiep and Dole, 2003). 9 

Although in the 1970's ethylene was thought to have a very limited role, if any, in the 10 

ripening process of non-climacteric fruit (Coombe and Hale, 1973; Abeles et al., 1992), more 11 

recent works have revealed that some aspects of non-climacteric ripening may be associated 12 

with ethylene responses (Giovannoni, 2001).  The classification of grapes as non-climacteric 13 

fruit was mainly due to a set of data showing only weak changes in endogenous ethylene 14 

levels  around veraison (Coombe and Hale, 1973), a development stage at which grape berries 15 

start to loose their acidity and to redden, in the case of red cultivars, among other biochemical 16 

changes.  Indeed, Coombe and Hale (1973) and Alleweldt and Koch (1977) found that the 17 

amounts of endogenous ethylene produced by grapes were quite small when expressed as a 18 

concentration per volume of internal gas (less than 0.5 µl.l-1), but when expressed as a 19 

concentration per weight of tissue, then an ethylene burst was clearly observable around 20 

veraison (Alleweldt and Koch, 1977).  However in this latter study, the peak was made of one 21 

point only (one date at which the ethylene production rose), and the fruit was incubated for 22 

one hour under partial vacuum, an excessive period of time over which some of the ethylene 23 

collected could be a part of plant responses to vacuum. 24 

 25 



 4 

2. Materials and methods 1 

 2 

2.1. Plant material and 1-MCP treatments 3 

 Cabernet sauvignon grapevines are grafted on 110 Richter rootstocks and grown in 4 

Toulouse, South-West of France, in a non-irrigated vineyard. The observations were 5 

performed over two consecutive years; the full bloom occurred around mid-June. The 1-MCP 6 

was applied at various times following full bloom, for a 24 hour period, in a polyethylene bag 7 

wrapped around the cluster, at an initial concentration of 4 µl.l-1. Control clusters were 8 

wrapped into plastic bags for 24 h. For these experiments, clusters growing in a shaded area 9 

of the vines were chosen to avoid direct exposure to sunlight and overheating associated with 10 

such a treatment. After the 24 hour periods of treatment, the clusters were sampled and 11 

assayed immediately for ACO activity and juice acidity or stored at -80°C. 12 

 13 

2.2. Measurement of internal ethylene 14 

 The internal ethylene was assessed according to Coombe and Hale (1973). Briefly, 15 

control whole clusters that had not been incubated in plastic bags, weighing a total of 150 g 16 

approximately, were placed in a bowl filled with a NaCl solution at saturation, under an 17 

inverted funnel with an exhaust blocked by a rubber septum. The air remaining in the funnel 18 

exhaust was taken out with a syringe. Then the bowl was incubated under a partial vacuum of 19 

-700 mm Hg for 5 min, in a freeze-dryer chamber. After returning to atmospheric pressure 20 

one ml of the internal atmopshere caught in the funnel under the septum was sampled with a 21 

syringe and injected in a gas chromatograph.  22 

 23 

 24 

 25 



 5 

2.3. Assay of ACO activity and ACC content 1 

 The in vivo ACO activity was assayed using one gram FW of berry halves for 1.2 ml 2 

of in vivo buffer described by Pretel et al. (1995), with the following modifications: Tris-HCl 3 

0.5M, pH 7 and mannitol 0.35 M. The berry content of 1-aminocyclopropane-1-carboxylic 4 

acid (ACC) was assayed according to Mansour et al. (1986). 5 

 6 

2.4. Northern blot analysis 7 

 Northern blots were performed according Boss et al. (1996). The corresponding 8 

cDNA probe was obtained from genomic grape DNA using sequences with GenBank 9 

accession number AY211549. The probe matched a 255 bp sequence of the coding region at 10 

the 3' end.  11 

 12 

2.5. Assessment of berry growth, acidity of the juice and anthocyanin content of the skin 13 

The diameter was assessed using callipers as described by Coombe (1992). The 14 

titratable acidity of the juice was measured with 0.1 N NaOH up to pH 7. The total 15 

anthocyanin content was assayed according to Boss et al. (1996), and converted to malvidin-16 

3-glucoside equivalents using a ε of 28,000 Mol-1.cm-1 at 520 nm (Souquet J.M., pers. 17 

comm.).  18 

 19 

2.6. Statistical analysis 20 

In order to determine the LSDs at the 0.05 level, analyses of variance were performed 21 

with SigmaStat (SPSS Inc., Chicago, IL). 22 

 23 

 24 

 25 
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3.  Results and Discussion 1 

 2 

3.1 Ethylene production in developing berries 3 

 In our observations (Figure 1a), we confirmed the occurrence of this ethylene peak 4 

in Cabernet Sauvignon grape clusters (Vitis vinifera, L.) and observed the rise in ethylene 5 

production over more than one date (weeks 6, 7 and 8), using only five minutes of gas 6 

collection under vacuum.  This peak represents a concentration around 0.2 µl.l-1, which is 7 

above the physiological threshold in most plant tissues (Abeles et al., 1992). In the same 8 

grapes, we monitored in vivo activity (Figure 1a) and transcript accumulation (Figure 1b) of 9 

an 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), the last enzyme in the ethylene 10 

production pathway, and both matched the occurrence of the ethylene peak. Additionally, the 11 

pre-veraison ethylene peak was observed over two consecutive years, in irrigated and non-12 

irrigated Cabernet Sauvignon vineyards, one with 110 Richter and the second with 3309 13 

Couderc rootstocks. However, the peak was more or less advanced depending on the climatic 14 

conditions of the preceding month in each year (data not shown), and we reproduce here the 15 

data of one year only. Additionally, the content of total 1-aminocyclopropane-1-carboxylic 16 

acid (ACC), the immediate precursor of ethylene, including conjugated and free forms, 17 

reached levels that were 20 times higher than those of the free form alone (Figure 1c). This 18 

means that most of the ACC was malonylated, and suggests that in grapes the competition for 19 

ACC between ACO and ACC malonyl transferase described previously (Mansour et al., 20 

1986), is in favour of the latter. The levels of total ACC reached approximately 5 nmoles of 21 

per gram of fresh weight at veraison, 1000 times greater than the levels of ethylene 22 

production, suggesting that the ACC production was not limiting. This high ACC content in 23 

grapes had already been noticed in a previous work (Mizutani et al., 1988). The slight delay 24 

between the ethylene peak (week 7) and the ACC peak (week 8) can be explained by the time 25 



 7 

necessary to the berry tissues to accumulate high levels of ACC. The decrease in ACC levels 1 

per gram of fresh weight at weeks 9 and 10 can be explained by the restart of berry growth 2 

after veraison (Coombe and McCarthy, 2000). 3 

 4 

3.2. Importance of the ethylene perception on the berry physiology 5 

In order to check whether this temporary rise in ethylene production has some 6 

physiological importance on grape ripening, we blocked ethylene receptors with 1-MCP at 7 

different times around the expected ethylene peak (i.e. 5 to 9 weeks after full bloom). 1-MCP 8 

is a gas at ambient temperature and atmospheric pressure; it has been described as an 9 

irreversible inhibitor of ethylene receptors, with an affinity for the receptors 10 times greater 10 

than that of ethylene (Blankenshiep and Dole, 2003). 11 

As shown in Figure 2a, we observed that application of 1-MCP delayed the increase of 12 

berry diameter. This delay was correlated to the application of 1-MCP at the time of the 13 

ethylene peak (Figure 1a). According to Coombe and McCarthy (2000), at the beginning of 14 

the second growth phase, berry growth is mainly linked to phloem fluxes, but it is not 15 

excluded that some sap comes from xylem tissues. The roles of ethylene on these fluxes are 16 

not well described in the literature. However the ethylene seems to have a role in cell 17 

enlargement (Sanchez-Calle et al., 1989; Camp et al., 1981). This role could explain the 18 

limitation of diameter increase due to the blockage of ethylene receptors by 1-MCP.  19 

Additionally, the results of Figure 2b suggest that ethylene may affect the acidity 20 

decrease that is a feature of the post-veraison period of  grape ripening. Grapes treated with 1-21 

MCP at 6, 7 and 8 weeks after full bloom had higher acidity levels than untreated controls 22 

when harvested at 13 weeks post bloom. The strongest MCP effects were seen for treatments 23 

that corresponded with the timing of the endogenous ethylene peak. At this time of berry 24 

development, the decrease in juice acidity is explained mainly by the decrease of the malic 25 



 8 

acid concentration (Ollat et al., 2002). This decrease can be itself induced by ethylene as part 1 

of the increased respiration known to be triggered by this phytohormone even in non-2 

climacteric tissues (Abeles et al., 1992). Indeed, Saulnier-Blache and Bruzeau (1967) showed 3 

that several grape cultivars underwent an increase in CO2 evolution at veraison that could be 4 

part of a respiratory burst. It was associated to a lesser extent with a rise in O2 uptake. This 5 

respiratory rise lasted for at least a fortnight following veraison (after which the 6 

measurements were stopped), and it seems to match the period of acidity drop of the berry 7 

juice. Other authors have suggested that malic enzyme could also be activated at veraison and 8 

be part of malate catabolism (Ollat et al., 2002), and this enzyme has also been shown to be 9 

inducible by ethylene in ripening fruit (Mamedov et al., 1997). Moreover, the transport of 10 

organic acids within cell compartments is obviously involved in acid metabolism (Terrier and 11 

Romieu, 2001) and this transport may be modulated by ethylene signals (Schmidt et al., 12 

2003). However, it cannot be ruled out  that the sustained acidity (Fig. 2b) could  simply 13 

result from the inhibited fruit expansion (Fig. 2a). 14 

Finally, 1-MCP was also shown to transiently inhibit anthocyanin accumulation in 15 

berry skins (Figure 2c). Again this inhibition was stronger when the 1-MCP was applied at the 16 

time of the ethylene peak. This is less surprising, as the expression of several enzymes of the 17 

anthocyanin pathway (Robinson and Davies, 2000) can be induced by ethylene signals (El-18 

Kereamy et al., 2003). It is also possible that impaired fruit expansion might have an effect on 19 

other signals leading to anthocyanin synthesis and accumulation, i.e. sugar levels (Vitrac et 20 

al., 2000). Indeed, it is known that sugar accumulation in berries starts around veraison and is 21 

linked to phloem unloading (Coombe and McCarthy, 2000).   22 

Such 1-MCP experiments have been conducted over two consecutive years and similar 23 

results have been observed. The results presented here are the data set of a single year, 24 

because the time at which the sensitivity to 1-MCP is maximal depends on the climate in the 25 
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month following bloom, that also impacts on the ethylene peak. In these experiments (Figure 1 

2), the berries were picked a few weeks before harvest as we noticed in preliminary trials that 2 

treated grapes can overcome the 1-MCP inhibition of ripening as time goes by, may be 3 

through de novo synthesis of ethylene receptors.  4 

 5 

Our observations regarding the role of internal ethylene in modulating some  6 

metabolisms associated with berry development and ripening in grapes, confirm what other 7 

researchers observed with applications of exogenous ethylene. Indeed, Hale et al. (1970) and 8 

others (Weaver and Montgomery, 1974; Shulman et al., 1985) observed that these 9 

applications enhanced acidity drop and the accumulation of red pigments. This suggested that 10 

the berry tissues were able to sense ethylene, but in the 1970's nothing was known about 11 

ethylene signal transduction. Since then, commercial treatments with ethylene precursors have 12 

been developed, but these precursors are applied at rate that should give rise to more than 500 13 

µl.l-1 of ethylene internal concentration if every mole of the precursor penetrates the plant 14 

tissues and is transformed to ethylene. So several researchers suggested that such treatments 15 

are performed at too high concentrations to give a physiological meaning to the plant response 16 

to this ethylene treatment, however such treatments give rise to concentrations of internal 17 

ethylene that are 100 times smaller than expected (El-Kereamy et al., 2003). 18 

One could argue that the ripening delay induced by 1-MCP was only due to a toxic 19 

effect of this molecule. However two facts can be raised against this argument: (i) the changes 20 

induced by 1-MCP are contrary to those induced by exogenous ethylene (Weaver and 21 

Montgomery, 1974; Shulman et al., 1985); (ii) the same 1-MCP dose had no effect on the 22 

berry physiology (i.e. no toxic effect) if applied before or after the ethylene peak, when it 23 

delayed the berry ripening if applied at the time of the ethylene peak (Figure 2). 24 



 10 

We have not yet characterised the responses to 1-MCP in other cultivars than Cabernet 1 

Sauvignon, but similar responses are expected knowing that many cultivars respond similarly 2 

to exogenous ethylene (Weaver and Montgomery, 1974; Shulman et al., 1985).  3 

  4 

3.  Conclusion 5 

Obviously, the grapes contain a functional network of ethylene signalling at the onset 6 

of ripening, and part of this complex is necessary to the ripening process. Our data do not 7 

imply that grape should be considered as a climacteric fruit, but that new techniques and new 8 

tools may change the way of categorising fruit ripening. Further interesting studies are 9 

granted, particularly with the development of grape micro-arrays. These studies will bring 10 

new insights into the triggering events of ripening metabolism of non-climacteric fruit. 11 

 12 
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Figure captions 1 

 2 

Figure 1:  a) Changes in internal ethylene of Cabernet Sauvignon clusters and changes in the 3 

in vivo ACO activity of the berry tissues  as a function of the time after full bloom; n = 3, 4 

error bars show SE.  b) Changes in ACO transcript accumulation in berries as a function of 5 

the time after full bloom.  c) Changes in 1-aminocyclopropane-1-carboxylic acid (ACC) 6 

levels in berries as a function of the time after full bloom;  n = 3, error bars show SE. 7 

 8 

Figure 2: Influence of gassing Cabernet Sauvignon clusters at various times after full bloom 9 

with 1-methylcyclopropene (1-MCP), ethylene competitive inhibitor, on three maturity 10 

parameters of berries harvested 13 weeks after full bloom; a) diameter, b) titratable acidity of 11 

the juice and c) anthocyanin content of the skins. The data are means of 3 replicates ± 12 

standard errors and LSDs were determined at the 0.05 level.  13 
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