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INTRODUCTION

Traditionally, in Computational Electromagnetics (CEM) Time-Domain methods it is recommended to use a mesh-size of less than 10 , or ten cells per wavelength at most, to ensure a negligible level of numerical dispersion [START_REF] Ijjeh | Stability and dispersion analysis of a TLM unified approach for dispersive anisotropic media[END_REF] [START_REF] Taflove | Computational electromagnetics: the finite-difference time-domain method[END_REF]. This limit was derived for a plane wave propagating in a homogeneous medium discretized into a structured homogenous mesh (cubic uniform cells) [START_REF] Ijjeh | Stability and dispersion analysis of a TLM unified approach for dispersive anisotropic media[END_REF] [START_REF] Taflove | Computational electromagnetics: the finite-difference time-domain method[END_REF]. However, when dealing with heterogeneous structures, this rule of thumb can be misleading [START_REF] Ijjeh | Dispersion and Stability Analysis for TLM Unstructured Block Meshing[END_REF]. One should note that, as the computational domain becomes more complex and more heterogeneous, several higher order modes appear around discontinuities, leading to rapidly varying EM-fields in the spatial directions [START_REF] Ijjeh | Dispersion and Stability Analysis for TLM Unstructured Block Meshing[END_REF]. The correct capturing and spatial representing of these modes is crucial for the accuracy of the simulation results.

Therefore, whenever there is a discontinuity (e.g., changing in constitutive parameters) a sufficiently fine mesh in that region and its neighborhood is required [START_REF] Ijjeh | Dispersion and Stability Analysis for TLM Unstructured Block Meshing[END_REF]. The question that arise is how fine the mesh should be to ensure correct simulations. As an empirical tradition, every dimension inside the computational domain (even the very small ones) should be discretized into three or more cells. However, this new rule of thumb for discretizing heterogeneous computational domains lacks theoretical basis, and does not rigorously ensure convergence and correctness of results. The reason is that we do not know in advance how fast EM-fields will vary in the presence of such discontinuities.

As a practical solution to this mathematical open-problem, researchers have been using three-techniques to guarantee the accuracy of simulations, namely:

Convergence tests: by a progressive, mesh refinement of the computational domain, until the simulation outcomes remain practically unchanged [START_REF] Weiland | A practical guide to 3-D simulation[END_REF]. Mesh adaptation: EM-fields are evaluated after the every simulation process; then, the mesh is locally refined in regions where rapid field spatial variations are observed. The simulation is then repeated. The procedure is repeated until the results remain practically unchanged [START_REF] Weiland | A practical guide to 3-D simulation[END_REF].

Cross verification: by re-simulating the same problem using different numerical techniques [START_REF] Weiland | A practical guide to 3-D simulation[END_REF]. As a general practice, one should pay attention to the three main sources of error in numerical simulations (due to discretization), namely [START_REF] Ijjeh | Dispersion and Stability Analysis for TLM Unstructured Block Meshing[END_REF]:

Geometrical discretization error: the difference between real dimensions in continues (real) domain and the ones in the discrete counterpart [START_REF] Ijjeh | Dispersion and Stability Analysis for TLM Unstructured Block Meshing[END_REF]. Numerical dispersion error: the difference in phase velocity in discrete domain and the continuous one. This type of error is accumulative in spatial directions, rendering it more visible in huge computational problems, where signals travel large distances. This might leads to significant phase error, hence, wrong simulation results. Therefore, one should keep in mind that a tolerable dispersion error depends on the size of the computational domain and it is not merely local phenomenon [START_REF] Ijjeh | Dispersion and Stability Analysis for TLM Unstructured Block Meshing[END_REF].

Coarseness error: occurs when the mesh is too coarse in regions with rapidly changing EM-fields [START_REF] Ijjeh | Dispersion and Stability Analysis for TLM Unstructured Block Meshing[END_REF]. Numerical dosimetry -which is the computation of SAR in different tissues using CEM methods-[5]- [START_REF] Laisné | Comparison of finite integration technique (fit) and transmission line matrix (tlm) for (EMC EUROPE)[END_REF], is a typical category of problems that combine all the previously mentioned sources of error. Moreover, as the frequency increases, the electrical-size of the numerical domain increases too (e.g., at 30 GHz, the wavelength is 10 mm in free-space and 1.5 mm in some human tissues [14]), however, the physical size of the human body remain unchanged. Therefore, it is of crucial importance to be as efficient as possible in meshing such domains. For instance, the simulation of the human head (e.g., 20 × 20 × 30 cm ) at 30 GHz requires 3.5 billion cells with ( 10 ) mesh-size. A convergence test with ( 20 ) mesh-size for instance, will increase the computational domain to 28 billion cells, and a CPU-time16-folds as compared to the previous case. The main contribution of this article is to study the impact of mesh-size on the simulated SAR results (per cell, and averaged over a certain mass) in strongly heterogeneous environments. Moreover, the impact of tissues EM-properties uncertainty is discussed. In all numerical experiments, comparison between FIT (CST commercial EM-Solver [15]) and TLM methods are presented.

II. PROBLEM DESCRIPTION AND NUMERICAL TOOLS

A. Problem Description

Consider the computational domain shown in fig. 1; the domain is decomposed into several homogenous subdomains . The goal is to compute the SAR inside the biological body. The media properties in any tissue can be mathematically described as:

( ) = , (1.a) 
( ) = (1.b)
where is the permittivity, and is the electric conductivity. Note that, the biological body (BD) is defined as the union of all its non-overlapping sub-regions 's:

=

(2) Moreover, the EM-parameters anywhere in BD can be defined as:

( , , ) = , ( , , ) (3.a 
) ( , , ) = ( , , ) (3.b 
) where the shape-function ( , , ) is defined as: The objective now is to find the maximum mesh-size that ensures correct EM-fields distribution; hence, correct SAR levels after discretizing the domain BD.

( , , ) = 1, ( , , ) 0, (4) 
From the argument presented in the introduction, one can expect that the desired mesh-size will depend on both media properties of different sub-regions and the corresponding shape functions.

The complex permittivity of human tissues at any given angular frequency can be expressed in terms of fourth order Cole-Cole model as [14]:

= + (1 + ) ( ) + = +
(5) where is the permittivity at very high frequencies, is the vacuum permittivity, the electric conductivity, , and are different parameters used for adjusting the curve fitting model [START_REF] Shi | Improvement of SAR Accuracy by Combining Two SAR Quantification Methods for Small Animals in Reverberation Chamber Above 10 GHz[END_REF] to measurements [14]. In such lossy-dielectric sub-domains, the wavelength can be locally expressed in each as:

= 2 (6.a) where the propagation constant is defined as [START_REF] Jackson | Classical electrodynamics[END_REF]:

= 1 + + 1 / (6.b)
The proposed discretization strategy depends on three factors:

Limit 1: numerical dispersion error To ensure a negligible numerical dispersion error per cell, the mesh-size should respect the condition [START_REF] Ijjeh | Stability and dispersion analysis of a TLM unified approach for dispersive anisotropic media[END_REF] [2]:

( ) (7) 
Limit 2: geometric discretization error Assuming we have the 3D discretization operator that converts any (or its corresponding shape function ) into a discrete 3D geometry. Without loss of generality we will assume the resulting 3D geometries as structured meshes composed of uniform cubic cells of mesh-size , so:

{ , } = (8.a) Assuming the 3D-shape similarity operator gives the similarity factor between any two shape-functions, say, and :

= , (8.b)
where 0 1, the higher the better the resemblance is between the discrete sub-domain and the corresponding continues one. Therefore, one should choose a mesh-size that guarantee a similarity factor over a certain threshold value (e.g., = 95%). In other words, the goal is to maximize the mesh-size with the constraint in all sub-domains:

max (8.c)
Keeping in mind that the similarity factor is not a monotonically increasing function, as the mesh gets finer. However, it tends to increase, as the mesh-size gets smaller.

In literature, one finds several discretizing operators and several metrics for similarity between 3D objects [START_REF] Mari | Geometric and Topological Mesh Feature Extraction for 3D Shape Analysis[END_REF].

Limit 3: coarseness error

From the theory of EM-waves propagation in heterogeneous media, it is well known that fields are interrupted when they encounter a change in media properties. This interruption is usually observed around critical regions, such as for instance, sharp edges, corners, slots, fine-details…etc [START_REF] Ijjeh | Dispersion and Stability Analysis for TLM Unstructured Block Meshing[END_REF].

Coming back to the description of our model in continues media in [START_REF] Ijjeh | Dispersion and Stability Analysis for TLM Unstructured Block Meshing[END_REF]. The objective is to find the maximum mesh-size that guarantees correct fields' spatial description, especially in critical regions and their neighborhoods.

Based on the geometrical characteristics of every shape functions , its media properties, media properties of the adjacent sub-domains. Empirically, it was observed that the finest detail should be discretized into several cells to obtain correct results. For instance, to obtain the correct input impedance of thin-wire antenna, the circular cross section should be discretized into at least 20 cells. However, for the SAR computations, it is sufficient to discretize the smallest dimension into three cells using the TLM method. On the other hand, the FIT method might need more cells to reach convergence, as we will see in the next section.

It is worth mentioning that, the Virtual Population (ViP)developed in IT'IS foundation-provides Computer Aided Design (CAD) description of human models with their different organs [14]. Therefore, one can generate voxelbased human phantoms as fine as needed from these CAD models (ViP2.x and above) [14].

B. Numerical Schemes

Several numerical schemes are used in literature for numerical dosimetry applications including time-domain methods such as the Finite-Difference Time-Domain method (FDTD) [START_REF] Shi | Improvement of SAR Accuracy by Combining Two SAR Quantification Methods for Small Animals in Reverberation Chamber Above 10 GHz[END_REF] [9] [START_REF] Caputa | An algorithm for computations of the power deposition in human tissue[END_REF], Discontinuous Galerkin Time-Domain method (DGTD) [START_REF] Descombes | Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues[END_REF], FIT [START_REF] Gjonaj | Highresolution human anatomy models for advanced electromagnetic field computations[END_REF] [13] and TLM [START_REF] Ijjeh | Numerical dosimetry in human model for 5G and beyond[END_REF] [13] [START_REF] Johns | A symmetrical condensed node for the TLM method[END_REF] [19], and Frequency-Domain methods, such as the Finite Elements Method (FEM) [START_REF] Citkaya | FEM modeling of SAR distribution and temperature increase in human brain from RF exposure[END_REF]. Note that for hexahedral cells both FIT and FDTD methods have similar numerical behavior and properties. In the results section, comparisons between FIT and TLM methods are presented. However, it is worth mentioning that both methods have different origins and work differently. The FIT (based on direct discretization of Maxwell's equations in their integral form); therefore, an averaging process in media properties is necessary at the interface between different media [START_REF] Gjonaj | Highresolution human anatomy models for advanced electromagnetic field computations[END_REF]. However, the TLM method (based on the analogy between Maxwell's equations and circuit theory) represent the computational domain into 3D cells interconnected via a network of transmission lines, and the interaction between media and EM-fields occurs at the cells' centers [START_REF] Johns | A symmetrical condensed node for the TLM method[END_REF] [19] [START_REF] Ijjeh | Behavior of Time-Domain volumic methods in presence of high-contrast media or irregular structured mesh interfaces[END_REF]. Therefore, no averaging at the interface between different media is required.

III. RESULTS AND DISCUSSIONS

In this section, two experiments are presented to study the behavior of convergence speed in SAR computation using both FIT and TLM methods, for both local per cell SAR distribution, and the averaged SAR over a specific mass. The first example considers a very heterogeneous structure (3D periodic structure composed of two lossy-dielectric media). This heterogeneity plays a significant role in decelerating the convergence, especially for the FIT method. The second experiment is multi-layered sphere of different lossy-dielectrics (skin, fat, muscles, bone, and brain). This structure is less heterogeneous as compared to the previous one. A third experiment is presented to study the impact of uncertainty in constitutive parameters on both the local and the averaged SAR distributions. All TLM simulations are conducted using an in-house-built EM parallel solver.

A. SAR Distribution in a 3D Periodic Structure of Lossy Dielectric Media

In this experiment, the cube shown in fig. 2 below is illuminated by a plane-wave (propagation in + direction, polarization along x-axis). The goal is to compute the SAR distribution everywhere inside the cube at the frequency 4.2 GHz. 4 show the SAR distributions averaged over 20 mg, obtained using TLM and FIT methods, respectively. One can notice practically similar distributions are obtained using TLM with 38 cells per wavelength or finer. However, using the FIT method one needs 76 cells or finer to obtain convergence. Table I shows the maximum SAR levels for both averaged and non-averaged (per cell raw SAR results). One can observe that the TLM converges faster than the FIT method. The averaged SAR values over a certain mass are obtained using an algorithm developed in [START_REF] Caputa | An algorithm for computations of the power deposition in human tissue[END_REF]. This post-processing algorithm has a relatively high computational complexity. If we consider the memory' complexity of the computational domain is ( ) then the time complexity of the SAR averaging algorithm is ( ), where ~ cubic root of the number of cells in the computational domain. 

B. SAR distribution in Lossy-Dielectric Concentric Spheres

The sphere shown in fig. 5 is a simplified model of the human head composed of five layers of tissues. Huygens's box is used to excite the sphere by a plane-wave (propagation in + direction, polarization along z-axis). Different meshsizes are used to discretize the structure. Starting from = 1 mm or ( /12), the mesh use continuously refined until = 0.2 mm or ( /60). The time-domain excitation signal is a modulated Gaussian-pulse of parameters = 3.32 ns, = 664 ps, the center frequency = 3.5 and 6 GHz, respectively. All SAR values are renormalized to an incident power of 200 Watt at 3.5GHz, and 6 GHz, respectively. Fig. 6 and fig. 7 show the 1g averaged SAR distributions on the sphere's surface at 3.5 and 6 GHz frequencies, respectively. Good matching in 1g averaged SAR distribution is observed between FIT and TLM methods at both frequencies. Tables II andIII show also a good matching in the maximum SAR for both TLM and FIT methods. C. Imact of Uncertaininty in Tissues Parameters on SAR Levels (multi-layerd sphere model) A similar setup is used as in the previous experiment (fig. 5), however, the tissues constitute parameters were increased by 1%, 5% and 10% consecutively. The objective is to show the impact of uncertainty in these parameters on the SAR distribution. As shown in table IV below, the SAR levels vary for both the SAR per cell and the averaged SAR as a function of the perturbation in the constitutive parameters. 

IV. CONCLUSION

As the operating frequencies increase the electric size of the human model proportionally increases. This leads to bigger computational problems. Moreover, the high heterogeneity of the human body tissues properties plays an important role in choosing the necessary mesh-size that guarantees convergent results (hence, accurate ones). As a general role, it is necessary to reduce the mesh-size as the heterogeneity of the computational domain increases. The TLM methods shows a faster convergence in SAR computations at sub-6 GHz 5G frequency bands as compared to FIT method. This faster convergence was also observed at LF and VLF frequencies in previous publications. The averaged SAR over a certain mass converges faster than the local SAR per cell. Finally, the uncertainty in tissues properties has an important impact on both local and averaged SAR levels.

Fig. 1 ,

 1 Fig. 1, generic computational domain containing a biological entity, the objective is to compute the SAR in the different tissues, propagating devices and other elements exist in the surrounding environment

Fig. 2 ,

 2 Fig. 2, dielectric cube composed of fat and muscle small cubes, excited by a plane-wave. Different mesh-sizes are used to discretize the structure. Starting from = 1 mm or ( /10), the mesh use continuously refined until = 0.1 mm or ( / 96). The time-domain excitation signal is a modulated Gaussian-pulse of parameters ( = 4.2 GHz, = 3.32 ns, = 664 ps). Huygens's box is used to generate the plane-wave excitation, and a PML layer is used as an absorbing boundary condition. The SAR values are renormalized to an incident power of 120 Watt at 4.2 GHz. Fig.3 and fig.4show the SAR distributions averaged over 20 mg, obtained using TLM and FIT methods, respectively. One can notice practically similar distributions are obtained using TLM with 38 cells per wavelength or finer. However, using the FIT method one needs 76 cells or finer to obtain convergence.

Fig. 3 ,

 3 Fig. 3, TLM SAR distributions (averaged over 20 mg of tissues).

Fig. 4 ,

 4 Fig. 4, FIT (CST Software) SAR distributions (averaging over 20 mg of tissues). Different discretization levels.

Fig. 5 ,

 5 Fig. 5, multi-layered sphere of different human head tissues.

Fig. 6 ,

 6 Fig. 6, SAR distributions (averaging over 1 g of tissues) at 3.5 GHz, FIT (CST Software) vs. TLM methods for different discretization levels.

Fig. 7 ,

 7 Fig. 7, SAR distributions (averaging over 1 g of tissues) at 6 GHz, FIT (CST Software) vs. TLM methods for different discretization levels.

TABLE I .

 I MAXIMUM SAR VALUES (PER CELL AND AVERAGED) FOR BOTH TLM AND FIT AT DIFFERENT DISCRITIZATION

		FIT Method	TLM Method
	Mesh-	SAR max	SAR 20 mg	SAR max	SAR 20 mg
	size	per cell	max	per cell	max
		(W/Kg)	(W/Kg)	(W/Kg)	(W/Kg)
		60.2	58.965	103.9	71.47
	19	103.1	46.4	63.2	39.26
	38	164.1	44.5	72.8	35.42
	48	188.2	42.2	81.9	35.7
	57	225.4	40.6	85.8	34.3
	67	251.9	39.5	96.7	33.9
	76	289.8	38.5	107.7	34.2
	86	317.3	37.8	120.4	34.4
	6	345.2	37.2	127.6	33.6

TABLE II .

 II MAXIMUM SAR VALUE (AVERAGED AND PER CELL) FOR DIFFERENT DISCFRETIZATIONS. TLM METHOD.

	Mesh-size	3.5 GHz		6 GHz	
		SAR per cell	SAR 1 g	SAR per cell	SAR 1 g
		(W/Kg)	(W/Kg)	(W/Kg)	(W/Kg)
	1 mm	33.7	14.3	-	-
	0.5 mm	32.4	13.7	99.5	22.98
		32.2	13.56	104.2	23.24
	0.2 mm	32.1	13.63	103.9	23.13

TABLE III .

 III MAXIMUM SAR VALUE (AVERAGED AND PER CELL) FOR DIFFERENT DISCFRETIZATIONS. FIT METHOD.

	Mesh-size	3.5 GHz		6 GHz	
		SAR per cell	SAR 1 g	SAR per cell	SAR 1 g
		(W/Kg)	(W/Kg)	(W/Kg)	(W/Kg)
	1 mm	27.5	11.96	-	-
	0.5 mm	30.1	12.38	98.85	23.29
		31.3	12.61	106.22	23.00
	0.2 mm	31.5	12.63	112.76	23.04

TABLE IV .

 IV MAXIMUM SAR VALUE (AVERAGED AND PER CELL) FOR DIFFERENT VALUES OF ( AND ) FOR THE MULTI-LAYERED SPHERE IN FIG.5.

	Permittivity & conductivity	Original values (fig. 5)	+ % + % + %
	SAR per cell	31.3	31.1	30.4	29.7
	SAR 1g max	12.6	12.5	11.9	11.3
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