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ABSTRACT:

Ice velocity observations available on-line or on-demand at intra-annual resolutions still contain gaps, noise, and artifacts, especially
in mountain areas. There is a need to fuse the available multi-temporal and multi-sensor velocity observations to be able to study
intra-annual glacier dynamics. The proposed approach includes an inversion based on the temporal closure of displacement obser-
vation networks and a temporal interpolation. It reconstructs velocity time series between consecutive dates at a regular temporal
sampling (called Regular Leap Frog (RLF) time series) inferred from all the velocity observations without a prori knowledge on
the displacement behavior. The RLF time series can be reconstructed for different temporal sampling. Root Mean Square Error
(RMSE) over stable areas and Velocity Vector Coherence (VVC) over fast moving areas are proposed to select a temporal sampling
allowing a compromise between uncertainty and temporal resolution. This study focuses on the Fox glacier, in the Southern Alps
of New Zealand. It shows that RMSE over stable areas is decreased from 78% for a temporal sampling of 5 days to 40% for a
temporal sampling of 60 days. Thus, using this approach, we obtain a velocity time series with complete temporal coverage and
reduced uncertainty for a regular and optimal temporal sampling. The results highlight the large seasonal variability of the flow of
Fox Glacier that fluctuates by more than 30% between spring and autumn.

1. INTRODUCTION

The increasing amount of remote sensing images enables the
estimation of glacier velocities with a temporal resolution up to
2 days and a sampling resolution up to 50 m all over the world
(Millan et al., 2019). While many ice velocity observations are
available on-line (Gardner et al., 2018, Fahnestock et al., 2016,
Millan et al., 2019, Friedl et al., 2018), this large amount of
data is still difficult to analyze, since velocity observations span
different temporal baselines, have variable sampling resolution
and are derived from different sensors. Velocities obtained from
a small temporal baseline are close to the derivative of the dis-
placement but are more likely to be contaminated by noise un-
correlated in time. Velocities obtained from a long temporal
baseline approximate the mean velocity between two dates but
can be affected by large errors due to temporal decorrelation.
Despite of filtering steps, ice velocity observations produced by
automated processing chains contain gaps, noise, and artifacts,
especially in mountain areas where image-matching algorithms
are more likely to fail because of surface locking, shadow cast-
ing, feature-less regions or strong surface changes (Dehecq et
al., 2019, Altena and Kääb, 2020). In order to take advantage of
the available dense velocity observations for the study of intra-
annual glacier dynamics, there is a need to develop advanced
post-processing methods to fuse the available multi-temporal
and multi-sensor velocity observations.

To carry out a regression on displacement observations from
different temporal baselines, (Greene et al., 2020) propose to
integrate over the time a parametric regression function. How-
ever, it requires a priori knowledge of the displacement beha-
vior. Another approach to fuse velocities with different tem-

poral baselines and to reduce the uncertainty is the temporal
closure of the displacement observation network. This ap-
proach was originally developed for Interferometric Synthetic-
Aperture Radar (InSAR) time series and called Small BAseline
Subset (SBAS) approach (Berardino et al., 2002, Lanari et al.,
2007, López-Quiroz et al., 2009). The SBAS approach uses
interferograms produced by image pairs spanning small tem-
poral and geometrical baselines to minimize temporal and geo-
metrical decorrelation. Later, this approach has been applied
to offset-tracking displacement measurement of SAR images
(Casu et al., 2011, Euillades et al., 2016, Guo et al., 2020,
Charrier et al., 2021a, Charrier et al., 2021b) and optical im-
ages (Bontemps et al., 2018, Lacroix et al., 2019, Ding et al.,
2020).

However, most of the authors who use the temporal closure ap-
proach consider only one sensor (Altena et al., 2019, López-
Quiroz et al., 2009, Casu et al., 2011, Berardino et al., 2002,
López-Quiroz et al., 2009, Euillades et al., 2016, Charrier et al.,
2021a, Charrier et al., 2021b) or invert a time series from each
sensor apart (Kim et al., 2015, Ding et al., 2020). Only a few
studies choose to include datasets from different sensors in one
inversion. (Pepe et al., 2016) proposes to invert displacement
time series from ASAR/ENVISAT and CSK velocity observa-
tions. Since the two datasets are not overlapping in time, they
add a constrain based on a displacement model to solve the sys-
tem. Besides, (Bontemps et al., 2018) include displacements
from different Spot and Pléiade images to invert displacements
between consecutive observed dates.

Both previous studies open perspectives to take advantage of
multi-sensors datasets. However, methodological or pratical is-



sues still exist, for example, the use of a model-based constrain
in (Pepe et al., 2016) requires a priori knowledge of the dis-
placement behavior. In addition, the inversion of displacements
between consecutive observed dates as done in (Bontemps et
al., 2018) is problematic for fast moving target such as glaciers
since it produces irregular time series, i.e., the displacements
are inverted between dates which are not equally distributed
over the period. Indeed, (Bontemps et al., 2018) are interested
in cumulative displacement (CD) time series, i.e. displace-
ments between each date and a reference date, to study slow
moving landslide whereas velocities between consecutive dates,
named Leap Frog (LF) velocity time series in (Hadhri et al.,
2019, Charrier et al., 2021b), are more appropriate to analyze
intra-annual variations of fast moving targets such as glaciers
(Greene et al., 2020, Derkacheva et al., 2020). The analysis
of an irregular LF time series can raise issues because: 1) The
resulted velocities does not have the same temporal sampling.
Since velocities measured on different temporal samplings are
representative of the average displacement on different time in-
tervals, LF displacements are not truly comparable if the tem-
poral sampling of the LF time series is irregular. 2) displace-
ments with very short temporal sampling are inverted if the im-
ages from the different sensors are acquired a few days apart
(for example up to 1 day apart between Venµs and Sentinel-2
satellites). However, very short temporal sampling velocities
are likely to be more noisy (Casu et al., 2011, Millan et al.,
2019, Charrier et al., 2021b). 3) the dates between which the
displacements are inverted can be different from one pixel to an-
other because of different data quality since outliers are rejected
in most of the available datasets (Millan et al., 2019, Gardner et
al., 2018, Fahnestock et al., 2016).

Therefore, this paper aims at fusing velocity observations from
different temporal baselines and sensors to obtain a LF time
series with a regular and optimal temporal sampling to study
intra-annual variations of ice velocity. For that, an Irregular LF
(ILF) time series is first inverted. Then, a temporal interpola-
tion is performed on a CD time series built by summing the ILF
displacements. From the discrete derivative of this interpolated
CD time series, a Regular LF (RLF) time series with an optimal
temporal sampling is obtained. This temporal sampling is selec-
ted based on a compromise between uncertainty and temporal
resolution. This approach is applied to Sentinel-2 and Venµs
velocity observations covering the Fox glacier, in the Southern
Alps of New Zealand.

2. DATA AND STUDY AREA

The study area is the Fox glacier which is situated in the South-
ern Alps of New Zealand. It is a fast-flowing, temporal mari-
time glacier (Purdie et al., 2008, Kääb et al., 2016).

The considered dataset is from (Millan et al., 2019). It contains
velocity observations based on images acquired by two differ-
ent optical sensors: Sentinel-2 and Venµs. The repeat cycles of
the two satellites are 5 days and 2 days respectively and the spa-
tial sampling of the images are 10 m and 5 m respectively. The
radiometric resolution of the sensors are of 12 and 10 bit. Dis-
placement offsets are computed using a modified version of the
cross-correlation algorithm Ampcor from NASA (Michel and
Rignot, 1999). Post-processing have already been carried out to
remove outliers: pixel offsets that deviate more than three pixels
from a 9×9 pixels spatial median have been removed (Millan et
al., 2019, Mouginot et al., 2012). The temporal baselines of the
velocity observations are ranging from 5 to 100 days and from

Figure 1. Studied area over the Fox glacier in the Southern Alps
of New Zealand. The blue point is used for analysis in section 4.

The orange rectangle corresponds to the considered area in
section 4. The red longitudinal profile is considered for the

spatio-temporal analysis in section 5. The red dotes are spaced 1
km apart. The background image is an optical image from the

Google Earth collection.

330 to 400 days. The resulting velocity maps have a 50 m spa-
tial sampling. The measurements cover a period from August
2016 to May 2019.

Figure 2 shows that Sentinel-2 velocities range from August
2016 to September 2018 whereas Venµs velocities range from
January 2018 to May 2019. The percentage of non-masked ve-
locities is on average 27% for Sentinel-2 and 14% for Venµs
per central date and temporal baseline. This is due to outliers
removal during post-processing. It highlights the difficulty to
compute displacements on this narrow and fast glacier tongue
and the need for a data fusion.

Figure 2. Temporal baselines of the velocity observations
according to their central date for Sentinel-2 velocities in blue
and Venµs velocities in orange. The colormap which ranges

from light to dark blue or orange indicates the percentage of non
masked data for each temporal baseline and central date.

2.1 Confidence values

In order to quantify the quality of velocity observations, a con-
fidence value is computed for each velocity vector (2 compon-



ents in x and y directions) as a combination of the following
criteria:

1) the cosinus of the angle between each vector and the spatio-
temporal median vector (Burgess et al., 2012, Nguyen et al.,
2018) called Median Angle (MA) here and defined as:

cos(u⃗i,j,t, v⃗
w
i,j) =

u⃗i,j,t · v⃗wi,j
∥u⃗i,j,t∥∥∥v⃗wi,j∥

(1)

where ui,j,t is the displacement vector at the pixel (i, j) and
time t and vwi,j is the median vector over the time on a spatial
window w, here set to 3 × 3 pixels. If the two vectors are co-
linear, as expected, this criterion will have a value of 1. The
negative values are set to 0 to penalize vectors which have a
direction from 90◦ to 180◦ away from the median direction.

2) the modified z-score which is a standardized and robust score
that measures outlier strength (Maronna et al., 2019). The mod-
ified z-score is computed for the x and y component of the ve-
locity vector as:

MZscore =
xi,j,t − x̃w

i,j

1.483MAD
(2)

where xi,j,t stands for the x or y component of the velocity
at the pixel (i, j) and time t, x̃w

i,j is the median of the x or y
component of the velocity over the time on a spatial window w,
here set to 3×3 pixels. MAD is the Median Absolute Deviation
defined as: median|xi,j,t − x̃w

i,j |.

The final confidence value of two velocity components is the
same for a given pixel and time stamp. It corresponds to the
multiplication of the three criterion scaled between 0 and 1: the
scaled modified z-score for x components of the velocity, the
scaled modified z-score for y components of the velocity and
the MA.

3. METHOD

3.1 Temporal inversion

Figure 3. Illustration of the temporal closure of the displacement
observation network used to obtain a) a regular LF time series.

The temporal sampling corresponds to the Satellite 1 repeat
cycle b) an Irregular LF time series. The vector Y corresponds
to the displacement observations. The vector X stands for the
LF displacement time series. A is the design matrix linked X

and Y in the temporal closure.

To fuse multi-temporal and multi-sensor ice velocity observa-
tions, a temporal inversion based on the temporal closure of the

displacement observation network is used. The key principle
relies on making use of the redundancy of the displacement ob-
servation network to build a LF displacement time series that
respects the temporal closure constraint. The temporal closure
is formulated on a pixel-by-pixel basis on the set of n displace-
ment observations dti,tj with a temporal baseline tj − ti con-
tained in the vector Y . The temporal closure formulation is
Y = AX where X represents the vector of p output displace-
ments d̂tn,tm with a temporal sampling tm − tn, and A is a
design matrix of dimension n× p linking X with Y .

The proposed method is an extension of (Charrier et al., 2021a)
and (Charrier et al., 2021b). In (Charrier et al., 2021b), the
mono-sensor dataset had enough redundancy to obtain directly
a regular time series at user-defined temporal sampling using an
improved temporal closure formulation. However, in the case
of a multi-sensor data set with numerous gaps, the problem is
more complex.

As shown in Figure 3 a), if X is a time series with the same
temporal sampling as the satellite 2, the displacements from the
satellite 1 could not be included in the system AX = Y because
it is not possible to write dt2,t4 , dt4,t6 , dt6,t10 and dt2,t10 as
a linear combination of d̂t0,t5 and d̂t5,t10 . Hence, the design
matrix A contains four rows of zero, the system is ill posed and
some information is lost.

Therefore, a solution can be to invert an irregular time series of
displacements between each date of the displacement observa-
tions Y , as illustrated in Figure 3 b) to include all the observa-
tions in the system.

The system AX = Y is then solved using an Iterative Re-
weighted Least Square inversion with a regularization term on
the discrete derivative of the leap frog velocities, as described
in (Charrier et al., 2021b, Charrier et al., 2021a). The a priori
weight corresponds to the confidence values presented in sec-
tion 2.1. The result of the inversion gives an Irregular LF (ILF)
time series.

3.2 Interpolation

In the ILF time series, each velocity v̂tm,tn corresponds to a
given temporal sampling tm − tn. The velocities are not truly
comparable if the temporal sampling is different because velo-
cities measured on a small time interval are close to the deriv-
ative of the displacement whereas velocities measured on long
time interval approximate the mean velocity between two dates.
Therefore, an interpolation of this time series would not be rig-
orous. Hence, the interpolation should be done on Cumulative
Displacement time series. The latest is built by summation of
the ILF displacements obtained after inversion as:

d̂t0,tk =

k−∆τk∑
0

d̂tm,tm+∆τm
(3)

with d̂t0,tk a CD displacement between dates t0 and tk,
d̂tm,tm+∆τm

a LF displacement between dates tm and tm+∆τm ,
∆τm the temporal sampling of the LF displacement m.

Then, the CD time series is interpolated using a cubic interpol-
ation. Finally, a Regular LF time series is recovered by using a
discrete derivative of the interpolated CD time series:

d̂tr,tr+∆τr
= d̂t0,tr+∆τr

− d̂t0,tr (4)



Figure 4. Velocity observations in gold overlayed with the Irregular Leap Frog time series obtained after temporal inversion in red for
the point of coordinates (-43.532,170.134) labeled as the blue point in Figure 1.

where d̂tr,tr+∆τr
is a LF displacement between dates tr and

tr+∆τr . ∆τr is the temporal sampling, which is identical for all
the displacements in the time-series.

This discrete derivative can be computed at different temporal
samplings. The choice of the temporal sampling will be dis-
cussed in section 4.2.

Figure 5. Temporal baselines of the Irregular Leap Frog time
series according to their central date. The colormap indicates the
percentage of non masked data for each temporal baseline and

central date.

4. REGULAR LEAP FROG TIME SERIES WITH AN
OPTIMAL TEMPORAL BASELINE

4.1 Irregular LF time series

The temporal inversion of multi-sensor velocities results in an
Irregular LF time series. An example is shown on Figure 4
for the point of coordinates (-43.532,170.134), corresponding
to the the blue point on Figure 1. The ILF displacements are
coherent with the velocity observations trend. However, the res-
ults look noisy especially after January 2018 where Sentinel-2
and Venµs observations are overlapping. Because of this over-
lap, the time interval between two observations is small, i.e. up
to 1 day. Therefore, the temporal samplings of the ILF time
series are also small. Velocity is obtained by dividing displace-
ment by the time, hence if each displacement has a constant
white noise due to image correlation errors (Millan et al., 2019,
Mouginot et al., 2012), the noise of small temporal baseline ve-
locities could be larger than the velocity magnitude.

Figure 5 shows the distribution of temporal samplings accord-
ing to their central date over the area represented in orange on
Figure 1. It reveals the heterogeneity of temporal baselines
which ranges from 1 to 90 days with a median value of 8
days. The smallest temporal baselines are recorded after Janu-
ary 2018 where Sentinel-2 and Venµs observations are over-
lapped. Moreover, the ILF displacements are inverted between
the dates of the available observations for each pixel. Because
of the previous outlier removal, these dates differ from one pixel
to another. This implies that the velocity values of a given cent-
ral date and temporal baselines are not reconstructed for every
pixel. The percentage of non-masked value is 52% in aver-
age. This highlights the necessity to homogenize the temporal
sampling of the ILF time series to facilitate the interpretation of
the results.



Figure 6. Velocity observations (in gold) overlayed with the RLF time series in blue for the point of coordinates (-43.532,170.134)
labeled as the blue point in Figure 1. The RLF time series have a temporal sampling of a) 5 days b) 20 days c) 30 days and d) 90 days.

Figure 7. Comparison of RMSE over stable areas for different
temporal samplings. RMSE is performed over ice-free areas

according to the Randolph Glacier Inventory V6.0.

Figure 8. Comparison of VVC over fast moving ice for different
temporal samplings. VVC is computed on glaciers areas

according to the Randolph Glacier Inventory V6.0 where the
mean velocity magnitude observation is higher than 400 m/y.

4.2 Regular LF time series with different temporal
sampling

After interpolation of the CD time series, a Regular LF time
series can be reconstructed with any temporal sampling. A
question arises: how to choose the optimal temporal sampling
to study the short-term variation of ice velocity with an optimal
signal-to-noise ratio?

It can be seen on Figure 6 that the larger the temporal sampling
is, the smoother is the RLF time series. There is less noise but
also a smaller temporal resolution.

To characterize the uncertainty of the RLF time series according
to their temporal sampling, two criterion are defined:

1) the Root Mean Square Error (RMSE) over stable areas which
relies on the assumption that the velocity magnitude is null on
the stable areas. It is defined as:

RMSE = mean(i,j)∈ω1

√√√√ 1

N + 1

N∑
t=0

∥v⃗(i, j, t)∥2 (5)

where v⃗(i, j, t) stands for the velocity vector at time t and pixel
(i, j), N + 1 is the number of velocity data at pixel (i, j) over
the considered period, ω1 corresponds to ice-free areas defined
according to the Randolph Glacier Inventory (RGI) V6.0 (RGI-
Consortium et al., 2017).

2) the Velocity Vector Coherence (VVC) metric (Dehecq et al.,
2015, Nguyen et al., 2018) over fast moving areas which relies
on the assumption that the flow direction on a point is roughly
stable in time. It is a defined as:

VVC = mean(i,j)∈ω2

∥∥∥∥∥
N∑
t=0

V⃗ (i, j, t)

∥V⃗ (i, j, t)∥

∥∥∥∥∥ (6)

where ω2 corresponds to the glacier parts where the mean of
velocity observation magnitude is higher than 400 m/y.

These two criterion are computed for several temporal baselines
on the area symbolized in orange on Figure 1.

Figure 7 shows that whatever is the temporal baseline/sampling,
the RMSE over stable areas is always lower for the RLF time



series than for the velocity observations: from 78% lower for
a temporal baseline of 5 days to 40% lower for a temporal
baseline of 60 days. In addition, Figure 8 highlights that VVC is
lower for the velocity observations than for the RLF time series
than for every temporal baselines: from 94% higher for a tem-
poral baseline of 30 days to 42% higher for a temporal baseline
of 5 days.

Moreover, the largest is the temporal baseline, the lowest is
the RMSE and the highest is the VVC, i.e., the lowest is the
uncertainty. The RMSE and VVC values reach a plateau at
a temporal baseline of 40 days corresponding to a RMSE of
31 m/y for the velocity observations, and at temporal baseline
of 30 days corresponding to a RMSE of 20 m/y for the RLF
time series. This analysis provides a way to select an op-
timal temporal baseline/sampling which allows a compromise
between temporal resolution and uncertainty. Since the RMSE
and VVC of the RLF time series are roughly stable after a
temporal sampling of 30 days, 30-days can be selected as an
optimal temporal sampling. The RMSE and VVC of the ve-
locity observations are stable after 40 days, the optimal tem-
poral baselines would be 40 days. Hence, the optimal temporal
sampling and the associated uncertainty is smaller for RLF time
series than for the velocity observations.

5. SPATIO-TEMPORAL ANALYSIS OF THE RESULTS

Figure 9 b) shows the temporal evolution of the RLF time series
at a temporal sampling of 30 days along a longitudinal profile
represented on Figure 1. These results are compared with the
initial velocity observations. To have a fair comparison, a mov-
ing average is performed using a temporal window of 30 days
on the velocity observations. That is to say, for each period
of 30 days, the average of all the velocities which overlap this
period is computed. This post-processed dataset does not cor-
respond to rough dataset and it is already a way to fuse data
from different sensors and temporal baselines.

Figure 9 a) reveals that there is no velocity observations avail-
able in the center of the tongue between May and October
2017, between February and April 2018 and between Octo-
ber and November 2019. There are gaps in the dataset which
make difficult the analysis of intra-annual variations of velo-
city. Using the proposed approach helps to fill in the gaps and
decrease the uncertainty by using the temporal closure of the
observation network and a temporal interpolation. Even if the
method is pixel-based, the RLF time series seems to be spa-
tially coherent: there is a smooth trend between pixels through
the period. A seasonal signal is visible since ice velocity mag-
nitude peaks between September and November and reaches a
minimum between April and June. Along the longitudinal pro-
file in Figure 9, the median increase between the minimum of
velocity recorded in September to November 2017 and the max-
imum of velocity recorded from April to June 2018 is 40%. The
median increase from April/June 2018 to September/November
2017 is 30%. Moreover, the RLF time series is coherent with
the moving averaged velocity observations. However, some dis-
crepancies can be noticed: for instance, the velocity magnitudes
at 2.6 km in 2018 range between 200 and 800 m/y whereas the
surrounding pixels show velocity magnitudes between 800 and
1200 m/y. This may be due to a discrepancy in the velocity ob-
servations which is also visible in Figure 9 a) at 2.6 km. This
does not have a glaciological meaning and looks like an arte-
fact. These kinds of remaining artefacts could be removed using

a spatio-temporal interpolation or a spatial smoothing. It opens
the discussion for further improvement of the current approach.

6. CONCLUSIONS

This article presents a new approach to fuse ice velocity obser-
vations from different temporal baselines and sensors in order
to study short-term variations of glacier flow without any a pri-
ori on the displacement behavior. The proposed method relies
on an inversion based on the temporal closure of the displace-
ment observation network similar to the SBAS approach.

SBAS-like approaches usually retrieve Cumulative Displace-
ment time series (displacements between each date and a ref-
erence date) whereas for fast-moving targets with a strong sea-
sonality such as temperate glaciers, Leap Frog velocities (velo-
cities between consecutive dates) are more adequate. To obtain
an easily interpretable time series, the LF time series should
have a regular temporal sampling, i.e., all the inverted velocit-
ies should span the same time interval. However, if the dataset
is based on different sensors, it is not possible to obtain directly
the same Regular LF time series for each pixel, especially if out-
liers are removed beforehand. Moreover, the length of the RLF
temporal sampling is a crucial parameter but rarely discussed in
the literature.

Therefore, the proposed approach firstly built an Irregular Leap
Frog time series and then interpolate it to obtain a Regular Leap
Frog time series. It enables the user to obtain a RLF time series
on a unique temporal basis for each pixel while decreasing the
uncertainty of the observations. The application of this method
to the Fox glacier in the Southern Alps of New Zealand reveals
that the Root Mean Square Error over stable areas is decreased
from 78% lower for a temporal baseline of 5 days to 40% lower
for a temporal baseline of 60 days. The RMSE over stable areas
and VVC over fast moving areas are proposed to select a tem-
poral sampling allowing a compromise between signal-to-noise
ratio and temporal resolution. Finally, the 30-days RLF time
series reveal a strong seasonal variation of ice velocity: velo-
cities differ by more than 30% from spring to autumn. This
was not clearly visible in the observations. It highlights the in-
terest of the method to obtain a velocity time series with a com-
plete temporal coverage and a reduced uncertainty at an optimal
temporal sampling by taking advantage of all multi-sensor and
multi-temporal velocity observations.

This approach is not dataset dependent and could be applied to
all kinds of available velocity observations.
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Gourmelen, N., Mugnier, J.-L., 2018. A Pattern-Based Method
For Handling Confidence Measures While Mining Satellite Dis-
placement Field Time Series: Application to Greenland Ice
Sheet and Alpine Glaciers. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 11(11),
4390–4402.

Pepe, A., Bonano, M., Zhao, Q., Yang, T., Wang, H., 2016. The
use of C-/X-band time-gapped SAR data and geotechnical mod-
els for the study of Shanghai’s ocean-reclaimed lands through
the SBAS-DInSAR technique. Remote Sensing, 8(11), 911.

Purdie, H., Brook, M., Fuller, I., 2008. Seasonal variation in ab-
lation and surface velocity on a temperate maritime glacier: Fox
Glacier, New Zealand. Arctic, Antarctic, and Alpine Research,
40(1), 140–147.

RGIConsortium et al., 2017. Randolph Glacier Inventory–A
dataset of global glacier outlines: Version 6.0. Global Land Ice
Measurements from Space, Colorado, USA, Tech. Rep.


