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Abstract—There are numerous formats which represent the
micro-Doppler signature. Our goal is to determine which one
is the most adapted to classify small UAV (Unmanned Aerial
Vehicules) with Deep Learning. To achieve this goal, we compare
drone classification results with the different micro-Doppler
signatures for a given neural network. This comparison has
been performed on data obtained during a radar measurement
campaign. We evaluate the classification performance in function
of different use conditions we identified with a given neural
network. According to the experiments conducted, the recom-
mended format is a spectrum issued from long observations as
its classification results are better for most criteria.

I. INTRODUCTION

The increase of small drones in our everyday life raises
security threats. To prevent any potential misuse, investments
are made to detect and identify them. As explained in [1],
methods based on vision or audibility do not permit reliable
observations at distances longer than several hundred meters.

Another way to address this issue is the radar measurement.
However, the low RCS (Radar Cross Section) of small drones
makes them hard be differentiated from each other. Thus,
the mainstream of research focuses on specific features to
highlight micro-Doppler effects.

The main Doppler effect consists in a frequency shift due
to the target radial speed. The micro-Doppler effect [2], [3]
consists on Doppler modulation created by internal movement
of the target such as drone rotors.

The classification is made by feature extraction from the
radar signal. The micro-Doppler signal potential for classifi-
cation with Bayes methods [4], [5] or SVM [5]–[7] has been
discussed recently. The latest progress in machine learning, es-
pecially in CNN (Convolutional Neural Network), has revealed
a new line to study this phenomenon as the neural network
extracts features itself. Studies emphasize the advantages of
neural networks in the case of micro-Doppler profiles for drone
classification [8]–[10] or human movements [7], [11]–[13].

The micro-Doppler effect may be represented with different
formats. The most common is a set of contiguous micro-
Doppler profiles called spectrograms obtained thanks to STFT
(Short Time Fourier Transform). However, other formats such
as CP (Cepstrum), CVD (Cadence Velocity Diagram) [6], [14],
[15] or even directly the time signal x(t) are also investigated.

The spectrograms are mostly used as an input format for
the CNN in the aforementioned studies. Certain studies tend

to show that the combined use of two formats improves the
CNN performance [9] and helps the network to extract specific
features, others show differences in performances for some
formats [10], despite the fact that all information is already
present in the spectrogram.

The variety of formats used in these studies compromises
the comparison of their results. Moreover, they are made under
different conditions: simulated or real data [6], [8], sets of
drones, various trajectories, classification goals, radars, etc.

Our main contribution is to compare the efficiency of
different format inputs (described in Section II) for drone
classification with a CNN using the criteria we propose to
capture use conditions defined in Section III. Section IV, gives
the experimental setup1. Eventually, we analyze the results
obtained and indicate the format for which the classification
preforms the best (Section V) and conclude (Section VI).

II. FORMATS — TIME FREQUENCY ANALYSIS METHODS

We have selected the five most relevant transformations for
the micro-Doppler analysis according to the literature: time
signal after range compression x(t), weighted spectrum of the
signal WSP, cepstrum CP, spectrogram SG and cadence ve-
locity diagram CVD. They are defined below with continuous
equations. An example of these formats is shown in Fig 1.

All these formats but one are based upon FFT (Fast Fourier
Transform). We did not observe any improvement with the use
of zero-padding and thus did not apply it in the remainder. For
all time windows h defined below, we chose Kaiser windows.
We tested also rectangular windows and did not observe any
significant difference.

Theoretical models of micro-Doppler effect [2], [3], [16],
[17] give us expectations for each format depending on
whether the drone variations (rotor speeds, orientation, etc.)
are slow compared to the observation duration. We denote tar-
gets respecting this hypothesis as relatively stationary targets.

A. Time signal, x(t)

We denote as time signal x(t), the complex signal corre-
sponding to the target position, obtained with range compres-
sion. It is discretized at 1

PRF (Pulse Repetition Frequency). The
other formats are produced by processing x(t).

1We thank Jean-Paul Marcelin and Jean-François Petex for their work on
the data collecting campaign with the ONERA measurement system Medycis.

 



B. Weighted Spectrum, WSP

The weighted spectrum, WSP, of a signal x(t) is its FFT
on a time window h: WSP(x(t))(f) = FFT (h(t)x(t)) (f).

The WSP format offers a good frequency resolution ( PRF
N for

an N point signal) but it has no time resolution. For relatively
stationary drones, peaks corresponding to multiples of twice
the rotor speed (two blades per rotor [16]) appeared.

To remove potential biases, the main Doppler effect due to
target speed is set to zero. To equilibrate WSP, all frequency
shifts lower/higher than ± 4 kHz are removed.

C. Cepstrum, CP

The cepstrum, CP, of a signal x(t) is defined by the follow-
ing equation (IFFT signifies Inverse Fast Fourier Transform):

CP(x(t))(τ) = IFFT
(
log
(
|WSP(x(t))(f)|2

))
(τ).

Introduced in [18], CP is similar to WSP. The quefren-
cies τ , equivalent to frequencies f , highlight the signal
echoes, especially when they are closed one to another(
the quefrency resolution is 1

PRF

)
. As for WSP, for relatively

stationary drones, peaks due to the rotors may be observed.
This format, originally designed to highlight echoes for

human visualization, is based on the modulus information
of WSP. In human visualization, when we compare CP with
WSP, we also use only its modulus (Fig. 1). Recent studies
[19], using only the modulus for complex signals in the Deep
Learning context, have shown that the loss of information due
to the modulus may deteriorate the neural network accuracy.

The CP format transforms the convolution in the time
domain into addition in the quefrency domain. Bogert et al
[18] conclude that CP resists better to noise than WSP.

D. Spectrogram, SG

The spectrogram, SG, is obtained from x(t) with STFT:
SG (x(t)) (τ, f) =

∫
t
h(t− τ)x(t)e−2iπftdt.

This format is based upon a trade-off between the time and
frequency resolutions. The short time window h allows one
to concatenate profiles to obtain a time resolution contrary
to WSP. However, the frequency resolution is reduced. For
an h window on M points, the time resolution is M

PRF and the
frequency resolution is PRF

M . We chose an h window of 2.5 ms.
As for WSP, the main Doppler effect is set to zero and all

frequencies higher/lower than ± 4 kHz are suppressed.
For relatively stationary drones, we can expect to see blade

flashes [8]. This effect can be put in light by window overlaps.
For this reason, the overlap may improve the classifier quality
despite the fact that it does not provide us with more informa-
tion, increases the data size, and makes learning longer. After
several experiments, we used an overlap of 60%, the lowest
value giving the best classification results.

E. Cadence Velocity Diagram, CVD

The Cadence Velocity Diagram, CVD, is produced by
performing FFT for all SG frequencies:

CVD (x(t)) (ν, f) = WSP (SG (x(t)) (τ, f)) (ν)
=

∫
τ
h(τ)SG (x(t)) (τ, f)e−2iπντdτ.

This format highlights the frequency periodicity better than
SG on which it is based. This format is particularly adapted
for substantially long observations.

For CVD on N points, produced from SG made with an h
window of M points, the cadence resolution is MPRF

N while
its frequency resolution is PRF

M , identical to the SG one. This
format is thus adapted to long observation durations (large N )
as it requires a great number of profiles to execute the second
FFT.

III. SENSITIVITY TO USE CONDITIONS

The performance of the five formats presented above are
compared in Section V under different use conditions. Now,
we describe the use conditions chosen. The first one (Subsec-
tion III-A) is considered as a reference case. The following
ones are robustness to noise (Subsection III-B) and short
observation duration (Subsection III-C). The last use condition
(Subsection III-D) is the facility of training of the CNN.

We aim at observing the impact of the format chosen upon
the quality of the CNN classification. We are interested not
only in the classification rate under every condition but also
in the gap between the reference and the current use condition
(indicated by the ∆ column in the tables of Section V).

A. Reference

The reference case consists in classifying drones into five
classes. The reference observation is 300 ms. It corresponds
to the minimum duration needed to differentiate two rotors
within 100 RPM (Revolution Per Minute) for CP and WSP
under the hypothesis of the relative stationarity of targets.

The reference SNR (Signal Noise Ratio) is between 30
and 50 dB, depending on the drone and the fragment of its
trajectory (altitude, speed, orientation of the drone, etc.).

B. Robustness to noise

The reference case provides us with a signal with a good
SNR for each target. Now, we assess which format allows a
satisfactory classification regardless of the SNR deterioration.

To achieve this goal, we added a white Gaussian noise
to the reference data. The noise level is absolute and thus
independent of the drone type. Consequently, it has a different
impact on each signal section according to its SNR. The
resulting database SNR is between 10 and 30 dB.

C. Short observation

Some formats are more adapted to shorter/longer observa-
tions. For this use condition, the observation time is shortened
in comparison to the reference case in order to assess observa-
tion duration robustness. The shorter observation time chosen
is 36 ms corresponding to three turns for a rotor at 5 000 RPM.

D. Facility of training

Certain formats change data dimension or shape. These
modifications impact substantially the time needed to execute
each iteration in the CNN. They may also improve the contrast
between data and thus reduce the number of iterations needed
to reach the maximum accuracy value.
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Fig. 1: Signature of a DJI Phantom 4 Pro observed during 300 ms with the different formats. Data are displayed in dB, zooms are added for
better visualization. Data depicted correspond to a random part of one trajectory (from 483.8 to 484.1 seconds)

To evaluate formats on this criterion, the time required for
one retro-propagation is computed. We also determine the time
needed to reach 95% of the maximum accuracy.

IV. EXPERIMENTAL SETUP

A. Measurement campaign

The measurements were performed during two weeks
in April 2019. Five drones (DJI S1000-A2, grand Spyder,
Gryphon, DJI Phantom 4 Pro, DJI Mavic Pro) were involved.
The measurements were taken in the same conditions for all
drones. Drones flew on trajectories differing by speed, altitude,
pattern (up/down, rectilinear/circular movement, stationary/
rotation around its center, free fly) to have the largest variety
of data. The measurements were influenced by meteorological
conditions. Only classic commercial drones were used and
no stealth material nor stealth shape were considered either.
We did not equipped our drones with anything which would
improve the signal quality.

The target-radar distance was 1.5 km± 250 m with only one
target at a time. The measurements were performed at S band
(f0 = 3 Gz) with PRF = 10 kHz on horizontal polarization.
The Doppler ambiguity is ∆fmax = PRF

2 . If we consider a
target at radial speed v = 100 km/h, it implies a main Doppler
shift of ∆fD = 2f0v

c = 556 Hz with c the light speed. In
addition, the maximum micro-Doppler shift induced by a rotor
of radius L is ∆fµ-D = 8πLf0

c
RPM
60 [16]. For typical RPM =

5–6·103 round/min and L=10 cm, the shift ∆fµ-D is 2–3 kHz.
Thus, our PRF allows us to observe the micro-Doppler effect
produced by the drone rotors, ∆fmax > ∆fD + ∆fµ-D.

In Fig. 2, we present a long-time spectrogram (40 s obser-
vation) obtained by concatenation of spectrum such as the one

presented in Fig. 1. The signal is compared to the theoretical
impact of the different rotors obtained thanks to the drone
log file. We point out that the rotor speeds do not vary much
during the 300 ms period and thus the relatively stationarity
hypothesis is respected.

Fig. 2: Comparison between theorical data and real observation. The
foreground lines correspond to theorical impact of rotors. The back-
ground is a concatenation of WSP to obtain a long-time spectrogram.

B. Deep Network configuration

The classification results we present are obtained with
GoogLeNet [20]. The network has been chosen to compare
our results with those from related works [9].

Each trajectory is split in chunks of duration equal to the
observation time chosen. Each chunk is represented by all
formats under study and sent as independent input to the
network. The training and testing sets contain trajectories

 



collected on different days to assure data independence. There
are 36 730 trajectory chunks in the learning set and 4 670 in
the testing one. All chunks correspond to nearly three and half
hours of accumulated measurement.

We stress that without day separation between the testing
and training set, the classification accuracy reaches more
than 98% in all configurations (even 100% for x(t)), much
too optimistic. We thus strongly recommend that experiments
should be conducted with the day separation.

We use a batch size of 256 chunks and fix a dropout of
0.6 on the first fully connected layer. In every configuration,
we run 50 learnings of 25 000 iterations. The test accuracy is
assessed every 200 iterations. The classification results pre-
sented correspond to the maximum of the mean accuracy and
its associated confidence interval at 95%. The time/step values
are measured on the same computer (GPU card: NVIDIA Tesla
P100-PCIE-12GB).

For unidimensional (1-D) data, the network architecture is
adapted to be 1-D (filters: 5× 5→ 5× 1, etc.). The real and
imaginary components of each format are injected into the
CNN as two color channels. Each data x is normalized by the
formula x−m

M−m with M, m the maximum, minimum modulus
on the training database. All data has thus a modulus between
zero and one without removing energy information.

V. RESULTS

We present the classification results of each format under
the different use conditions defined in Section III.

A. Reference

Format Reference [%]
x(t) 75.8 ± 1.55
WSP 98.1 ± 0.09
CP 97.4 ± 0.11
SG 92.6 ± 0.32

CVD 94.5 ± 0.17

TABLE I: Reference use condition.

The network performs significantly better for the WSP and
CP formats than the others (at least 3 points more). These
two formats are based upon a good frequency / quefrency
resolution despite the absence of time resolution. The CP
results are 0.7 points lower than WSP. The differences might
be explained by the loss of information while taking the
modulus (c.f. Subsection II-C).

The network reaches 94.5% of accuracy for the CVD format
which is 1.9 points above the SG performance despite the
short observation. The second FFT made on SG has a positive
impact on the classification performance.

Feeding the network with x(t), produces the worst result
(75.8%). Other formats project the information contained
in x(t) into another space. Such an operation makes the
differences between drones be more contrasted.

B. Robustness to noise

Our CNN obtains the best results with noisy data when us-
ing the WSP format (92.7%). This result is more than 10 points

Format Reference [%] Noise added [%] ∆
x(t) 75.8 ± 1.55 72.6 ± 1.50 3.2
WSP 98.1 ± 0.09 92.7 ± 0.15 5.4
CP 97.4 ± 0.11 80.9 ± 0.30 16.5
SG 92.6 ± 0.32 73.4 ± 0.42 19.2

CVD 94.5 ± 0.17 79.2 ± 0.26 15.3

TABLE II: Robustness to noise.

higher than for any other format. The WSP format also resists
the best to noise as its performance is only 5.4 points less than
for the reference. In contrast, losses observed in classification
with the use of other formats after noise injection are about
15 points.

The classification with the CP and CVD formats has similar
results, around 80%. Surprisingly, the results with CP, based
as WPS on long integration, are not better than the WSP one.
CP was created to resist better than WSP to noise [18].

Similarly to the reference, the classification performance for
SG is relatively low (73.4%) and worse than for CVD. The
gap between these two formats have even increased from 1.9%
to 5.8%. A possible explanation is the noise subduction by the
second FFT in CVD.

The classification with the x(t) format is poor.

C. Short observation duration

Format Reference [%] Short signal [%] ∆
x(t) 75.8 ± 1.50 67.1 ± 1.01 8.7
WSP 98.1 ± 0.09 93.7 ± 0.12 4.4
CP 97.4 ± 0.11 94.0 ± 0.12 3.4
SG 92.6 ± 0.32 87.3 ± 0.23 5.3

CVD 94.5 ± 0.17 79.3 ± 0.26 15.2

TABLE III: Short observation

Although CP and WSP have comparable classification
values (around 94%), CP withstands better than WSP to
the reduction of observation time (3.4% instead of 4.4% in
∆ column). Shortening the observation time diminishes the
number of peaks produced by the rotors. The remaining peaks,
however, are sufficient for the CNN to discriminate the drones.

Once again, the classification with SG is low compared
to WSP and CP with only 87.3% of success rate and a
degradation of 5.3 points due to the short observation.

The CVD classification performance decreases drastically
(3 times as much as for any other format). It confirms the
statement given in Subsection II-E: this format is made for
long observations. For short ones, the second FFT is performed
on too few profiles and produces thus a poor resolution in
terms of frequency cadence. For observations longer than the
reference case, we expect that its performance might increase.

For each format, shortening the observation time decreases
the network performance (x(t) too low to be considered).
Despite that the short observation duration is sufficient to
capture several rotor speeds, not all the characteristics needed
to identify the target are present. We believe that the dynamic
evolution of the drone is used to classify. In a real scenario,
the observation time depends in particular on the environment
(if the drone can be hidden by obstacles). Thus, the latter has
a strong impact on the results.

 



D. Facility of training

Format Dimension Time/Step [s] Time [s]
x(t) 1× 3000× 2 0.39 79
WSP 1× 2400× 2 0.32 449
CP 1× 3000× 2 0.39 394
SG 20× 300× 2 0.18 425

CVD 20× 120× 2 0.10 163

TABLE IV: Facility of training.

The time per step and the time to reach 95% of the
maximum accuracy value are given in seconds.

The time per step for 1-D data is longer than for 2-D data of
same size because the 2×2 max-pool is replaced by a 2×1 one
and, consequently, 1-D data is less reduced on deeper levels
of the network. However, the CNN does not necessarily need
more iterations to reach 95% of its maximum accuracy. The
time to reach this maximum may be twenty times longer. Thus
each training takes between several minutes and three hours.

Except for the fast training with CVD, the other formats
have similar training speed. WSP is the slowest format.
For x(t), only few steps are needed. The time is therefore
significantly shorter than the other formats.

VI. CONCLUSIONS

Table V summarizes our results. This qualitative evaluation
is based on a trade-off between absolute classification and the
∆ column. For each case, we assess one of the grade —, -,
0, +, ++ (from very bad to very good, respectively).

Format Use conditions
A B C D

x(t) — — — ++
WSP ++ ++ + -
CP ++ - ++ 0
SG + — 0 0

CVD + - — +
TABLE V: Qualitative analysis of the CNN performance

A: Reference, B: Robustness to noise,
C: Short observation, D: Facility of training.

Using WSP input, produces better classification results than
all other formats for the reference case. Moreover, the classi-
fication performance decreases significantly less with a weak
SNR than for other formats. WSP is also robust to shortening
of the observation time, only CP being more resilient. We
therefore recommend using the WSP format to classify drones
according to micro-Doppler characteristics, particularly for
data with a poor SNR.

The network results with the CP format are close to those
obtained with WSP for the reference case while resisting
considerably less than it to SNR degradation. CP is, however,
more robust to shorter observations. When doing classification
with data with a good SNR and a short observation, we
recommend comparing the results obtained with CP and WSP.

The networks with CVD, SG or x(t) inputs are always out-
performed by the one with WSP, we thus do not recommend
them.

We remind that the training and testing sets should be
collected on different days as the random data repartition
might improve the network performance artificially.

The different formats contain at best as much information
as the x(t) format while giving better performance. Input
formats have thus an influence on the performance despite
the extractions made by a CNN. It might be due to the small
amount of data and the environmental bias inherent to radar
measurements.

We also observe that all formats we studied are not specif-
ically designed for classification with a CNN. An interesting
research line would be to produce a micro-Doppler signature
format dedicated for CNN, outperforming all-purpose formats.
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