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Abstract

We implement numerically formulas of [Isaev, Novikov, arXiv:2107.07882] for

finding a compactly supported function v on Rd, d ≥ 1, from its Fourier transform

F [v] given within the ballBr. For the one-dimensional case, these formulas are based

on the theory of prolate spheroidal wave functions, which arise, in particular, in the

singular value decomposition of the aforementioned band-limited Fourier transform

for d = 1. In multidimensions, these formulas also include inversion of the Radon

transform. In particular, we give numerical examples of super-resolution, that is,

recovering details beyond the diffraction limit.
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1 Introduction

We consider the Fourier transform F defined by the formula

F [v](p) = v̂(p) := 1
(2π)d

∫
Rd

eipqv(q)dq, p ∈ Rd, (1.1)

where v is a complex-valued test function on Rd, d ≥ 1.

For any ρ > 0, let

Bρ :=
{
q ∈ Rd : |q| < ρ

}
. (1.2)

We consider the following problem.

Problem 1.1. Find v ∈ L2(Rd), where supp v ⊂ Bσ, from v̂ = F [v] given on the ball Br

(possibly with some noise), for fixed r, σ > 0.

Problem 1.1 arises in different areas such as Fourier analysis, linearised inverse scat-

tering and image processing, and has been extensively studied in the literature. Solving

Problem 1.1 is complicated considerably by the fact that it is ill-posed in the sense of

Hadamard (for example, when the noisy data is taken from L2(Br)) and, moreover, it

is exponentially unstable. Nevertheless, there exist several techniques to approach this

problem theoretically and numerically. For more background on Problem 1.1 see, for ex-

ample, [3, 7–9, 14–16, 18, 20] and references therein. In addition, for general background

on ill-posed inverse problems see [11,23].

The conventional approach for solving Problem 1.1 is based on the following approxi-

mation

v ≈ vnaive := F−1 [w] on Bσ, (1.3)

where F−1 is the standard inverse Fourier transform and w is such that w|Br coincides

with the data of Problem 1.1 and w|Rd\Br ≡ 0. Formula (1.3) leads to a stable and

accurate reconstruction for sufficiently large r. However, it has the well-known diffraction

limit: small details (especially less than π/r) are blurred. A new approach for super-

resolution in comparison with the resolution of (1.3) was recently suggested in [16]; see

also [14, Section 6.3]. In the present work, we study numerically the approach of [16] and

demonstrate its efficiency.

For convenience, we consider the scaling of v with respect to the size of its support:

vσ(q) := v(σq), q ∈ Rd. (1.4)
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Note that supp vσ ⊂ B1. Let

c := rσ. (1.5)

Then, the data in Problem 1.1 (for the case without noise) can be presented as follows:

v̂(rx) = σ
2π
Fc [vσ] (x), for d = 1, (1.6)

v̂(rxθ) =
(
σ
2π

)d
Fc [Rθ[vσ]] (x), for d ≥ 2, (1.7)

where x ∈ [−1, 1], θ ∈ Sd−1; see [16, Theorem 1.1 and Section 4.1]. Here, the operators

Fc and Rθ are defined by

Fc[f ](x) :=

∫ 1

−1
eicxyf(y)dy, x ∈ [−1, 1], (1.8)

Rθ[u](y) :=

∫
q∈Rd : qθ=y

u(q)dq, y ∈ R, (1.9)

where f is a test function on [−1, 1] and u is a test function on Rd.

Recall that Rθ[u] ≡ R[u](·, θ), where Rθ is defined by (1.9) and R is the classical

Radon transform; see, for example, [19] and references therein. In fact, presentation (1.7)

follows from the projection theorem of the Radon transform theory.

The operator Fc defined by (1.8) is a variant of band-limited Fourier transform. This

operator is one of the key objects of the theory of prolate spheroidal wave functions

(PSWFs); see, for example, [6, 16, 22, 24, 25] and references therein. In particular, the

operator Fc has the following singular value decomposition in L2([−1, 1]):

Fc[f ](x) =
∑
j∈N

µj,cψj,c(x)

∫ 1

−1
ψj,c(y)f(y)dy, (1.10)

where (ψj,c)j∈N are the prolate spheroidal wave functions (PSWFs) and the eigenvalues

{µj,c}j∈N satisfy 0 < |µj+1,c| < |µj,c| for all j ∈ N. Here and throughout the paper, we set

N := {0, 1, 2 . . .}.
The approach for solving Problem 1.1 suggested in [16] is based on presentations (1.6),

(1.7), inversion of Fc, and inversion of R. The inversion of R is given using standard

results of the Radon transform theory. The inversion of Fc is given using the singular

value decomposition (1.10). In the framework of this approach, the operator F−1c is

approximated by the finite-rank operator F−1n,c (see (2.4) for precise definition), where n

is the rank. In fact, the number n is a regularisation parameter and its choice is crucial

for both theoretical results and numerical applications.
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Our numerical implementation of the approach of [16] includes, in particular, different

principles for choosing n such as residual minimisation and the Morozov discrepancy

principle. One of the most interesting points of our results lies in examples of super-

resolution, that is, recovering details of size less than π/r, where r is the band-limiting

radius of Problem 1.1. We also obtain a better reconstruction in the sense of L2-norm

than the conventional reconstruction based on formula (1.3).

The paper is structured as follows. In Section 2.1, we recall the aforementioned recon-

struction formulas of [16]. In Section 2.2, we discuss numerical principles for choosing the

regularisation parameter n. Numerical examples are presented in Section 3. In conclusion,

we summarise the main points in Section 4.

2 Reconstruction for Problem 1.1

In this section, we present the main points of our numerical approach to Problem 1.1.

Namely, we recall the reconstruction formulas from [16] in Section 2.1 and suggest their

possible regularisations in Section 2.2.

2.1 Reconstruction formulas from [16]

Recall the definitions of vσ and c from (1.4) and (1.5). For the case without noise, the

following reconstruction formulas for Problem 1.1 hold; see [16, Theorem 1.1, Remark 1.2,

and formula (1.3)].

� For d = 1, we have

vσ = 2π
σ
F−1c [v̂r], (2.1)

where

v̂r(x) = v̂(rx), x ∈ [−1, 1].

� For d ≥ 2, we have

vσ =
(

2π
σ

)d
R−1[fr,σ], (2.2)

where R−1 is a standard inversion of the Radon transform R, and

fr,σ(y, θ) :=

F−1c [v̂r,θ](y), if y ∈ [−1, 1]

0, otherwise,

v̂r,θ(x) := v̂(rxθ), x ∈ [−1, 1], θ ∈ Sd−1.
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In the above, the inverse transform F−1c is given by

F−1c [g](y) =
∑
j∈N

1
µj,c

ψj,c(y)

∫ 1

−1
ψj,c(x)g(x)dx, (2.3)

where g is a test function from the range of Fc acting on L2([−1, 1]).

For the case of noisy data in Problem 1.1, the operator F−1c is approximated by the

finite rank operator F−1n,c defined by

F−1n,c [g](y) :=
n∑
j=0

1
µj,c

ψj,c(y)

∫ 1

−1
ψj,c(x)g(x)dx. (2.4)

The operator F−1n,c is correctly defined on L2([−1, 1]) for any n ∈ N. In addition, F−1n,c [g]

is the quasi-solution in the sense of Ivanov of the equation Fc[f ] = g ∈ L2([−1, 1]) on the

span of the first n+ 1 functions (ψj,c)j≤n.

The rank n of the operator F−1n,c is a regularisation parameter. The optimal choice of

n depends, in particular, on the relative noise level δ in the data w ≈ v̂|Br of Problem 1.1.

In [16], the pure mathematical choice of n = n∗α,δ is as follows:

n∗α,δ :=
⌊
3 + τ ec

4

⌋
, (2.5)

where b·c denotes the floor function and τ = τ(c, α, δ) ≥ 1 is the solution of the equation

τ log τ = 4
ec
α log(δ−1).

Here, δ ∈ (0, 1) is defined using L2-norm for d = 1 and a weighted L2-norm for d ≥ 2,

and α ∈ (0, 1) is a parameter in the related stability estimate for the reconstruction via

formulas (1.4), (2.1), (2.2), and (2.4); see [16, Theorem 1.4] for details.

In the next section, we discuss numerical principles for chosing the regularisation

parameter n.

2.2 Numerical implementation

In this section we describe the numerical implementation of formulas (1.4), (2.1), (2.2).

We replace F−1c with the finite rank operator F−1n,c defined by (2.4). For implementing

R−1, we use the filtered back projection (FBP) algorithm, see, for example, [19, Chapter

5].

The key point of our reconstruction is choosing the regularisation parameter n in (2.4).

The first interesting option is n = n0, where

n0 :=
⌊

2c
π

⌋
. (2.6)
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This choice is motivated by the following well-known formula; see, for example, [16,

formulas (2.3) and (2.4)]:⌊
2c

π

⌋
− 1 ≤

∣∣∣{n ∈ N : |µn,c| ≥
√
π/c}

∣∣∣ ≤ ⌈2c

π

⌉
+ 1. (2.7)

In the above, b·c and d·e denote the floor and the ceiling functions, respectively, and | · |
is the number of elements in a set. In fact, |µn,c| gets very small soon after n exceeds

n0 and further decays super-geometrically as n grows; see, for example, [5, 6, 17, 24]. In

addition, for all our numerical examples, we observed that F−1n,c with n = n0 leads to a

reconstruction that behaves similarly to (1.3).

The choice n = n0 can be also intuitively explained using approximation of F−1c with

the inverse Fourier series. Indeed, we have that, for x ∈ [−1, 1],

F−1c [g](x) = π
∞∑

k=−∞

e−iπkxf̂(πk)

≈ π
∑

k :πk∈[−c,c]

e−iπkxf̂(πk) = 1
2

∑
k :πk∈[−c,c]

e−iπkxg(πk/c),

where g = Fc[f ] and the truncation of the series corresponds to the known values {f̂(πk)}
from g given on [−1, 1]. Observe that n0 almost coincides with the number of terms in

the truncated series above, that is, the number of harmonics of the form e−iπkx periodic

with respect to x ∈ [−1, 1] such that πk ∈ [−c, c].
Note that our implementations rely on approximations {µ̃j,c}j∈N of the eigenvalues

{µj,c}j∈N, approximations {ψ̃j,c}j∈N of the PSWFs {ψj,c}j∈N, and methods of computing

integrals (the numbers of grid points, for example). For consistency, we use the tilde

notation for numerical implementation of all objects and operators of our reconstruction;

for example, F̃−1n,c and R̃−1 correspond to F−1n,c and R−1, respectively.

The quality of numerical implementations restricts how large n could be. A very

rapid decay of |µj,c| for large j > n0 leads to that dividing by µj,c in (2.4) quickly becomes

numerically intractable. Our trust criteria is

n ≤ ñε := max{j ∈ N : εj ≤ ε}, (2.8)

where ε is a fixed small positive number and

εj :=

 j∑
`=0

∫ 1

−1

∣∣∣∣∣F̃c[ψ̃`,c](x)

µ̃`,c
− ψ̃`,c(x)

∣∣∣∣∣
2

dx

1/2

(2.9)
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The integration and arithmetic operations in (2.9) are considered as their numerical real-

isations.

In order to choose n optimally within the window

n0 ≤ n ≤ ñε, (2.10)

we rely on the following two well-known numerical principles. Let F̃ denote the numerical

implementation of the Fourier transform F (as explained above) and Φ̃n[w] denote the

numerical reconstruction for Problem 1.1 from the data w ≈ v̂|Br via formulas (1.4), (2.1),

(2.2), and (2.4). The residual minimisation principle suggests n = n∗, where

n∗ := arg min
n0≤n≤ñε

‖F̃ [Φ̃n[w]]− w‖L2(Br). (2.11)

The Morozov discrepancy principle suggests n = n∗∆, where

n∗∆ := arg min
n0≤n≤ñε

∣∣∣‖F̃ [Φ̃n[w]]− w‖L2(Br) −∆
∣∣∣ (2.12)

and ∆ > 0 is a priori bound on the L2 noise level of the data w in Problem 1.1, that is,

‖w − v̂‖L2(Br) ≤ ∆. (2.13)

Finally, to measure the quality of numerical reconstructions, we introduce the following

convenient notation for relative errors:

E(u, u0) :=
‖u− u0‖L2(B)

‖u0‖L2(B)

, (2.14)

where B = Bσ for the case of spatial domain, B = Br for the case of Fourier domain, and

the L2-norm is computed using numerical integration.

3 Examples

For our examples, we use the values σ = 1 and c = r = 10. We consider the cases

d = 1 and d = 2. Our numerical implementations rely on the values of v|Bσ and v̂|Br
on the uniform circumscribed grids of Nd points. The approximate PSWFs {ψ̃j,c}j≥0 are

computed using the software of [1]. Then, we find the approximate eigenvalues {µ̃j,c}j≥0
using the relation Fc[ψj,c] = µj,cψj,c.

Table 1 shows approximations of {µ̃j,c} for j up to 18 needed for our computations.

Note that n0 = b2c/πc = 6 and
√
π/c ≈ 0.560 and the values |µ̃j,c| are in accordance

with inequality (2.7).
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Table 1: Eigenvalues {µj,c} for c = 10 and j = 0, . . . , 18

j 0 1 2 3 4 5 6 7 8 9 10

(i)−jµj,c 0.793 0.793 0.793 0.792 0.782 0.720 0.526 0.266 0.097 0.029 0.007

j 11 12 13 14 15 16 17 18

(i)−jµj,c 0.002 3.7 · 10−4 7.1 · 10−5 1.3 · 10−5 2.2 · 10−6 3.4 · 10−7 5.0 · 10−8 6.9 · 10−9

Figure 1 shows the corresponding values of εj in the logarithmic scale for N = 129

and N = 2049 that we use for our trust criteria (2.8). Clearly, the numerical calculations

involving PSWFs become unreliable when n > 12 for N = 129 and when n > 17 for

N = 2049.

(a) (b)

Figure 1: The plots of log10(εj) for (a) N = 129 and (b) N = 2049.

The following figures (Figures 2– 8) illustrate the reconstruction of Section 2. The

preimages v considered in the present paper are rather simple: the sum of characteristic

functions of two or three disjoint objects at distance significantly less than π/r ≈ 0.314.

Most importantly, for all given examples, a proper choice of the regularisation parameter

n leads to super-resolution, that is in this case, allowing to separate the two objects

of the preimage. We also obtain smaller relative errors E in L2-norm than the naive

reconstruction based on formula (1.3) in both Fourier domain and spatial domain; see

(2.14) for the definition of E.

In this section, we abbreviate the notation Φ̃n[w] used in (2.11) and (2.12) as follows:

ṽn := Φ̃n[w]. (3.1)

Recall that w ≈ F [v]|Br is the data of Problem 1.1 and Φ̃n[·] denotes the numerical PSWF

reconstruction via formulas (1.4), (2.1), (2.2), and (2.4).
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Figure 2 shows our PSWF reconstructions ṽn with n = n∗ defined by (2.11) from

noiseless data w, in comparison with preimage v and naive Fourier inversion ṽnaive, for

d = 1, N = 129, and N = 2049. More precisely, the aforementioned data w are noiseless

on the uniform grid of N points on Br in the Fourier domain. The most interesting point

is that the reconstruction ṽn with n taken according to the residual minimisation (n = n∗)

achieves super-resolution. Indeed, the two parts of v are sufficiently distinguished by ṽn

even though the distance between the two parts is π/(2r). The naive reconstruction ṽnaive

obscures completely the presence of the two parts.

Note that even for noiseless data there still remains ”discretisation noise” which gets

smaller when N grows. For the example of Figure 2, it is 0.88% for N = 129 and 0.06%

for N = 2049. Interestingly, the theoretical suggestion n = n∗α,δ of (2.5) is close to the

residual minimisation choice n∗. Namely, n∗α,δ = 12 for N = 129 and n∗α,δ = 14 for

N = 129, where α = 0.75 and δ corresponds to the ”discretisation noise” level. Note that

the optimal choice of α requires additional theoretical studies.

(a) (b)

Figure 2: Reconstruction ṽn(dark blue) using the residual minimisation from

noiseless data w, in comparison with preimage v(red) and naive Fourier inversion

ṽnaive(green) for d = 1.

(a) N = 129 and n = n∗ = 12. The relative errors: E(ṽn, v) ≈ 0.57,

E(ṽnaive, v) ≈ 0.71 and E(F̃ [ṽn], w) ≈ 4 · 10−3, E(F̃ [ṽnaive], w) ≈ 5 · 10−2.

(b) N = 2049 and n = n∗ = 16. The relative errors: E(ṽn, v) ≈ 0.39,

E(ṽnaive, v) ≈ 0.67 and E(F̃ [ṽn], w) ≈ 4.9 · 10−9, E(F̃ [ṽnaive], w) ≈ 5 · 10−2.

Figure 3 shows our PSWF reconstructions ṽn with n = n0 and n = ñε + 1, where

n0 is defined by (2.6) and ñε is defined by (2.8) with ε = 1, and all other parameters
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are the same as in Figure 2(b). Figure 3(a) demonstrates the general phenomenon that

our reconstruction ṽn with n = n0 behaves similarly to the naive reconstruction ṽnaive.

Figure 3(b) demonstrates that reconstruction ṽn quickly becomes unreliable after the trust

criteria (2.8) is violated.

(a) (b)

Figure 3: Reconstruction ṽn(dark blue) from noiseless data w in comparison

with preimage v(red) and naive Fourier inversion ṽnaive(green) for d = 1 and

N = 2049: (a) n = n0 = 6, (b) n = ñε + 1 = 18.

Figure 4 shows our PSWF reconstructions ṽn from the noisy data w ≈ v̂|Br with 1.36%

of L2 random noise for d = 1, N = 129, and n ∈
{
n∗, n∗∆,

1
2
(n∗ + n∗∆)

}
, where n∗, n∗∆ are

defined by (2.11), (2.12) and ∆ = 0.0136‖v̂‖L2(Br). In this example, the best reconstruction

in the spatial domain is achieved when n = 1
2
(n∗ + n∗∆). Figure 4(c) illustrates the well-

known fact that residual minimisation (n = n∗) may yield explosion in the reconstruction

from noisy data. On the other hand, Morozov’s discrepancy principle (n = n∗∆) leads

to a stable reconstruction, but, in our example, it fails to achieve super-resolution; see

Figure 4(a).

Figure 5 and Figure 6 show our PSWF reconstruction ṽn with n = n∗ defined by (2.11)

from noiseless data w, in comparison with preimage v and naive Fourier inversion ṽnaive

for d = 2 and N = 129. In addition, we implement R−1 using the filtered back projection

(FBP) algorithm with the angle step of 2.5◦. Similarly to the one-dimensional example

of Figure 2, the reconstruction ṽn with n taken according to the residual minimisation

(n = n∗) achieves super-resolution. Indeed, the distances between the three square parts

of v are significantly less than π/r: two bottom squares are at the distance 0.1, while the

top square and any of the bottom squares are at the distance 0.05. Nevertheless, the three

parts of v are sufficiently distinguished by ṽn. The naive reconstruction ṽnaive obscures
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(a) (b) (c)

Figure 4: Reconstruction ṽn (dark blue) from noisy data w with 1.36% of L2

random noise for d = 1 and N = 129. The preimage v and naive Fourier inversion

ṽnaive are displayed similar to Figure 2 and, in addition, E(ṽnaive, v) ≈ 0.71 and

E(F̃ [ṽnaive], w) ≈ 0.0475.

(a) The Morozov discrepancy choice n = n∗∆ = 8. The relative errors:

E(ṽn, v) ≈ 0.69 and E(F̃ [ṽn], w) ≈ 0.0131.

(b) The optimal choice n = 1
2
(n∗∆+n∗) = 10 (best reconstruction in the spatial

domain). The relative errors: E(ṽn, v) ≈ 0.66 and E(F̃ [ṽn], w) ≈ 0.0130.

(c) The residual minimisation choice n = n∗ = 12. The relative errors:

E(ṽn, v) ≈ 2.62, and E(F̃ [ṽn], w) ≈ 0.0129.

completely the presence of the three parts.

Figure 8 shows our PSWF reconstruction ṽn with n = n∗ defined by (2.11) from noisy

data w ≈ v̂|Br with 21% of L2 random noise in comparison with preimage v and naive

Fourier inversion ṽnaive for d = 2 and N = 129. In addition, Figure 7 illustrates the

noiseless data v̂|Br and the noisy data w. In contrast to the one-dimensional example

of Figure 4, the reconstruction ṽn with n taken according to the residual minimisation

(n = n∗) works as well as for the noiseless case shown in Figure 5. Most importantly, this

reconstruction ṽn is rather stable and gives super-resolution even for a considerable level

of noise.
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Figure 5: Reconstruction ṽn(middle) using the residual minimisation from noise-

less data w in comparison with preimage v(left) and naive Fourier inversion

ṽnaive(right) for d = 2, N = 129, n = n∗ = 9. The relative errors: E(ṽn, v) ≈ 0.54,

E(ṽnaive, v) ≈ 0.60 and E(F̃ [ṽn], w) ≈ 0.09, E(F̃ [ṽnaive], w) ≈ 0.11.

(a) (b)

Figure 6: Cross-sections of reconstruction ṽn(dark blue) of Figure 5, in compari-

son with preimage v(red) and naive Fourier inversion ṽnaive(green): (a) along the

y-axis (x = 0); (b) along the x-axis (y = 0).
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(a) (b)

Figure 7: The noisy data w with 21% of random L2 noise in comparison with

the noiseless data v̂|Br for the preimage v displayed left on Figure 5 : (a) the real

part of v̂|Br ; (b) the real part of w ≈ v̂|Br .

Figure 8: Reconstruction ṽn(middle) using the residual minimisation from

thenoisy data displayed on Figure 7(b) in comparison with preimage v(left) and

naive Fourier inversion ṽnaive(right) for d = 2, N = 129, n = n∗ = 8. The

relative errors: E(ṽn, v) ≈ 0.55, E(ṽnaive, v) ≈ 0.60 and E(F̃ [ṽn], w) ≈ 0.23,

E(F̃ [ṽnaive], w) ≈ 0.24.
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4 Conclusion

We implemented numerically formulas of [16] for finding a compactly supported function

v on Rd, d ≥ 1, from its Fourier transform F [v] given within the ball Br (that is, for

Problem 1.1). Our approach is based on theoretical and numerical results on the prolate

spheroidal wave functions, the Radon transform, and regularisation methods. The present

work demonstrates the numerical efficiency of this approach to Problem 1.1 in its general

setting; including the following points.

� In spite of the exponential instability of the problem, we achieved super-resolution

even for noisy data by appropriate choice of the regularisation parameter n. In

particular, for d ≥ 2, the approach works well even for a considerable level of

random noise.

� Our reconstruction (with appropriate choice of n) gives smaller errors in L2-norm

(in both Fourier domain and spatial domain) than the conventional reconstruction

based on formula (1.3).

� Our reconstruction with n = n0 :=
⌊

2c
π

⌋
behaves similarly to the conventional

reconstruction based on formula (1.3). In our examples, taking n larger than n0

gives better results.

We expect that similar numerical behaviour (in particular, super-resolution) is also

possible for monochromatic inverse scattering (considered, for example, in [2,4,10,12,13,

21]) and for other generalisations of Problem 1.1.
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