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Abstract

Data assimilation consists in combining a model and measurements in or-
der to estimate the state of the system. In wind engineering, the interest
to take advantage of both sources of information is extremely high. As
a matter of fact, on the one hand, measurements in wind tunnel experi-
ments are in practice extremely sparse and, on the other hand, stationary
numerical models based on Reynolds averaged Navier-Stokes (RANS) fail
to predict the time-averaged wake accurately. Variational data assimilation
(VDA) techniques are defined as high-dimensional optimisation problems,
the solution of which is determined through an adjoint method. In prac-
tical applications, where only wall pressure measurements on the building
are available, an accurate mean flow reconstruction is very challenging, es-
pecially in regions far away from any measurements. In the present paper,
spatially distributed forces are considered as a control parameter on the mo-
mentum equation or the turbulence closure equations. These forcings are
interpreted as corrections brought to the turbulence closure. Consequently,
the problem corresponds to a high-dimensional optimisation problem for
a spatially distributed variable with sparse pressure measurements. Some
guidelines are brought here to perform accurate and physically consistent
reconstructions for wind engineering applications. In order to deal as closely
as possible with a practical application, this study focuses on the realizable
revision of the k − ϵ RANS model applied on a high-rise building wake flow.
In particular, some regularisation strategies as well as efficient techniques
for control parameter selection and identification are provided.
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1. Introduction1

Because of their potential long-time exposure to strong atmospheric2

winds, high-rise buildings may exhibit problematic tearing affecting secu-3

rity [1, 2, 3]. To infer how wind flow affects these structures, some authors4

[4, 3] have used physical models and numerical simulations for a long time.5

In order to predict accurately the pressure distribution on the building,6

the surrounding flow field has to be well represented, but the development7

of computationally afordable models that fits experimental informations in8

realistic 3D configurations is still today challenging.9

Wind tunnel experiments are conducted on reduced-scale models at the10

design stage, leading to reliable experimental load predictions thanks to11

years of progress on flow measurement techniques. High-Frequency Pres-12

sure Integration (HFPI) [5] is one of the most common techniques employed13

for wind load prediction. This sparse wall pressure measurement may lead14

to misinterpretations on the local pressure field when complex geometries15

are considered. Moreover, although techniques such as Particle Image Ve-16

locimetry (PIV) [6] allow in principle to obtain planar or even full 3D data17

[7] velocity fields, the cost is considerably higher.18

More recently, made possible by the substantial progresses in computa-19

tional fluid dynamics, numerical simulations of atmospheric boundary layer20

flow over these large structures have been carried out. Both steady simula-21

tions embedding turbulence models within the Reynolds averaged Navier–22

Stokes (RANS) and large eddy simulations (LES) were investigated to give23

an insight into the time-averaged flow profile. Several studies were con-24

ducted to compare their relative performances and assess their applicability25

to the prediction of flow around buildings. [1, 8, 9, 10, 11, 12, 13]. In most26

of these studies, flow-field around cubic-buildings were analysed, and defi-27

ciencies of the eddy viscosity modelling in the k − ϵ model [14] were put28

forward (e.g., by Murakami et al. [1]). These include the stagnation point29

anomaly [15, 16] with overestimation of turbulent kinetic energy near the30

frontal corner and the resulting underestimation of the size of separated31

boundary layers. Another reported anomaly is the underestimation of tur-32

bulent kinetic energy in the wake resulting in an overestimation of the size of33
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the recirculation zone. These accuracy issues strongly hinder the predictive34

abilities of the model to reproduce wall-pressure measurements. Although,35

LES leads to intrinsically superior performances [11, 12, 17], they are com-36

putationally expensive. Moreover, they carry some difficulties, such as the37

definition of time-dependent inlet and wall boundary conditions [18, 19, 20].38

Measurements and numerical simulations provide complementary pieces39

of information. The aim of the data-model coupling strategy, which consti-40

tutes the core of the present work, is to move beyond the respective limita-41

tions of data and models by taking advantage of all available information.42

This strategy will allow us to provide an effective solution to address turbu-43

lence modelling errors at a reasonable cost, informed by data obtained from44

realistic experimental procedures. The concept of data-model coupling, or45

more commonly referred to as data-assimilation (DA), comes from estima-46

tion theory, and was first been applied to numerical weather prediction [21].47

Two large classes of DA exist. Statistical techniques based on Bayesian48

inference leads to sequential strategies such as the Kalman filter. It has been49

used to estimate optimal flow parameters from data affected by a high un-50

certainty level [22, 23]. It is opposed to variational methods [24, 25], where51

the estimation problem is written as an optimisation problem. The latter52

is solved through gradient descent optimization techniques based on the53

adjoint of the linear tangent dynamics operator or an ensemble approxima-54

tion of it. These methodologies have been carried out for direct numerical55

simulations (DNS) or LES models in [26, 27, 28, 22, 29, 30].56

In this line of thought, formal uncertainty quantification (UQ) tech-57

niques have been employed to address the modelling errors underlying the58

closure constants of RANS systems in probabilistic terms [31, 32, 33, 34,59

35, 36]. In a recent work by Shirzadi et al. [37], global coefficients of the60

standard k−ϵ model were adapted for unstable atmospheric boundary layer61

(ABL) flow around high-rise buildings using Monte–Carlo optimisation tech-62

niques. More recently, in Ben Ali et al. [38] the global coefficients of the63

realizable revision of the k − ϵ model were also calibrated for wind-loads64

prediction on a high-rise building of ratio H/D = 4.9 (same configuration65

as the present paper). In this latter work, the authors used wind tunnel66

pressure measurements in a variational data assimilation (VDA) framework.67

The VDA is then applied for a detailed analysis of the considered turbulence68

model. Local sensitivity to the global turbulence coefficients is discussed,69

and a calibration process was conducted to investigate the limitations of70

the models through hold/relax closure hypothesis scenarios. It was re-71
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ported that the VDA technique is indeed able to provide insights on the72

model variability through calibration of model closure coefficients. It was73

observed that variabilities of the solution were strongly constrained and did74

not allow the flow to reach an effective region of the state space for accurate75

estimations of both the wind-loads and the recirculation zone, highlighting,76

in consequence, the rigidity of the standard closure model. To overcome77

such restrictions, the authors have considered a so-called weak constraint78

by defining an additive forcing term to allow the solution to deviate from79

the default model. Better flow reconstructions have been obtained, but no80

detailed studies have been performed to determine the best way to relax the81

dynamical constraint for flow reconstruction. Many control parameters and82

formulations of the optimisation problem can be considered. The present83

study complements the work ofBen Ali et al. [38]to explore in details the84

possible control parameters choices to estimate at best the flow surrounding85

the building.86

In the last few years, studies dealing mainly with fundamental and indus-87

trial oriented flow configurations, e.g., airfoils, infinite cylinder, backward88

step, have been considered for data assimilation (DA) flow reconstruction.89

A hierarchy of procedures has been proposed. In [39, 40], laminar steady90

Navier–Stokes equations corrected by a direct forcing on the momentum91

equations have been used to assimilate synthetic particle image velocime-92

try (PIV) data. For turbulent flows, DA with RANS turbulence models93

have been explored [41, 42, 43, 44]. Franceschini and Sipp [44] have partly94

addressed closure errors to the transport equation of eddy-viscosity in the95

Spalart-Allmaras model [45]. In other works [41, 42, 43], data (either syn-96

thetic or experimental) were assimilated, and turbulence model errors were97

addressed in the turbulent energy production as it constitutes one common98

issue for the prediction of a variety of flow configurations. In there stud-99

ies, reconstructions of several benchmark flow configurations, ranging from100

one-dimensional channel flows to 2D airfoil flows, were performed under101

the framework of both ensemble Kalman [46] and VDA. It should be noted102

that all these studies were investigated in bi-dimensional flow configura-103

tions, in which turbulence is often generated at a unique integral scale. To104

our knowledge, three-dimensional cases of complex flow interactions, such105

as building-lower atmospheric boundary layer interaction, are still largely106

unexplored with VDA.107

Ben Ali et al. [38] focused on exploiting the VDA framework to extract108

physical information on the flow and identify deficiencies in the turbulence109
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closure modelling of the RANS. In the present study, the objective is to110

perform the best flow estimation as possible with a distributed control pa-111

rameter based on a RANS model and on wall-pressure measurements for112

wind-engineering applications. The main contributions are :113

• Applying the VDA on a realistic wind engineering estimation problem114

combining wall-pressure measurements with a routinely used indus-115

trial three-dimensional RANS code;116

• Determining the best choice of distributed control parameter to avoid117

overfitting and obtain accurate reconstructions;118

• Proposing a Sobolev gradient descent direction and comparing it with119

penalty techniques to regularise the solution and drastically accelerate120

the convergence.121

To these ends, a large set of assimilations with various choices are per-122

formed and compared to provide guidelines for VDA estimations in wind123

engineering.124

This paper is organized as follows. In section 2, the flow configuration125

is presented. In section 3, the methodology to derive the VDA approach126

is introduced. A modified set of RANS equations is presented, motiva-127

tions for the choices of parameter and regularization solution are given.128

In section 4, the numerical setup is presented. In section 5.1, the data-129

assimilation results of the various parametrization strategies are shown. Fi-130

nally, to obtain accurate reconstructions, a modified model that combines131

previous parametrizations is investigated in section 5.2.132

2. Flow configuration133

The present work was conducted on an isolated high-rise building with134

a square section and an aspect ratio of H/D ≃ 4.9 for which H = 147 m135

is the height and D = 30 m the width at full scale. Measurements were136

produced from experiments held in CSTB (Nantes, France) as part of the137

thesis of Sheng et al. [47]. In his work, two types of experiments were138

carried out, using the HFPI for wall-pressure and PIV plans for the near139

wake flow. It should be recall that only the wall-pressure was considered in140

this work as input data for the data-assimilation procedure. PIV plans from141

the same experiment were used only for an external validation purpose. For142

illustration, figure 1 shows the 3D view of the case study from both the143

experiments and our computational setup.144
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(a) (b)

Figure 1: Flow configuration (a) the scaled model of the building with positions of pres-
sure measurements (red dots), (b) the full scale building in the computational domain.

3. Methodology145

This section briefly presents the variational data-assimilation framework,146

which was developed in [38].147

With the variational approach [24, 25], the estimation problem is ex-148

pressed in terms of the minimization of an objective functional, which mea-149

sures the mismatch between the model predictions and the data, under150

the constraint that the optimal state obeys to the model dynamics. In151

the context of time-averaged models, the data assimilation problem can be152

formulated as153

min
α

J (α, X(α), Y) (1a)

subject to Mi(α, X(α)) = 0 i = 1, . . . , N, (1b)

where J () is the objective functional that quantifies the discrepancy154

between the assimilated data and the model predictions, with Y referring155

to the measurements and X to the flow variables. This objective is then156

minimized under the constraint of N flow governing equations Mi.157

3.1. Objective functional158

Following [38], the objective functional is constructed as follows. First,159

the experimental pressure is scaled consistently with the pressure of the160
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model using the pressure coefficient Cp = P −P∞
1
2 ρU2

ref
, with the reference velocity161

Uref (resp. reference pressure P∞) being the far upstream velocity (resp.162

pressure) at Href = 2
3H. The specific functional reads as follows163

J (P, α) = 1
2 ||ρU2

ref∆Cw
p ||2R−1 + ∥∇α∥2

B−1 , (2)

where ∆Cw
p = Cw

pobs
−I(Cw

p ) with the subscript w standing for wall-pressure164

and obs for measurements. The interpolation operator I maps the wall-165

pressure coefficient of the numerical model to the pressure coefficient at the166

sensor position. The covariance matrix, R, between measurements allows167

to take into account experimental uncertainties and potential correlations168

between measurements. The norm ∥∥−1
R is induced by the inner product169

(·, ·)R−1 = (·, R−1·), where (·, ·) stands for the Euclidean inner product.170

Similarly, ∥∥−1
B is induced by the weigted L2(Ω) inner product (·, ·)B−1 =171

(·, B−1·)L2(Ω).172

It can outline here the strongly sparse nature of the partial pressure ob-173

servations making the estimation problem difficult. To cope with this diffi-174

culty, an L2 regularization term is added to penalize the gradient magnitude175

of the spatially distributed control parameter α. The covariance matrix B176

penalises allows to adjust the degree of regularity to be prescribed. A too-177

small penalty leads to irregular solutions, while strong penalties deteriorate178

reconstruction performances by imposing a too-smooth solution. In our179

case, spatial homogeneity for this constraint is assumed, and the confidence180

matrix B is considered diagonal and uniform. Its inverse is straightforwardly181

expressed as182

B−1
ii = ζi

(
max

∣∣∣∣∣∂J
∂α

0∣∣∣∣∣
)

.

in which ζi is a positive free parameter and subscript i stands for the vector183

and matrix component. The other term is a scaling to ensure dimensional184

homogeneity.185

3.2. Constraint definition186

This section is dedicated to the specification of the dynamical model M.187

The Reynolds averaged Navier-Stokes equations are considered, with the188

realizable version of the k − ϵ turbulence model [48]:189

7



∂(ρUjUi)
∂xj

+ ∂P

∂xi

− ∂

∂xj

[
µeff

(
∂Ui

∂xj

+ ∂Uj

∂xi

)]
= Fi, (3a)

∂Uj

∂xj

= 0, (3b)

∂ρUjk

∂xj

− ∂

∂xj

[(
µ + µt

σk

)
∂k

∂xi

]
− µt

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
∂Ui

∂xj

+ ρϵ = 0, (3c)

∂ρUjϵ

∂xj

− ∂

∂xj

[(
µ + µt

σϵ

)
∂ϵ

∂xi

]
− C1(S, k, ϵ)Sϵ + C2

ϵ2

k +√
µϵ

= Fϵ. (3d)

where U, ρ and P denote the average velocity, the density and the pres-190

sure, respectively. The turbulent kinetic energy and the energy dissipation191

density are denoted k and ϵ. Here, µeff = (µt + µ) stands for an effective192

viscosity gathering both the molecular and the isotropic eddy viscosity, with193

µt = Cµρ
k2

ϵ
. (4)

Details on the closure constants are provided in Appendix A. It is worth194

noting that, through the Boussinesq approximation, the isotropic compo-195

nent 2
3ρk of the Reynolds stress is absorbed into P . Therefore, in the com-196

putation of the pressure coefficient required for the objective functional (2),197

the isotropic part must be subtracted to obtain Cp = P −P∞− 2
3 ρk

1/2ρU2
ref

. Note the198

addition of two forcing terms F and Fϵ, respectively to the RANS equations199

and to the turbulence dissipation transport equation. Those forcing terms200

constitute the control parameter α as detailed in section 3.3. Recalling201

that the corrections brought by the forcing term Fϵ solely correspond to the202

previous work of [38].203

3.3. Parameter choice204

In the construction of the Reynolds averaged Navier-Stokes equations,205

some assumptions are performed at different levels. The first one pertains206

to the Boussinesq hypothesis and consists in modelling the Reynolds stress207

tensor in the momentum equation by a diffusive term weighted by a scalar208

eddy viscosity. The value of the eddy viscosity is determined by an algebraic209

equation involving statistical quantities related to the turbulence. At a sec-210

ond level, transport equations of these turbulent quantities are constructed.211
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Some semi-empirical terms acting as sources and sinks in these transport212

equations allow closing the equations.213

In the present work, for each layer of assumptions, a possible parametriza-214

tion is proposed as given in the system (3d). Herein, some detailed motiva-215

tions are provided for the parameter choice.216

Parametrising the momentum equation. At the first level, one aim to bring217

a direct correction to the mean deformation field. In theory, the exact218

modeling of the deformation should properly include the mechanisms of219

energy transfer between the mean field towards the turbulence scales and220

vice versa. However, the Boussinesq hypothesis leads to a unidirectional221

energy transfer. From this point of view, a volume force term added to the222

mean momentum equations can be proposed as a control parameter enabling223

us to relax the Boussinesq hypothesis and bring non-diffusive mechanisms.224

Without a priori knowledge of its form, it is straightforward to consider a225

vector force226

F1 = fu

which is later-on referred to as a raw form. As this raw form lacks of struc-227

turation, a more refined shape, yet with a simple expression, of this force228

is also investigated. Here, it is aimed to ensure some consistency between229

the deformation correction prescribed by this force and the fact that the230

Reynolds stress induces it. Corrections can be restricted to regions where231

the turbulence appears to be the most active and where the turbulence232

model is likely to be prone to strong errors. Shear layers in separated flows233

are challenging for turbulence models due to strong flow inhomogeneity and234

anisotropy, which is poorly represented by eddy diffusion models. We con-235

sider here addressing only corrections due to the flow inhomogeneity, that236

is, regions with a strong gradient of turbulent kinetic energy. Thus, a sim-237

ple model of more refined forcing term for the direct deformation correction238

may be defined as239

F2 = fu |∇k| .

This choice of constraint enables to bring some structure to the parameter240

field in a simple way. It can be noticed that this pre-factor is consistent241

in terms of physical dimension with the divergence of the Reynolds stress242

tensor. Given these two forms, two corrective models are then investigated.243

Parametrising the turbulence closure. In contrast to a direct forcing on the244

mean deformation field, corrections of the mean flow can still be embed-245

ded under the Boussinesq hypothesis. Parameters are then included in the246
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turbulence model equations rather than at the level of the momentum equa-247

tions, and their effects on the mean flow are restricted to a purely diffusive248

mechanism. Under the realizable k − ϵ model framework, two possible cor-249

rective models can be designed: on the transport equation of kinetic energy250

k or on the equation of the dissipation rate ϵ.251

In this work, only the correction of the transport of ϵ is considered since252

it is the equation where the closure terms are present. This choice keeps as253

much as possible the physical structure imposed by the RANS modelling.254

As for its form, it can be assumed either that Fϵ is an additive term255

without any particular structure as with F1, or that it is an explicit function256

of ϵ. Consistently with [38], authors propose to pre-multiply the forcing term257

by ϵ in order to reject unphysical corrections at locations where turbulence258

is weak.259

The following simple definition is considered260

Fϵ = −fϵϵ,

in order to improve the robustness of the DA procedure.261

3.4. Descent direction262

The minimization is performed by a gradient-based algorithm which263

requires the evaluation of the objective functional gradient w.r.t the control264

variables α. To that end, the adjoint formulation [24, 49] is considered.265

In fact, the problem (1) is equivalent to the problem of determining the266

optimal state X and the set of parameters α in addition to an adjoint state267

X∗ of a Lagrangian functional L(X, X∗, α) [50] . It is defined by augmenting268

the functional J with the constraint M weighted by the adjoint state:269

L(X, X∗, α) = J (X, α) +
∫

Ω
(X∗)T M(X, α) dΩ. (5)

Then, by considering an infinitesimal perturbation of its arguments, set-270

ting the first variation of L equal to zero leads to an optimality system,271

which provides the optimal solution.272

In [38], a differentiation consistent both with the realizable k − ϵ trans-273

port equations and with the near-wall boundary layer law has been per-274

formed. This has resulted in the definition of a continuous adjoint RANS275

model, together with consistent associated boundary conditions of the RANS276

tangent linear operator.277
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Moreover, a gradient projection onto the Sobolev space [51] is also con-278

sidered for descent direction as an alternative regularization solution to279

penalization. As in the work of [38], the descent direction with Sobolev280

gradient is determined by solving the following equation281

∂L
∂α

H1

=
(

1
1 + l2

sob

(I − l2
sob∆)

)−1
∂L
∂α

, (6)

in which the characteristic length scale lsob, i.e. the filtering size, is chosen to282

smooth non-physical small scales and ∆ stands for the Laplacian operator,283

while I stands for identity. Note that, unlike with the penalization approach284

which requires an estimate of a non-dimensional confidence factor ζ with no285

direct physical significance, the free parameter lsob has the dimensions of a286

length. This parameter can thus been chosen a priori based on a fraction287

of a relevant characteristic scales of the domain, such as the building width.288

It is worth noting that this Sobolev gradient step can be presented as a289

standalone regularization technique without the addition of any penalization290

term on the control parameter. In this work, both techniques are considered291

individually. For conciseness, it is chosen to discuss their impact on the292

performances of the data-model coupling procedure when considering the293

additive forcing F1.294

4. Computational settings295

Complying with the common standard [52], and consistently with[38],296

numerical computations are dimensioned with a full scale building.297

4.1. Inflow wind profile: a neutral ABL298

The atmospheric flow is modeled as a horizontally-homogeneous turbu-299

lent boundary layer (HHTBL) [53, 54]. This consists in considering constant300

properties in the streamwise and spanwise directions. Thus, only variations301

along the vertical axis are considered. To enforce the inlet wind flow, profiles302

for U , k and ϵ are defined as303

Uin = uABL
τ ln(z + z0)

κz0
, kin = (uABL

τ )2√
Cµ

and ϵin = (uABL
τ )3

κ(z + z0)
,

(7)
where Cµ = 0.09 is chosen as for a standard k − ϵ model and uABL

τ is the304

friction velocity associated with the constant shear stress305
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Figure 2: Profiles of the neutral atmospheric boundary layer: (a), mean wind velocity;
(b), turbulent intensity I =

√
k

Uref
; (c), turbulent kinetic energy and (d), turbulence dissi-

pation rate.

uABL
τ = κUref

ln(Href +z0
z0

)
. (8)

The roughness height z0 is set to 0.02, which was chosen as an interme-306

diate between class I and class II roughness [52]. The inflow velocity profiles307

are shown in figure 2.308

4.2. Computational domain309

Based on recommendation by [16], in this work, the dimension of com-310

putational domain is fixed as 18H × 12H × 6H (length × width × height).311

This sufficiently large domain helps to avoid the influence of the domain312
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boundaries on the flow near the building and the wall-pressure. Meanwhile,313

the upstream and downstream distances were set as ∼ 6H and ∼ 12H,314

respectively. The blockage ratio is 0.28 % less than the threshold of 3%315

[16].316

Hexagonal structured grid was adopted to generate the background317

empty fetch, after which local mesh refinement approach was employed to318

densify the grid around the building model, as shown in figure 1b. The min-319

imum distance of grid centroid to the ground was set to 0.006 × H (∼ one320

meter) while it reaches down to 0.0008H for the centroid of the cell adjacent321

to the building walls. The whole domain corresponds to approximately 3.5322

millions cells.323

4.3. Numerical method324

The open source library OpenFOAM (5th version of the OpenFOAM325

foundation) [55] was used to implement the CFD and adjoint governing326

equations. The library utilizes a second order finite volume discretiza-327

tion approach and a fully implicit first order method for time integration.328

The variables are defined at the centers of each control volume (CV). A329

prediction-correction procedure is used for the pressure-velocity coupling330

using the SIMPLE-type methods with Rhie and Chow [56] interpolation.331

With regard to the discretization schemes, the second order upwind (or332

linear-upwind) scheme [57] is used for the advection terms as it is shown333

to be one of the most efficient and accurate scheme for Reynolds Averaged334

Navier–Stokes (RANS) simulations on bluff body flows [58].335

4.4. VDA settings336

Regarding the minimization procedure, a steepest descent algorithm is337

used with an adaptive step. A maximum step size is fixed for each of the338

parameters based on a prior sensitivity validation test, while a minimum339

pre-factor for the step size of 10−4 is considered as an optimization conver-340

gence criteria for all parametrisations.341

Regularisation of the force parameter F1 is proceeded separately either342

by the penalisation or by the prescription of the descent direction with343

Sobolev gradient. The penalty-free parameter ranges in ζi = 0.1, 0.25, 0.5.344

Concerning the filtering length lsob, as suggested in previous works [38, 59],345

a filtering length scale equivalent to 10% of the building width seems to give346

a fair compromise to filter unphysical small scales.347

For the other parametrisation cases, only the Sobolev gradient is con-348

sidered, with the same filtering length scale.349
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In the further investigation of combined parametrisations, penalty and350

Sobolev gradient will be employed together to obtain an efficient regulari-351

sation and capture physical flow features.352

5. Results353

This section is dedicated to the comparison of the different choices of354

control parameter and regularisation techniques introduced in our data as-355

similation problem. The impact of their individual contribution on the wall-356

pressure estimation and the wake flow reconstruction will be first explored.357

Among all calculations presented in this paper, the case of control parameter358

fϵ with Sobolev gradient regularisation is common with the study [38]. In359

a second step, an efficient flow reconstruction by combining the advantages360

identified in the previous techniques is proposed.361

5.1. Choice of control parameter and regularisation362

5.1.1. Cost reduction and convergence rate363

Evaluation of the regularization. Reduction of the (normalized) cost func-364

tional in the case of the forcing F1 on the momentum equation is com-365

pared in figure 3a between Sobolev gradient and the penalty constraint.366

With Sobolev gradient, the objective function has reached its lowest value367

(J /J0 ≃ 0.2). It should be noted nevertheless that with a penalty pa-368

rameter set to ζ = 0.1, a very close level of reduction J /J0 ≃ 0.26 has369

been reached, but after approximatively 5 times more iterations (nit ∼ 500370

against 100 with Sobolev gradient). The faster minimisation and the lower371

objective demonstrate the Sobolev gradient ability to improve significantly372

the gradient-based algorithm. This is consistent with the observation in [38]373

using the alternative control parameter fϵ. This improvement is at the price374

of a low additional cost corresponding to the resolution of a Helmholtz like375

equation, yet, of the same order as an additional iteration of the prediction-376

correction loop. The filtering length lsob can be chosen a priori, by taking377

10% of the diameter of the building as characteristic length scale. It seems378

to constitute a solid baseline. Indeed, a higher fraction leads to an overly-379

diffused parameter, while lower values did not provide enough regulariza-380

tion.381

Note however that close to the optimal solution, the penalty provides a382

better numerical behaviour, showing less oscillations around the minimum.383
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(a) (b)

Figure 3: Cost function reduction with different parametrizations; (a) an added force F 1

with Sobolev gradient projection lsob = 0.1D against penalisation ζ = 0.1, 0.25, 0.5, (b)
comparison between all parameters with only Sobolev gradient projection.

Evaluation of the parameter choice. A comparison of the cost reduction with384

the different choices of parametrization is shown in figure 3b. It can be seen385

that using a structured force on the momentum equation F2 allows reaching386

an optimal objective at a level very close to the raw force F1 (J /J0 ≃ 0.27),387

yet with a twice faster descent. This faster convergence suggests that adding388

a physical-based structure to the correction force seems to lead to a more389

efficient descent direction. Meanwhile, forcing with fϵ on the transport390

equation of ϵ leads to a lower cost reduction with more iterations. This is391

an expected result since it relies on a model that is further constrained, as392

highlighted in [38]. Recalling that the cost functional is representative of393

the building wall pressure. Due to potential overfitting effects, it is hard to394

conclude just in light of this result. Sections 5.1.3 and 5.1.4 explore velocity395

field reconstructions in the wake to obtain more prescriptive conclusions.396

5.1.2. Wall pressure397

Results of the pressure loads at and around measurement locations are398

compared with the experimental data [47] and the non-assimilated model399

in figure 4.400

In the back facade, where Cp < 0, reconstructed wall-pressure with401

the raw force F1 shows perfect fitting to data, while the pre-multiplied402

force F2 and the forcing fϵ on the transport of ϵ lead to an intermediate403

estimation between model and data. Observing the windward and side404

facades and the roof top, it can be noticed that the forcing fϵ associated405
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Figure 4: Pressure coefficient profiles along building facades with different parametriza-
tions; (a) along the symmetry plane and along horizontal transverse plane at three
heights, (b) z/D = 3.33, (c) z/D = 0.9, (d) z/D = 0.63.
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with the most structured model leads to the closest results to the non-406

assimilated model, while the less structured model by a raw forcing F1 fits407

better the measurements. This is consistent with the results of section 5.1.1.408

A structured forcing on the momentum equation F2 leads to intermediate409

results.410

If the objective of data assimilation is to perform wall pressure inter-411

polation between pressure taps enhanced by a RANS model, then the raw412

forcing on the momentum equation is well suited. The present results show413

that more structure forcings give more confidence in the model. In the next414

sections, a detailed comparison on the ability of these strategies is given in415

terms of velocity field reconstruction.416

5.1.3. Wake centreline profiles417

Results of the streamwise velocity on the wake centreline are here con-418

fronted to data from PIV experiments [47] and the uncorrected model in419

figure 5. It should be recalled that these data were not used in the as-420

similation problem. Hereafter, an up-wash (resp. down-wash) denotes the421

ascending (resp. descending) motions in the wake velocity field. In order to422

span both up-wash and down-wash motions, profiles are compared at four423

height levels (z/D = 0.63, 1.26 for up-wash and z/D = 2.5, 3.33 for down-424

wash). Moreover, at each height, a different recirculation length is iden-425

tified, by the intersection of the velocity profile with the axis U/Uref = 0.426

As a first remark, all corrective models show some reduction at all heights.427

Yet, depending on the chosen parameter and the considered wake region,428

different reduction levels are achieved. With a parameter fϵ, data assimila-429

tion leads to the shortest recirculation among all parameters and regardless430

of the considered region, with a very good agreement with PIV data. For431

both momentum forcing strategies F1 and F2, model abilities for retriev-432

ing the wake flow extension vary with the height and the forcing type. The433

most noticeable relative reductions are observed closer to the ground for the434

up-wash flow, with a very close prediction for both force shapes. However,435

in the down-wash flow region, a raw form leads to better wake reduction,436

while the structured forcing F2 leads to poor results.437

At this stage, forcing on fϵ leads to good wake velocity field reconstruc-438

tion, but lower performances for pressure loads predictions and wall pressure439

interpolation. Meanwhile, a direct forcing on the momentum equation im-440

proves pressure prediction, but suspiciously by an unphysical mechanism,441

since it does not reduce the wake consistently with PIV measurements.442

A second key aspect in the velocity profiles is the maximum reverse443
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Figure 5: Streamwise velocity comparison along centreline at heights, (a) z/D = 0.63,
(b) 1.25, (c) 2.5, (d) 3.33.
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velocity, happening approximatively around x/D = 1.5 in the PIV mea-444

surements. Strong reverse flow is associated with intense depression and is445

thus indicative of the ability of the estimated wake to match the leeward446

pressure. The mismatch of the minimum velocity between PIV and model447

is especially strong for large z/D. Based on this criteria, forcing on fϵ and448

the direct raw forcing F1 shows bad performances, but surprisingly, the449

structured forcing on the momentum equation F2 leads to accurate max-450

imum reversed velocity in the wake. This is corroborated by the leeward451

pressure predictions in figure 4a), suggesting that the reasonable pressure452

predictions close to the high end (near point C) are obtained due to a good453

velocity prediction in the wake close to the building. It can be noted that454

in the case of raw forcing, regularisation effects are not visible in the wake455

centreline velocity profiles.456

5.1.4. Reconstructing flow features457

For a better insight into the reconstructed flow fields, figure 6 shows458

time-averaged sectional streamlines at symmetry plane. Note that sectional459

streamlines are computed by in-plane velocity components. In order to dis-460

cuss the flow topology, two specific points are to be observed. The first one461

is the saddle point observed at the frontier of the recirculation region, re-462

sulting from the interaction between the descending velocities (down-wash)463

and ascending velocities (up-wash) (for the uncorrected RANS model it is464

around x/D ≃ 4,z/D ≃ 2). The location of this point is strongly related to465

the recirculation lengths discussed in section 5.1.3. The second point is the466

focal point around (x/D ≃ 1.5,z/D ≃ 4.5) reminiscent of a large spanwise467

vortex structure, connecting the two symmetric recirculation vortices visi-468

ble in the horizontal plans in figures 7 and 8. This focal point is a sign of a469

local depression.470

In the PIV symmetry plan, compared to the non-corrected models, the471

saddle point is located more upstream and slightly higher in z. Consistently472

with the results of section 5.1.3, the optimisations pull the saddle point473

upstream, but not sufficiently, and lower in z instead of being raised in474

the case of the structure-free forcing F1. With the structured forcing F2,475

the z position of the saddle point is correct, but the recirculation length is476

too large. Forcing on the turbulence closure equation through fϵ leads to477

a drastic reduction of the recirculation region, and an accurate prediction478

of the saddle point position. As pointed out in [38], this striking result is479

mitigated by the fact that this saddle point has been pulled slightly too far480

upstream. Horizontal cross sections in figures 7 and 8 complement the view481
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Figure 6: Flow topology (2D) comparison with the different proposed parametrization
at symmetry plane.
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Figure 7: Flow topology (2D) comparison with the different proposed parametrization
on horizontal plane at normalized height z/D = 0.63.

of the 3D flow structure.482

Concerning the focal point in figure 6, complete disappearance is noted483

by the raw direct forcing F1; whereas it is moved upstream in the vicinity of484

the leeward facade in the case of structured force F2. Yet, with the proposed485

closure parameter fϵ, this critical point is retrieved.486

By taking these observations globally, it could be argued that the re-487

circulation region is globally reduced. This is, however, not achieved in an488

entirely satisfactory way with a raw force.489

The results suggest that the pressure reduction in the leeward facade490

is performed in the optimisation by approaching the focal point very close491
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Figure 8: Flow topology (2D) comparison with the different proposed parametrization
on horizontal plane at normalized height z/D = 3.3.
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to the wall instead of significantly reducing the overall recirculation region.492

This was not the case with fϵ as a control parameter, as the two-dimensional493

vortices at both elevations (z/D = 0.63, 3.33) are still captured. Note494

nonetheless that as one span downward, far enough from the high-end, such495

that descending motions are negligible (say at z/D = 0.63), all models tend496

to preserve the physical features (see figure 7).497

Clearly, each parametrization has its pro and cons when applied indi-498

vidually. Direct forcing, either structured or not, provides a superior ability499

for wall-pressure interpolation, while embedding parameters in the turbu-500

lence closure equation does preserve better the physical features of the wake501

velocity field. To take advantage of both strategies, it is proposed next to502

investigate the coupling of these two kinds of corrections. The choice of the503

control parameter shape plays an important role here. Hence, performing504

an efficient hybridisation is far from being an easy task as it requires proper505

scaling between the two corrections.506

5.2. Exploiting complementary effects for reconstruction507

5.2.1. Control parameters508

In order to refine flow reconstructions, this section considers simulta-509

neously two kinds of control parameters; one forcing vector field acting on510

the momentum equations and a scalar forcing field acting on the transport511

equation of ϵ. In order to control better the rigidity of the model, a struc-512

tured form of the forcing on the momentum equation is chosen. The present513

choice is motivated based on the numerical tests performed in the previous514

sections to act on two different physical mechanisms.515

More precisely, the choice of the control parameter is motivated based516

on the following observations. It has been shown in section 5.1 that forcing517

directly on the momentum equation tends to lead to an overfitting of the518

data. As a matter of fact, the wall pressure is well represented, but the flow519

field is unphysical. A way to provide a better structure to this forcing is520

to premultiply it by |∇k|. This still leads to a good reduction of the wall521

pressure discrepancy, with performances in terms of the cost functional522

decrease comparable to the direct forcing. Regarding the flow field, despite523

a moderate reduction of the wake extension, the vertical position of the524

saddle point is better recovered.525

On the other hand, forcing on the transport of ϵ leads to impressive526

reduction of the recirculation length. this can be interpreted by the fact that527

it acts on the turbulent mixing, which is a key driver to simulate correctly528

the wake shape. The disadvantage of this very structured model is that it529
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constraints severly the data assimilation process to reach in its exploration530

a sufficiently large domain of physical solution in the state space[38].531

With the objective of performing the best flow reconstruction as possible,
since they apparently act on two separate mechanisms, a combination of
both strategies is investigated in the following. The model proposed in that
aim reads as

∂(ρUjUi)
∂xj

+ ∂

∂xi

(
P + 2

3ρk
)

− ∂

∂xj

[
µeff

(
∂Ui

∂xj

+ ∂Uj

∂xi

)]
= −F2 (9a)

∂Ui

∂xi

= 0 (9b)

Mk = 0 (9c)
Mϵ = −fϵϵ (9d)

where Mk and Mϵ corresponds to the tubulent kinetic energy and tur-532

bulent dissipation evolutions of the base model.533

5.2.2. Quality assessment for flow reconstructions534

Validation metrics are defined here to evaluate the quality of the recon-535

struction. These metrics are proposed to compare the interpolation quality,536

i.e., the ability to reconstruct the wall pressure on the building based on537

sparse measurements, and the extrapolation/generalisation quality, i.e., the538

velocity field reconstruction. For the former purpose, the objective function539

J is simply considered.540

The wake reconstruction assessment is not straightforward. Consistently541

with the discussion of the velocity profiles in section 5.1.3, quantities repre-542

sentative respectively of the recirculation length and the maximum reverse543

flow velocity are defined. At a height zj, Mj
2 measures the recirculation544

length relative error, defined as545

Mj
2 =

∣∣∣∆Lj
x/∆Lj,0

x

∣∣∣ , (10)

with ∆Lj
x the error in recirculation length of the optimised model com-546

pared with PIV, and ∆Lj,0
x the error of recirculation length of the non-547

assimilated RANS model compared with PIV.548

Similarly, the relative error of maximum reverse velocity at height zj is549

defined by550

Mj
3 =

∣∣∣∆U j
xmin/∆U j,0

xmin

∣∣∣ , (11)
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L⋆
x U⋆

xmin M2(%) M3(%)

Sheng et al. [47] 1.86, 2.13, 1.93 -0.170, -0.470, -0.421 - -
realizable k − ϵ 4.15, 4.01, 3.18 -0.197, -0.203, -0.181 100, 100, 100 100, 100, 100

F1, lsob = 0.1 D 2.92, 2.89, 2.16 -0.146, -0.138, -0.095 46.5, 40.3, 18.2 86.8, 124, 136
F2 = |∇k|fu, lsob = 0.1 D 2.64, 3.56, 2.75 -0.177, -0.264, -0.211 33.9, 76.0, 65.6 26.7, 77.1, 87.5
F2, fϵ, lsob = 0.1 D 2.43, 2.40, 2.33 -0.158, -0.120, -0.158 25.1, 14.5, 32.0 43.2, 131, 110
F2, fϵ, lsob = 0.1 D, (ζfu , ζfϵ) = (0.1, 15) 2.29, 2.42, 2.36 -0.115, -0.105, -0.144 18.9, 15.3, 34.4 201, 137, 116
F2, fϵ, lsob = 0.1 D, (ζfu , ζfϵ) = (0.25, 15) 2.18, 2.32, 2.30 -0.099, -0.091, -0.135 14.5, 10.0, 29.7 260, 142, 120
F2, fϵ, lsob = 0.1 D, (ζfu , ζfϵ) = (0.5, 15) 2.22, 2.17, 2.25 -0.104, -0.080, -0.120 15.7, 2.20, 25.0 241, 147, 126
fϵ, lsob = 0.1 D 2.06, 1.77, 1.98 -0.135, -0.055, -0.106 8.69, 18.9, 3.94 129, 156, 131

Table 1: Normalized Recirculation length L⋆
x and peak streamwise velocity U⋆

x inside the
recirculating flow at two height z/D = (0.63, 2.5, 3.33) on the symmetry plane (y/D = 0)
with different parametrization. Variables are normalized by D and Uref , respectively.

where ∆U j
xmin stands for the error on the wake’s peak velocity of the551

optimised model compared with PIV, and ∆U j,0
xmin for the error on the max-552

imum reverse velocity of the non-assimilated RANS model compared with553

PIV.554

As seen in section 5.1.3, it turns out that the two criteria M2 and M3555

follow an opposite trend by varying the model rigidity, from an overfitted to556

an over-constrained situation. A good estimation of the wake velocity field557

consists of performing a trade-off between these quantities for all heights558

zj. It is then proposed to define the new quantity559

A2(M2, M3) =
(1 − 1

nz

∑nz
j Mj

2)
1

nz

∑nz
j Mj

3
(12)

where nz denotes the number of considered heights. Here it should be560

pointed out that a large value of A2(M2, M3) is the footprint of a good561

estimation.562

Yet, the choice of metric is not unique. The present choice has the563

advantage of being more sensitive than a standard L2(Ω) norm, by being564

oriented toward a worst-case scenario in identifying maximum values. The565

average over several peak values confers robustness to the metric.566

The first two metrics are given in table 1, measured at three heights,567

namely z/D = 0.33, 2.5, 3.33 in the symmetry plane.568

Averaged metrics are collected in table 2. Tables summarize the current569

(hybrid) parametrization results with different regularization levels: the570

individual, direct forcing form, the structured force alone, and the corrected571

closure on ϵ budget alone.572
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εJ = J end/J 0(%) A1(M2) (%) A1(M3) (% ) A2(M2, M3)

Sheng et al. [47] - - - -
realizable k − ϵ 100 100 100 -

F1, lsob = 0.1 D 20.9 35 116 0.56
F2 = |∇k|fu, lsob = 0.1 D 26.9 58.5 63.8 0.65
F2, fϵ, lsob = 0.1 D 23.7 23.9 94.6 0.80
F2, fϵ, lsob = 0.1 D, (ζfu , ζfϵ) = (0.1, 15) 20.3 22.8 151 0.51
F2, fϵ, lsob = 0.1 D, (ζfu , ζfϵ) = (0.25, 15) 25.2 18.1 174 0.47
F2, fϵ, lsob = 0.1 D, (ζfu , ζfϵ) = (0.5, 15) 29 14.3 171 0.50
fϵ, lsob = 0.1 D 43.4 10.5 139 0.64

Table 2: Summarizing scores for reconstruction quality.

These quantitative comparisons are accompanied by graphs of the cost573

function reduction, illustrated in figure 9, and wall-pressure distributions,574

in figure 10. In the following, these tables and figures are discussed by575

comparing the proposed criteria.576

Objective reduction assessment. Among all tests performed, the best cost577

functional reduction is obtained with the coupled scaling (ζfui
, ζfϵ) = (0.1, 15).578

The reached performance is even better than when a direct raw forcing F1
579

without penalty (highly overfitted) was considered. In the following sec-580

tions, the physical relevance of the flow structure in these cases is explored.581

Employing penalty in conjunction with Sobolev gradient seems to im-582

prove the cost functional reduction. Here, the effect of this is explored as583

follows. Three penalization scaling factors of the momentum forcing were584

considered: ζfui
= 0.1, 0.25, 0.5, with a given penalization to ϵ fixed at585

ζfϵ = 15. Fixing instead ζfui
and sweeping ζfϵ , leads to an opposite trend586

since it is the ratio between them which drives the overall behaviour. As587

expected, high values of ζfui
leads to large constraints for the optimisation,588

while lower values does not efficiently suppress non-physical oscillations.589

Moreover, it has been observed that ζfui
has a significantly higher impact590

on the cost functional than ζfϵ . This is consistent with the fact that forc-591

ing on the momentum equations allows modifying the wall-pressure easily.592

Nonetheless, a high impact of ζfϵ on the flow field should be expected, as fϵ593

affects the bulk momentum diffusion.594

Wake predictions. Examining the averaged flow metrics A1(M2), A1(M3)595

reveals a reversed trend between them. The larger the reduction of the re-596

circulation length, the worst the prediction of the peak streamwise velocity.597

With no penalization considered, the only adjustment of the closure (by598
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Figure 9: Cost function reduction under a correction of a structured force with a modi-
fied closure applied on ϵ budget for different penalization (ζfu

, ζfϵ
) = ([0.1 0.25 0.5], 15).

Comparison is made between raw-force (black circle), structured force (blue square), de-
fault closure, and modified closure made at the ϵ budget (yellow triangle).

fϵ) enables the lowest wake extension but leads to the slightest accurate599

predictions, falling outside the base model error. On the other hand, the600

only correction of the structured force leads to the least wake contraction601

and the best error decrease.602

To measure the trade-off between recirculation length and peak veloc-603

ity, the quantity A2(M2, M3) (table 2) is introduced. From table 2, it604

can be observed that the synchronous adjustment of the closure with the605

force provides the better compromise (A2 = 0.8), which is better achieved606

with no penalization. It can also be seen that the direct forcing gives a607

very low compromise (A2 = 0.56) as compared with the most constrained608

parametrization by only correcting fϵ (A2 = 0.64). This supports the idea,609

that this metric is only partially representative of the quality of reproduc-610

tion of flow features.611

By examining the flow topology, illustrated in figures 11 and 12, it can be612

seen that correcting at the same time (|∇k|fu, fϵ) leads to an intermediate613

solution between both individual corrections (|∇k|fu, 0) and (0, fϵ).614

It can be seen that recirculation region in the symmetry plane has sig-615

nificantly reduced and a saddle point location in good agreement with PIV616

data. However, it is still noted that the model excessively pulls the focal617

point near the high end to the leeward facade, the mechanism employed618
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Figure 10: Pressure coefficient profiles along building facades under a correction of a
structured force with a modified closure applied on ϵ budget for different penalization
(ζfu

, ζfϵ
) = ([0.1 0.25 0.5], 15). Comparison is made between raw-force (black circle),

structured force (blue square), default closure, and modified closure made at the ϵ budget
(yellow triangle).

Figure 11: Flow topology (2D) with reconstruction under a correction of a structured
force with a modified closure on symmetry plane.
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Figure 12: Flow topology (2D) with reconstruction under a correction of a structured
force with a modified closure on horizontal plane at normalized height z/D = 3.33.

by the optimisation to fit the wall-pressure at the high end of the leeward619

facade. Nonetheless, this remaining overfitting artifact is very limited in620

space as the transverse structures are well retrieved. The reconstructed621

flow still recovers the lateral vortex rolls, which extend from the ground622

and meet at the high-end vortex on the symmetry plane, with the focal623

points in the horizontal planes being well captured until height z/D = 3.33624

with the downstream location of x/D ≃ 1.5. This location is intermediate625

between the base RANS and the PIV (x/D ≃ 1) (see figure 12). Note that,626

except with the correction of fϵ solely, both structured/raw form of forcing627

with default closure does not capture them at all.628

Therefore, by considering both the qualitative observations of the flow629

features and the proposed wall/flow metrics, it can be summarized that630

combination of a direct forcing on the momentum equation with simple631

structuring form, along with a forcing on the transport equation of ϵ is a632

promising strategy. It ensures overall a good quality to the reconstruction.633

It is worth noting that although the quantitative flow metric A2 did not634

favors the penalization, examining the qualitative flow topology suggests635

a better restitution of some physical features. It was observed by the re-636

capturing of the high-end focal point with the couple of scaling (ζfui
, ζfϵ) =637

(0.5, 15), which is otherwise absent (see figure 13). Therefore, providing638

a penalization plays an important role in refining the flow features. Yet,639

an adequate couple of scaling is required to provide a good compromise640

between a well-interpolated wall pressure and the best retrieval of realistic641

flow patterns.642

Incorporating the forcing in the transport equation of turbulence dis-643
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Figure 13: Flow topology (2D) on symmetry plane. Comparison with flow recon-
struction,(a) under a correction of a structured force with a modified closure applied
on ϵ budget with no penalization, (b) with penalization (ζfui

, ζfϵ
) = (0.1, 15), (c)

(ζfui
, ζfϵ

) = (0.5, 15).
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sipation rate reduces the overfitting. It suggests that the structure of the644

RANS model is relevant and that the corrections to be added lye where the645

closure is performed. This principle is likely generalisable for other models:646

the control parameters should correct the closure models which are by def-647

inition not fully known. The second main observation is that a very good648

improvement is reached relaxing the Boussinesq assumption by a forcing on649

the momentum equation. This suggests that in wake flows, the effect of650

large scale structures and/or strong inhomogeneities and anisotropy (as in651

shear layers) have a significant effect on the mean flow. Having accurate652

results through a forcing on the momentum equation is a hard task since653

an overfitting issue is faced. It is achieved thanks to the hybrid approach654

that provides a forcing on both equations.655

6. Conclusion656

The present study aimed to investigate variational data assimilation657

(DA) methodologies devised in previous work [38] to reconstruct 3D wind658

flows around structures and provide guidelines toward an efficient recon-659

struction. In this framework, the Reynolds Averaged Navier–Stokes equa-660

tions (RANS) constitute the base mathematical model to describes the mean661

wind flow. In particular, the case on which this study focuses on was ded-662

icated to the analysis of a high-rise building with a square section and an663

aspect ratio H/D ∼ 5. For its improved capability to account for the energy664

transfer with strong strain rates, the realizable revision developed by Shih665

et al. [48] was also chosen as a reference turbulence closure. The inflow wind666

profile models the lower part of the atmospheric boundary layer under the667

assumption of horizontal homogeneity. The data considered for the assim-668

ilation were the averaged wall-pressure measured on a scaled model of the669

building in a wind tunnel experiment by Sheng et al. [47] at CSTB (Nantes,670

France).671

Several important findings arising from this study can be highlighted:672

• In 3D wake flows, despite the fact than RANS models systemically673

overpredict the recirculation length, wall-pressure information is a674

meaningful enough piece of information to recover acurately exper-675

imental wake extension;676

• In weak constraint VDA, a control parameter on the transport equa-677

tion within which the closure is performed avoids overfitting. Over-678
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fitting can be acceptable for wall-pressure interpolation, but reveals679

catastrophic for wake flow reconstructions;680

• A “hybrid” control parameter on the transport of ϵ and on the mo-681

mentum equation leads to very accurate results due to a relaxation of682

the Boussinesq assumption;683

• Sobolev gradient descent direction leads to efficient regularisation and684

to a fast convergence.685

The present study constitutes a first step towards applying DA proce-686

dure to real-world applications in structural wind engineering, where veloc-687

ity field measurements of the whole 3D domain are not accessible. Note688

that in this work, the quality of the data-assimilated flow field is quantified689

by validation PIV data plans (but only wall-pressure measurements were690

used for estimation). With the guidelines provided in this study, we can691

imagine validations with more sparse and less costly measurements (sonic692

anemometers) for estimations in operational conditions.693

The reconstruction strategy employed in the present paper considered694

a distributed additive forcing control parameter, acting on the momentum695

equation and/or the transport equation of turbulent dissipations, where the696

closure is performed.697

In the first step, to recover the mean flow from the pressure measure-698

ments, an unknown spatially distributed forcing was added to the momen-699

tum equation in order to infer corrections to the Reynolds induced force.700

Without a priori knowledge of its nature, an initial raw form was consid-701

ered but led to unphysical oscillations. To avoid that, two regularization702

approaches were investigated; the first one proceeded by penalizing the gra-703

dient of the control parameter while the second was instead conducted by704

Sobolev gradient [51, 59]. Regarding the effects of regularisation, cost re-705

duction results with the Sobolev gradient yielded a much faster convergence,706

lower discrepancy levels, and an excellent agreement with the wall-pressure707

experiments in most building’s wall regions. An insufficient reduction of708

the recirculation region, associated with non-physical features, has been ob-709

served regarding flow reconstruction ability. It has raised the point about710

the lack of structuration in the forcing.711

In order to remedy this situation, authors proceeded by refining the712

shape of the force with the aim to ensure some consistency with the forc-713

ing directly related to the Reynolds stresses. To that purpose, a pre-714

multiplication by the gradient of the kinetic energy favours corrections715
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where Reynolds stresses are likely active. In terms of objective, globally,716

the discrepancy with wall-pressure experiments has been reduced signifi-717

cantly and in a faster way, allowing us to reach a state very close to the718

one achieved with raw forcing. Moreover, a better retrieval of the wake719

features was noticed, particularly close to the ground reattachment point.720

Unfortunately, it still leads to an insufficient reduction of the wake.721

Alternatively, correction on the transport equation of ϵ was also con-722

sidered. The modified closure produced a drastic improvement of the wake723

extension, associated with a moderate performance of wall-pressure recon-724

struction. This behaviour is well understood because acting near the turbu-725

lence closure enables the maintenance of the model structure and avoiding726

overfitting the wall pressure measurements. However, as the flow adjust-727

ment comes only from diffusive effects, it suggests some room for improve-728

ment with other forms of the (relaxing for instance the Boussinesq eddy729

viscosity assumption) distributed parameters to obtain accurate flow esti-730

mations.731

With these results in mind, an intermediate solution was proposed.732

While maintaining the Boussinesq assumption and correcting the turbu-733

lence closure equation, an addition of a direct correction of the deformation734

with a premultiplication factor is considered. To go toward an efficient735

hybridization, control parameter forms have played a significant role here.736

The reconstruction results were then discussed, and the quality of the recon-737

struction was evaluated qualitatively and by the definition of some wall/flow738

validations metrics. Both the qualitative and quantitative observations have739

shown that the combination of a direct forcing with a simple structuring740

form and local closure adjustment is a promising strategy as it ensures over-741

all a good quality to the reconstruction.742

It is interesting here to point out the great improvement in the predic-743

tion of the tearing pressures, often the most important information needed744

for dimensioning, goes with the improvement in the prediction of the wake.745

Moreover, the conjunction of descent direction in H1 and gradient penal-746

ization in L2 allows us to refine the quality of the flow estimation. Besides747

the quality benefits on the final flow field, it was noticed that a robust DA748

procedure could be ensured with the addition of penalty.749

This allows to consider this kind of parametrization as a potential can-750

didate for an efficient complex flow reconstruction given the limited amount751

of data in hand. More so, with regards to the chosen parameters forms, the752

authors are confident that this is quite generalizable as Boussinesq assup-753
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tion represents one fundamental bottleneck of the RANS modelling. It is754

believed that this may represents an advancement over the state of the art755

on flow reconstruction, and it constitutes an additional step toward more756

challenges in wind engineering such as flow reconstructions around complex757

buildings or within urban cities.758

Appendix A. Closure parameters in the realizable k − ϵ RANS759

equations760

In this appendix, closure coefficients of the realizable k − ϵ RANS equa-761

tions are detailed. First, σk (resp. σϵ) is a closure constant, that allows the762

turbulent mixing to have a different intensity in the momentum equations763

than in the transport equation of kinetic energy k (resp. dissipation rate764

ϵ). Besides, in the transport equation of ϵ,765

C1 = max
(

0.43,
η

(5 + η)

)
(A.1)

with766

η = Sk/ϵ (A.2)
is the normalised strain rate. The constant C2 is a closure coefficients.767

Recall that the particularity of the realizable revision by Shih et al. [48] is768

that the coefficient Cµ is a non uniform coefficient that depends on the mean769

strain-rate and ensures the realizability conditions, i.e. Schwartz inequality770

and the non-negativity of the diagonal Reynolds stress. It is defined by771

Cµ = 1
A0 + AsUs

k
ϵ

, (A.3)

with
Us =

√
SijSij + ΩijΩij (A.4a)

Sij = 1
2

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
(A.4b)

Ωij = 1
2

(
∂Ui

∂xj

− ∂Uj

∂xi

)
(A.4c)

and

As =
√

6 cos(ϕ), ϕ = 1
3 arccos(

√
6W ) (A.5a)

W = SijSjkSki

S
, S =

√
2SijSij, (A.5b)
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where Sij and Ωij are, respectively, the mean strain (with its magnitude S)772

and rotation rates. The parameter A0 is a tuning coefficient.773
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