
HAL Id: hal-03602583
https://hal.science/hal-03602583v1

Submitted on 9 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MECP2 Duplication Syndrome: Evidence of Enhanced
Oxidative Stress. A Comparison with Rett Syndrome
Cinzia Signorini, Claudio de Felice, Silvia Leoncini, Rikke Møller, Gloria

Zollo, Sabrina Buoni, Alessio Cortelazzo, Roberto Guerranti, Thierry Durand,
Lucia Ciccoli, et al.

To cite this version:
Cinzia Signorini, Claudio de Felice, Silvia Leoncini, Rikke Møller, Gloria Zollo, et al.. MECP2 Dupli-
cation Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome. PLoS
ONE, 2016, 11 (3), pp.e0150101. �10.1371/journal.pone.0150101�. �hal-03602583�

https://hal.science/hal-03602583v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

MECP2 Duplication Syndrome: Evidence of
Enhanced Oxidative Stress. A Comparison
with Rett Syndrome
Cinzia Signorini1☯*, Claudio De Felice2☯*, Silvia Leoncini1,3, Rikke S. Møller4,5,
Gloria Zollo1,3, Sabrina Buoni3, Alessio Cortelazzo3, Roberto Guerranti6, Thierry Durand7,
Lucia Ciccoli1, Maurizio D’Esposito8,9, Kirstine Ravn10‡, Joussef Hayek3‡

1 Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy, 2 Neonatal
Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy, 3 Child Neuropsychiatry Unit,
Azienda Ospedaliera Universitaria Senese, Siena, Italy, 4 Danish Epilepsy Centre, Dianalund, Denmark,
5 Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark, 6 Department
of Medical Biotechnologies,University of Siena, Siena, Italy, 7 Institut des Biomolécules Max Mousseron
(IBMM), UMR 5247-CNRS-UM-ENSCM, Montpellier, France, 8 Institute of Genetics and Biophysics “A.
Buzzati-Traverso”, Naples, Italy, 9 IRCSS Neuromed, Pozzilli, Italy, 10 Department of Clinical Genetics,
Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark

☯ These authors contributed equally to this work.
‡ These authors also contributed equally to this work.
* cinzia.signorini@unisi.it (CS); geniente@gmail.com (CDF)

Abstract
Rett syndrome (RTT) andMECP2 duplication syndrome (MDS) are neurodevelopmental

disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expres-

sion. A relationship betweenMECP2 loss-of-function mutations and oxidative stress has

been previously documented in RTT patients and murine models. To date, no data on oxi-

dative stress have been reported for theMECP2 gain-of-function mutations in patients with

MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS

was investigated (subjects n = 6) and compared to RTT (subjects n = 24) and healthy condi-

tion (subjects n = 12). Patients withMECP2 gain-of-function mutations showed increased

oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein

bound iron, F2-isoprostanes, and F4-neuroprostanes), as compared to healthy controls

(P� 0.05). Such increases were similar to those observed in RTT patients except for higher

plasma F2-isoprostanes levels (P < 0.0196). Moreover, plasma levels of F2-isoprostanes

were significantly correlated (P = 0.0098) with the size of the amplified region. The present

work shows unique data in patients affected by MDS. For the first timeMECP2 gain-of-func-

tion mutations are indicated to be linked to an oxidative damage and related clinical symp-

toms overlapping with those ofMECP2 loss-of-function mutations. A finely tuned balance of

MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding

light on the relevance of the redox balance in the central nervous system integrity.
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Introduction
Methylated-CpG binding protein 2 (MeCP2) is a nuclear protein encoded by the X-linked
MECP2 gene (OMIM�300005). MeCP2 can be defined as a multifunctional protein, due to its
involvement in chromatin architecture, regulation of RNA splicing, and its role both as transcrip-
tional repressor or activator [1].MECP2 appears to be universally expressed in all cell types with
few exceptions, including microglia and rod photoreceptors [2]. Loss-of-function mutations in
MECP2 is the main cause of Rett syndrome (RTT), which is a neurodevelopmental disease with
severe cognitive impairment occurring at a ratio of approximately 1:10,000 girls [3,4].

However, RTT is not the only known pathological condition related toMECP2mutations, as
a wide series of conditions, collectively termed asMECP2-related disorders [5], has been reported.
These disorders include asymptomatic female carriers, boys withMECP2mutations typically
causing a RTT phenotype in girls, and rare individuals with mutations inMECP2 showing other
neurodevelopmental disorders [5]. Interestingly, intellectual disability (ID) is a common feature
between RTT as well asMECP2-related disorders. Gain-of-function mutations in relation to
MECP2 also lead to a severe neurodevelopmental disorder, namedMECP2 duplication syndrome
(MDS) orMECP2 triplication syndrome [6–8]. The phenotypes include major cognitive and
motor deficits, stunted motor development, early onset hypotonia, epilepsy, and progressive spas-
ticity, clinical features which are overlapping with some of those seen in RTT [6,7].

Although the prevalence of MDS is unknown, it has been estimated that MDS could be
responsible for 1 to 2% of all X-linked ID cases [9]. MDS is well documented in males, with 150
affected individuals reported in the literature, while it rarely occurs in females [9], as female
carriers ofMECP2/Xq28 duplications are almost always asymptomatic due to extremely
skewed X-inactivation [9]. This is in contrast to females with classical RTT harboring a loss-of-
function mutations of theMECP2 [10,11].

Interestingly, a genotype-phenotype correlation in relation to the size of the Xq28 dupli-
cated region has emerged. The minimal region of duplication that is sufficient to cause the core
MDS phenotype involves theMECP2 and IRAK1 [12–14]. Evaluating previously data and data
from mouse models, Ramocki and colleagues posit thatMECP2 is the primary dosage-sensitive
gene responsible for the neurological phenotypes in the Xq28 duplications [7].

Overall, MeCP2 appears to play a key role in the brain as a regulator of synaptic and neuro-
nal plasticity as well as an etiological role in the development of RTT and MDS [15].

Oxidative stress (OS) is a nonspecific pathological condition that has frequently been associ-
ated with neurological disorders, including several diseases linked to cognitive impairment
[16]. Compelling evidence betweenMECP2 loss-of-function and aberrant redox homeostasis
has been shown by our and other research groups [17,18]. Specifically, a cause-effect relation-
ship between oxidative brain damage andMecp2 loss-of-function has been reported by our
group in several murine models of the disease [19].

Since both a critical role forMECP2 in central nervous system integrity [20], and an involve-
ment of OS in brain synaptic plasticity have been reported [21–23], MDS can represent a clini-
cal model for testing the hypothesis that a finely tuned balance ofMECP2 expression is critical
to the control of redox homeostasis. We hypothesize that overexpression ofMECP2 would lead
to a status of enhanced OS.

Materials and Methods

Subjects
The study included a total of 42 subjects. Six subjects carrying an Xq28 duplication/triplication
(ranging from 0.426 to 3.9 Mb) all-encompassingMECP2 (female n = 1, males n = 5; mean age
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10.7 ± 4.3 years, range: 2.5–14) were enrolled in the study. One patient (case #6) was admitted
at the Danish Epilepsy Centre, Dianalund, Denmark, while five patients (cases #1–5) were fol-
lowed at the Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena
Italy. For comparative purpose, “positive” controls (RTT patients with provenMECP2 loss-of-
function mutations; n = 24; all females; mean age 10.1 ± 3.3 years, range 3–14) were also ana-
lyzed, as a part of cohort of patients on regular follow-up at the Child Neuropsychiatry Unit,
University Hospital, Siena Italy. All the RTT patients were identified with aMECP2mutation
and clinically evaluated according to the revised diagnostic criteria by Neul et al. [24]. The
patients were all diagnosed with the classical form of RTT [4]. In addition, “negative” controls
were newly recruited (healthy subjects n = 12; males 4, females 8; mean age 10.3 ± 3.7 years,
range 3–14). Age differences were not statistically significant (P = 0.927).

The work was carried out in accordance to the rules expressed in the Declaration of Hel-
sinki, and written informed consent was obtained by the parents of the enrolled subjects. This
study was approved by the competent institutions: Ethics Committee of Western Zealand,
Denmark (for the patient admitted at the Danish Epilepsy Centre), and Ethics Committee of
the Tuscan Region, Azienda Ospedaliera Universitaria Senese, Siena, Italy (for the subjects
recruited at the Child Neuropsychiatry Unit).

Microarray-comparative genomic hybridisation (array-CGH) analysis
The Xq28 duplications were identified by Array-CGH analysis using Agilent oligonucleotide
array kit 44B (Human Genome CGHMicroarray Kit 44B; Agilent Technologies, Santa Clara,
CA), with an average resolution of about 75 kb or by a sub-megabase resolution whole genome
tiling path BAC array (http://www.molgen.mpg.de/~abt_rop/molecular_cytogenetics/). The
duplications were confirmed by real-time quantitative polymerase chain reaction (qPCR) [25].

Blood sampling
Blood sampling was carried out after the overnight fast. Blood samples were collected in hepa-
rinized tubes, and centrifuged at 2,400Xg for 15 min at room temperature. The platelet poor
plasma was saved, and the buffy coat was removed by aspiration. Erythrocytes were washed
twice with physiological solution, suspended in Ringer solution, pH 7.4 as a 50% (vol/vol) sus-
pension, and then used for the determination of intraerythrocyte non-protein bound iron
(IE-NPBI). Plasma was used for free F2-isoprostanes (F2-IsoPs), F4-neuroprostanes (F4-Neu-
roPs), F2-dihomo-isoprostanes (F2-dihomo-IsoPs), and plasma non-protein bound iron (p-
NPBI). For all isoprostane determinations, butylated hydroxytoluene (BHT) (90 μM) was
added to plasma as an antioxidant.

Oxidative stress marker evaluations
The examined markers included non-protein bound iron (NPBI) (pro-oxidant factor), F2-
IsoPs (the oxidized products from arachidonic acid and markers of OS/systemic lipoperoxida-
tion), F4-NeuroPs (the oxidized products from docosahexaenoic acid and markers of neuronal
membrane damage/brain gray matter), and F2-dihomo-IsoPs (the oxidized products from
adrenic acid and markers of glia membrane damage/brain white matter) [17]. OS markers
were measured as previously reported. Briefly, IE-NPBI and p-NPBI were determined as a des-
ferrioxamine-iron complex by high-performance liquid chromatography [26], whereas F2-
IsoPs, F4-NeuroPs, and F2-dihomo-IsoPs were determined by a gas chromatography/negative
ion chemical ionization tandem mass spectrometry (GC/NICI-MS/MS) analysis [26–28].
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Routine blood tests
Serum concentrations of total cholesterol, high density lipoproteins (HDL)-cholesterol, triglyc-
erides, immunoglobulin class G, class A and class M (IgG, IgA, IgM), were performed by a fully
automatic analyzer (Cobas 6000 System; Roche Diagnostics). Total cholesterol, HDL-choles-
terol, and triglycerides were assayed by using an enzymatic methods [29–31]. Serum fibrinogen
concentration was determined by using Thromborel Reagent on BCS XP coagulation analyzer
(Siemens Healthcare) [32]. Erythrocyte Sedimentation Rate (ESR) was assayed by using an
automated system [33]. Blood cells counts were assayed on Sysmex XT-2100 system [34].

Data analysis
All variables were tested for normal distribution (D’Agostino-Pearson test). Differences
between groups were evaluated by either one-way analysis of variance (ANOVA), or the Krus-
kal–Wallis test, as appropriate. Associations between variables were tested using linear regres-
sion analyses (for continuous normally distributed data) or the Spearman rank correlation (for
continuous non normally distributed variables). A two-tailed P< 0.05 was considered to indi-
cate statistical significance. The MedCalc ver. 12.0 statistical software package (MedCalc. Soft-
ware, Mariakerke, Belgium) was used for data analysis.

Results
All the enrolled patients showed aMECP2 duplication/triplication whose position and size was
defined according to the GRCh37/hg19 human genome annotation (Fig 1 and Table 1).

The typical features of the MDS, including developmental regression, epilepsy, magnetic
resonance imaging abnormalities, hypotonia/spasticity were present in all the examined
patients with the single exception of epilepsy, reported in five out of six subjects (Table 1).

All the MDS patients showed relevant differences in four out of five of the investigated OS
markers, as compared to the healthy controls (Fig 2). In particular, significantly increased
plasma levels of p-NPBI and IE-NPBI, forms of redox active iron, and both F2-IsoPs and F4-
NeuroPs, non-enzymatic oxidized products from polyunsaturated fatty acids (i.e., arachidonic
and docosahexaenoic acid, respectively), were detected. No significant differences were evi-
denced for F2-dihomo-IsoPs, biomarkers of adrenic acid oxidation. Both examined forms of
iron (i.e., p-NPBI and IE-NPBI) are considered pro-oxidant agents [26], whereas the investi-
gated isoprostanoids are indexes of lipid peroxidation (i.e., F2-IsoPs) [26], and brain gray (i.e.,
F4-NeuroPs) or white (i.e., F2-dihomo-IsoPs) matter oxidative damage [27, 28].

Fig 1. Graphical view of theMECP2 duplications/triplication.Graphical view of theMECP2 duplications/triplication was created with custom tracks in the
UCSC genome browser (GRCh37/hg19), (Patient 1 was identified with a triplication). The involved regions are shown in blue andMECP2 is marked by a red
circle.

doi:10.1371/journal.pone.0150101.g001
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A comparison of the OS status in MDS patients and RTT patients vs the healthy control
population evidenced similarities, with the exceptions of significantly higher plasma levels of
F2-IsoPs and lower plasma levels of F2-dihomo-IsoPs in MDS. Indeed, the levels of p-NPBI,
IE-NPBI, and F4-NeuroPs in MDS were found to be comparable to those observed in RTT
(Fig 2). Moreover, the levels of all the examined plasma and intraerythrocyte biomarkers were
significantly higher in RTT as compared to the control group (Fig 2).

A significant positive correlation between the Xq28 region duplication/triplication size and
plasma levels of F2-IsoPs (r = 0.9181; 95% C.I.: 0.4181 to 0.9912; P = 0.0098) was evidenced
(Fig 3). Additionally, a correlation trend between the Xq28 region duplication size and the
erythrocyte sedimentation rate (ESR) (r = 0.732; P = 0.1598) was observed. On the other hand,

Table 1. MECP2 duplication syndrome: clinical features and genetic details.

Clinical features Patient #1 Patient #2 Patient #3 Patient #4 Patient #5 Patient #6

Age (years) 14 8 2.5 9 13 12

Gender Male Female Male Male Male Male

Microcephaly Yes (+) Yes (+) Yes (+) Yes (+) Yes (+) No

Hand stereotypies Yes (++) Yes (+) Yes (+) Yes (++) Yes (+) No

Abnormal breathing Yes (+) Yes (+) No Yes (+) Yes (+) No

Bruxism Yes (++) Yes (+) Yes (+) Yes (++) Yes (+) No

Laryngomalacia Yes No Yes No No No

Sleep disturbances Yes (+) Yes (+) Yes (+) Yes (+) Yes (+) Yes (+++)

GERD, drooling Yes (+) Yes (+) Yes (+) Yes (+) Yes (+) Yes (+)

Constipation Yes (++) Yes (++) Yes (++) Yes (+++) Yes (++) Yes (++)

Genital abnormalities No No No Yes
(hypospadias)

No No

Facial dysmorphism Yes (+) Yes (+) Yes (+) Yes (+) Yes (+) No

Facial hypotonia Yes (+) Yes (+) Yes (+) Yes (+) Yes (+) Yes (+)

Dysphagia Yes (+++) Yes (++) No Yes (+++) Yes (++) Yes (+)

Intellectual Disability Yes (+++) Yes (+++) Yes (+++) Yes (+++) Yes (+++) Yes (+++)

Developmental
regression

Yes (+) Yes (+) Yes (+) Yes (+) Yes (+) Yes (+)

Epilepsy Yes (+++) Yes (+++) No Yes (+++) Yes (+++) Yes (+++)

MRI abnormalities Yes* Yes*†¶‡ Yes*¶‡** Yes** Yes* Yes*

Hypotonia/ spasticity Yes (+++) Yes (+) Yes (+) Yes (+) Yes (+++) Yes

Feeding difficulties Yes (+) Yes (+) Yes (+) Yes (+) Yes (+) Yes

Recurrent Infections Yes§ No Yes§ Yes§ Yes§ Yes

Endocrine
abnormalities

No Yes
(hypothyroidism)

No No No No

MECP2 duplication/
triplication• position and
size (GRCh37/hg19)

chrX:151198447–
155190224• (~4Mb)

chrX:152370000–
153410000 (1Mb)

chrX:153049224–
153877929 (~828kb)

chrX:
153101077–
153713921
(~613kb)

chrX:
153043806–
154294453
(~1,2Mb)

chrX:
152982000–
153408000
(~426kb)

Yes (+++), Yes (++), and Yes (+) indicated high, medium, and low relevance of the clinical presentation, respectively.

*Central and cortical atrophy

**Periventricular leukomalacia

†immature white matter features, mainly involving frontal lobe

¶Cavum vergae

‡Cyst of the septum pellucidum
§recurrent upper and lower respiratory tract infections.

•Patient with MECP2 triplication, GERD; gastro esophageal reflux disease, MRI; magnetic resonance imaging, Mb; mega base, kb; kilo base.

doi:10.1371/journal.pone.0150101.t001
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no significant correlations were detected between OS markers and age, thus reinforcing the
hypothesis of a link between theMECP2 gain-of-function mutations and OS derangement.

Significant differences were observed for total cholesterol, ESR, and ALC (post-hoc compar-
ison: RTT>MDS� Control Subjects; MDS� RTT> Control Subjects; MDS�
RTT> Control Subjects, respectively) (Table 2). In contrast, no significant differences were
reported for all the other parameters of the typical clinical-chemical pattern (Table 2). No

Fig 2. Oxidative stress marker plasma levels in MDS and RTT. Levels of NPBI, plasma free F2-IsoPs, F4-NeuroPs, and F2-dihomo-IsoPs in MDS are
compared with those of RTT and healthy control subjects. All the statistical significant differences were reported. Legend: ANOVA, analysis of variance; F2-
dihomo-isoPs, F2-dihomo-isoprostanes; F2-IsoPs, F2-isoprostanes; F4-NeuroPs, F4-neuroprostanes; IE-NPBI, intraerythrocyte non protein bound iron; MDS,
MECP2Duplication Syndrome; p-NPBI, plasma non protein bound; RTT, Rett syndrome.

doi:10.1371/journal.pone.0150101.g002

Fig 3. Relationship between plasma F2-IsoPs and Xq28 size (univariate regression analysis). A
positive linear relationship of plasma F2-IsoPs vs. Xq28 duplication/triplication size is showed. The strength of
the relationship is indicated by the correlation coefficient (r = 0.9181, P = 0.0098). The linear regression
equation was reported.

doi:10.1371/journal.pone.0150101.g003
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significant differences were present for immunoglobulin class G and class M, high density lipo-
proteins-cholesterol, white blood cells, absolute counts for neutrophils, eosinophils, or baso-
phils. (data not shown).

Discussion
Enhanced OS has been claimed to be involved in several pathological processes [35], including
RTT, a rare genetic disease in which a deficiency of MeCP2 is demonstrated [36, 37]. In partic-
ular, we have previously shown that OS in brains of mice withMECP2 loss-of-function muta-
tions takes place and can be rescued, along with neurological signs, byMecp2 brain specific
gene reactivation [19]. However, to date, no hints on the opposite being true exist, i.e., no evi-
dence is available for supporting the paradoxical concept that “too much”MeCP2 could lead to
similar biochemical events as observed in conditions of “too little”MeCP2.

In the present study, we demonstrate, for the first time, the occurrence of a redox imbalance
in patients withMECP2 overexpression. Moreover, our data, while adding new evidence with
regard to theMECP2-OS link, suggest that a fine tuning of theMECP2 dosage may play a key
role in regulating redox homeostasis in humans.

Whether mitochondria would be the main, or the only major, intracellular sources for the
abnormal redox status in MDS and RTT is still to be ascertained [19, 38–41]. To this regard, an
ultrastructural analysis of primary cultures of skin fibroblasts from RTT patients has shown no
major morphological changes in the mitochondria [42]. At the same time, to the best of our
knowledge, no studies on mitochondrial function in MDS have been published to date.

Oxidized products from polyunsaturated fatty acids appear to be promising molecules to be
investigated in MDS, as they could mirror an ongoing oxidative brain damage. To this regard,
in RTT mouse models, the presence of isoprostanes was evidenced in brain concomitant to ele-
vated isoprostane plasma levels [19]. The reason for the strongly increased F2-IsoPs plasma lev-
els in patients presentingMECP2 gain-of-function mutations remains to be elucidated.
Nevertheless, the evidenced dose-effect relationship between Xq28 duplication size and F2-
IsoPs production further supports the existence of a close link betweenMECP2 and redox
homeostasis control. A close link betweenMECP2 gene expression and F2-IsoPs formation has
been reported in RTT where theMECP2mutations associated to more severe phenotypes
exhibited higher F2-IsoPs plasma levels [17].

Table 2. Routine chemistry biomarkers in patients withMECP2 duplication syndrome, Rett syndrome, and control subjects.

MECP2 duplication syndrome (n = 5)* Rett syndrome (n = 24) Control subjects (n = 12) ANOVA P value

Total cholesterol (mg/dl) 141.8 ± 39.80 172.6 ± 27.3 144.6 ± 16.0 0.007

ESR (mm/h) 30.4 ± 21.43 32.68 ± 15.58 9.16 ± 5.85 <0.001

ALC (cells x103/mm3) 3.32 ± 2.04 3.8 ± 0.85 2.68 ± 0.62 0.019

AMC (cells x103/mm3) 0.394 ± 0.21 0.737 ± 0.37 0.55 ± 0.15 0.052

Fibrinogen (mg/dl) 332.2 ± 90.8 404.2 ± 92.1 334.7 ± 60.78 0.055

Triglycerides (mg/dl) 89.2 ± 27.29 66.5 ± 15.26 67.8 ± 28.47 0.111

IgA (mg/dl) 201.0 ± 157 117.2 ± 33.4 140.9 ± 34.1 0.101

Values were expressed as means ± standard deviation. The P value are referred to one-way ANOVA tests. Significant P values are highlighted in bold.

Non-significant trends for AMC, fibrinogen, triglycerides, and IgA were evidenced.

High density lipoproteins-cholesterol, white blood cells, absolute counts for neutrophils, eosinophils, and basophils were not significant different in a

comparison among the three examined populations.

ESR, erythrocyte sedimentation rate; ALC, absolute lymphocytes counts, AMC, absolute monocytes counts, IgA, immunoglobulin class A; mm, millimeter;

h, hour.

* data for patient #6 were not available

doi:10.1371/journal.pone.0150101.t002
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Interestingly, increased F4-NeuroP plasma levels in both MDS and RTT (Fig 2), suggest the
involvement of the gray matter oxidative damage in both conditions. Currently, F4-NeuroPs
are investigated as potential biomarker for neurological disease. In human RTT, F4-NeuroPs
has been related to neurological symptoms severity, mutation type and clinical presentation
[27], whereas their levels were significantly elevated in the brain of RTT symptomatic null
mice [19]. The relevance of F4-NeuroPs in the neurological disease is also reported for the
pathogenesis of Alzheimer’s disease [43, 44].

Table 3. Commonalities and differences betweenMECP2 duplication syndrome and Rett syndrome.

MECP2 duplication
syndrome

Rett syndrome

MeCP2 " #
Irak1 " "/(# in deletions)

p-NPBI " ** " *

F2-IsoPs "*** " **

F2-dihomo-IsoPs (supposed white matter
involvement)

$ / "* "***

F4-NeuroPs (supposed gray matter involvement) "*** "***
IE-NPBI "• "•
Inflammation Yes Yes

Gender Male/Female Female

Microcephaly Yes (83.3%) Yes

Hand stereotypies Yes (83.3%) Yes (+++)

Abnormal breathing Yes (66.6%) Yes (+++)

Bruxism Yes (83.3%) Yes (+++)

Laryngomalacia Yes (16.6%) No

Sleep disturbances Yes (100%) Yes (+++)

Gastro esophageal reflux disease (GERD), drooling Yes (100%) Yes

Constipation Yes (100%) Yes

Genital abnormalities Yes (16.6%) No

Facial dysmorphism Yes (83.3%) No

Facial hypotonia Yes (100%) No

Dysphagia Yes (83.3%) Yes

Intellectual disability Yes (100%) Yes

Developmental regression Yes (100%) Yes

Epilepsy Yes (83.3%) Yes

Magnetic resonance imaging (MRI) abnormalities Yes (100%) Rare

Hypotonia/ spasticity Yes (100%) Yes

Feeding difficulties Yes (100%) Yes

Recurrent Infections Yes (66.6%) Yes/No

Endocrine abnormalities Yes (16.6%) Yes/No

Hypoxia Not evaluated Yes (mild
chronic)

", #, and $ indicate increased, decreased and similar levels, as compared to control subjects, respectively.

Yes (+++) indicated high relevance of the clinical presentation, respectively.

•, *, **, ***, indicate <100, 100–250, 250–500, and >500 percentage increase, respectively. p-NPBI,

plasma non protein bound; IE-NPBI, intraerythrocyte non protein bound iron; F2-IsoPs, F2-isoprostanes; F4-

NeuroPs, F4-neuroprostanes; F2-dihomo-isoPs, F2-dihomo-isoprostanes

doi:10.1371/journal.pone.0150101.t003
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Gain-of-function and loss-of-functionMECP2mutations were found to generate distinct
F2-dihomo-IsoPs patterns, oxidized fatty acid products considered as biomarkers of free radical
damage to myelin [28, 45]. Although a reduced volume of the brain white matter has been
recently reported in patients affected by Xq28 duplication involving theMECP2 gene [46], our
data might suggest a differential involvement of the brain white matter damage for RTT and
MDS, on the base of the recovered F2-dihomo-IsoPs plasma levels.

This peculiar OS markers pattern further reinforces the specificity of theMECP2-OS link,
which, far from being an epiphenomenon, appears to be intimately related to the specific
MECP2-related disorders [17]. For some of those molecules known to be implicated in the gen-
eral regulation of the redox homeostasis, an epigenetic modulation by MeCP2 has already been
demonstrated [20]. To this regard, a possible role for contiguous genes toMECP2, i.e., IRAK1
(OMIM �300283), cannot be ruled out, as a compensatory upregulation of IRAK1 has been
reported inMecp2 loss-of-function mutations associated with experimental RTT murine mod-
els [47, 48].

Given that MDS and RTT both lead to severe neurodevelopmental disorders sharing several
similar features (Table 3), our data, beyond stressing the critical role of theMECP2 function
for the OS status, shed further light on the relevance of redox homeostasis in the central ner-
vous system integrity.

Alike RTT, MDS seems to elicit an inflammatory response. This condition could be linked
to either imbalanced gene control or abnormal redox status. Although recurrent infections are
a quite common feature of MDS [49], present in the clinical history of five out of our six
patients, no signs of ongoing infection were detectable at the time of the blood sampling. How-
ever, it is also possible that the elevated ESR values are not directly related to the underlying
genetic abnormality. Nevertheless, the inflammatory similarities observed in MDS and RTT
well comply with the potential role for MeCP2 in regulating cytokine-dependent T helper cell
differentiation [20]. Thus,MECP2 seems to exert a finely tuned regulation of major biological
processes.

Conclusion
Taken together, our data indicate that aMECP2 disequilibrium, either due to loss-of-function
or gain-of-function mutation, leads to similar phenotypes in terms of OS status, thus adding
new evidence on the relationship between OS andMECP2.
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